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Abstract
The complexity of biological systems, and the increasingly large amount of associated
experimental data, necessitates that we develop mathematical models to further our
understanding of these systems. Because biological systems are generally not well
understood, most mathematical models of these systems are based on experimental
data, resulting in a seemingly heterogeneous collection of models that ostensibly rep-
resent the same system. To understand the system we therefore need to understand
how the different models are related to each other, with a view to obtaining a uni-
fied mathematical description. This goal is complicated by the fact that a number of
distinct mathematical formalisms may be employed to represent the same system,
making direct comparison of the models very difficult. A methodology for compar-
ing mathematical models based on their underlying conceptual structure is therefore
required. In previous workwe developed an appropriate framework formodel compar-
ison where we represent models, specifically the conceptual structure of themodels, as
labelled simplicial complexes and compare them with the two general methodologies
of comparison by distance and comparison by equivalence. In this article we continue
the development of our model comparison methodology in two directions. First, we
present a rigorous and automatable methodology for the core process of comparison
by equivalence, namely determining the vertices in a simplicial representation, cor-
responding to model components, that are conceptually related and the identification
of these vertices via simplicial operations. Our methodology is based on considera-
tions of vertex symmetry in the simplicial representation, for which we develop the
required mathematical theory of group actions on simplicial complexes. This method-
ology greatly simplifies and expedites the process of determining model equivalence.
Second, we provide an alternativemathematical framework for our model-comparison
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methodology by representingmodels as groups, which allows for the direct application
of group-theoretic techniques within our model-comparison methodology.

Keywords Model comparison · Model similarity · Model equivalence · Simplicial
complex · Group action · Orbit space
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1 Introduction

Describing biological systems mathematically remains a challenge. We can collect
data at unprecedented scales (Howe et al. 2008; Marx 2013; International Society for
Biocuration 2018; Mahmud et al. 2021), but we still lack the models required to inte-
grate the often heterogeneous data into a single analytical and predictive framework.
Mathematical models can achieve this, but also much more. They are of fundamen-
tal importance in developing new knowledge of these complex systems for multiple
reasons: analysis and interpretation of large data sets; simulations of the biological
system, or a subsystem thereof, to develop new hypotheses; and, guiding new exper-
imental design (Tomlin and Axelrod 2007; Sneddon et al. 2010; Gunawardena 2014;
Wolkenhauer 2014; Torres and Santos 2015; Pezzulo and Levin 2016; Transtrum and
Qiu 2016; Banwarth-Kuhn and Sindi 2020; King et al. 2021).

Formally, a model is an abstraction of an observable phenomenon (Rosenblueth
and Wiener 1945). Models may assume many different forms, and here we consider
two general classes, conceptual models and mathematical models (Torres and San-
tos 2015). A conceptual model is a qualitative representation of the reference system
under investigation, consisting of the relevant conceptswhich correspond to observable
objects or phenomena, and the interconnections between these concepts. A conceptual
model is obtained by integrating our knowledge of a system into a descriptive frame-
work, with a range of possible levels of conceptual detail depending on our knowledge
of the system. For example, in a developmental-patterning system two possible con-
cepts are amorphogen anddiffusionof themorphogen,which are dependent concepts in
the system since the morphogen undergoes diffusion. Some developmental-patterning
systems may have a second morphogen, which is unrelated to the first morphogen
since they are independent concepts. A mathematical model is a quantitative repre-
sentation of a conceptual model, and hence a representation of the reference system,
in the formalism of mathematical concepts. Mathematical models are based on con-
ceptual models through specification of the relevant mathematical concepts and their
relationships. Mathematical models allow for the calculation of quantifiable concepts
of the system, for example the spatial distribution of the morphogen concentration as
a function of time.

Comparison of mathematical models based on their underlying conceptual struc-
ture is of fundamental importance for understanding the corresponding biological
systems. Many aspects of complex biological systems are not well understood, so the
development of mathematical models of such systems necessarily follows an inductive
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process employing experimental data which provides limited constraint for the range
of possible conceptual models, resulting in non-uniqueness of the mathematical mod-
els (Karplus 1977; Babtie et al. 2014). While mathematical models make conceptual
models more specific and precise, such specificity may provide room for many alter-
native mathematical representations. Indeed, there are many possible formulations
of a quantitative mathematical model from a qualitative conceptual model, depend-
ing on the particular quantitative description required, and alternative mathematical
models can appear very distinct and unrelated since the underlying concepts may be
obfuscated by the mathematical formalism or may be interpretable in different ways.
Further, while the mathematical model is intended to be in direct correspondence with
the conceptual model, and therefore the reference system, the particular formalism of
the mathematical model introduces many implicit connections between the mathemat-
ical concepts in the mathematical model. Some of these interconnections may not be
intended, andmay be inconsistent with the underlying conceptual model; therefore the
mathematical model may not correspond directly to the conceptual model. It is there-
fore essential to consider carefully whether the underlying conceptual model of the
mathematical model represents the reference system. Indeed, since the mathematical
formalismmay introduce conceptual interconnections unrelated to the original system,
care must be taken to ensure that the model is not a weak or incorrect representation
of the system of interest.

Because of the possible multiplicity, different mathematical formalisms, and mis-
representation of mathematical models associated with a biological system, a general
methodology for model comparison is required in order to further understanding of
the system underlying the different types of models (Gay et al. 2010; Henkel et al.
2018). Model comparison is therefore of fundamental importance in understanding
the similarities and differences between models and between data sets, and conse-
quently in understanding biological systems. While there are many approaches to
compare the quantitative outputs of mathematical models, see for example Tapinos
and Mendes (2013) and Cabbia et al. (2020), such comparisons provide little insight
into the underlying conceptual structure of the mathematical models and hence of the
corresponding biological systems. Neither can we rely on model selection (Kirk et al.
2013) or robustness analysis, as this also relies on a comparison of the outputs of
different models. These approaches cannot be used a priori to determine conceptual
similarities, equivalences, or, indeed, differences between mathematical models.

Model comparison can simplify the landscape ofmathematical modelling by organ-
ising models into categories of models that are closely related. For example, models
in the same category may be incremental variations of each other, but share some
fundamental qualitative characteristic. We are interested in this fundamental level of
agreement: the conceptual basis of a model. Or alternatively, the set of design prin-
ciples (Barnes et al. 2011; Brophy and Voigt 2014) shared by all models in the same
category. The mathematical models are merely tools for quantitative computations,
and the mathematical formalism can in fact be a hindrance to the model comparison
at the conceptual level.

In Vittadello and Stumpf (2021) we present a framework for model comparison
where models are represented as labelled simplicial complexes. Models are then com-
pared in terms of their simplicial representations using two general methodologies:

123



   48 Page 4 of 38 S. T. Vittadello, M. P. H. Stumpf

the first is comparison by distance, where the difference between models is measured
in terms of the differences between the corresponding simplicial representations; the
second is comparison by equivalence, where we identify any equivalences between the
components of the simplicial representations of differentmodels, and then employ par-
ticular operations on the complexes to transformone into the other—such equivalence,
when it exists, reveals common underlying characteristics of the models. Our method-
ology for model comparison allows for any model to be represented and compared
within our framework, irrespective of formalism, granularity, and level of abstraction.
To construct the simplicial representation of a model, we must first define the compo-
nents of the model that we would like to represent, and for this we can fall back on
relevant domain expertise. Depending on the level of detail required, the simplicial rep-
resentation of amodelmay not be unique.Onemain outcomeof ourmodel-comparison
methodology is for models of developmental-pattern formation (Green and Sharpe
2015; Scholes et al. 2019), where we demonstrate that the Turing-pattern activator-
inhibitor model is equivalent to the positional-information annihilation model from a
significant conceptual perspective.

In this article we continue the development of our methodology for model com-
parison (Vittadello and Stumpf 2021) in two respects. First, we develop a rigorous
and automatable methodology for the main process when comparing models with
respect to equivalence: the determination of the vertices that are conceptually related
in a simplicial representation and the subsequent identification of these vertices via
simplicial operations. We say that vertices are conceptually related when their labels,
corresponding to model components, are conceptually related. Without automatabil-
ity, establishing which vertices are conceptually related in a simplicial representation
is challenging if not unfeasible, even for relatively small models. This methodology
is based on considerations of vertex symmetry in the simplicial representation, and
we establish the necessary mathematical theory for group actions on simplicial com-
plexes. The methodology provides a major step toward simplifying and facilitating
the process of determining model equivalence, which in turn can assist in the unifi-
cation of models for a biological system and the discovery of design principles for
synthetic biology. Second,wepresent a concise description of an alternativemathemat-
ical framework for our model-comparison methodology where we represent models
as groups. This allows for the direct application of group-theoretic techniques within
our model-comparison methodology, in addition to the current algebraic-topological
techniques associated with simplicial complexes.

The remainder of this article is organised as follows. In Sect. 2 we provide an
overview of the required background material: Sect. 2.1 outlines the required back-
ground in algebraic topology;we thendescribe ourmethodology formodel comparison
by equivalence in Sect. 2.2. We present and discuss our new results in Sect. 3. In par-
ticular, in Sect. 3.1 we provide a descriptive overview of our approach for identifying
equivalent components in simplicial representations through group actions, and then
develop this mathematical theory in Sect. 3.2; we present a step-by-step methodology
for determining model equivalence in Sect. 3.3, which employs our automatable the-
ory from Sect. 3.2; we then apply our methodology to a collection of Turing-pattern
and positional-information models (see the Appendix in Sect. 5 for the model details)
in Sect. 3.4; in Sect. 3.5 we give an incisive description of an alternative mathematical
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framework for our model-comparisonmethodology by representingmodels as groups,
which we call G-representations. Finally, in Sect. 4, we conclude with a discussion of
the utility of our new theory for comparing models.

2 Background

In this sectionwe provide a brief and informal description of the necessary background
in simplicial algebraic topology; further details are available from standard references
(Spanier 1966; Rotman 1988; Munkres 2018). We also discuss our methodology for
model comparison by equivalence as described in Vittadello and Stumpf (2021), and
developed further in this article.

2.1 Algebraic topology

Geometrically a p-simplex is a generalisation of a filled triangle to an arbitrary dimen-
sion p, whereby a point is a 0-simplex, a line segment is a 1-simplex, a filled triangle
is a 2-simplex, a filled tetrahedron is a 3-simplex, and so forth. We may regard 0-
simplices as vertices and 1-simplices as edges, so that we consider a simple graph as
a collection of 0-simplices and 1-simplices. A k-face of a simplex is a k-dimensional
subsimplex, and the 0-faces (or vertices) of a simplex span the simplex. If the simplex
τ is a face of the simplex σ then we write τ ≤ σ . A face τ of a simplex σ is proper if
τ �= σ .

A simplicial complex is a generalisation of a simple graph, whereby simplicies
of dimension higher than one represent higher-dimensional interactions between the
vertices. Specifically, a simplicial complex K consists of a set of simplices such that:
if σ is a simplex in K then every face of σ is also in K ; and, the nonempty intersection
of any two simplices in K is a simplex in K . We denote the set of vertices of K as
Vert(K ). A simplicial subcomplex L of a simplicial complex K is a collection L ⊆ K
that is also a simplicial complex. A simplicial subcomplex L of a simplicial complex K
is a full subcomplex if every simplex of K that has all its vertices in L is also a simplex
of L . The k-skeleton of a simplicial complex K is the subcomplex K (k) consisting
of the simplices in K with dimension at most k. In particular, the 0-skeleton K (0) is
the set of vertices and the 1-skeleton K (1) is the underlying graph of the simplicial
complex K .

In some contexts it is useful to define the empty simplex, denoted ∅, as a (−1)-
simplex, and then the corresponding simplicial complex is the empty simplicial
complex, denoted {∅}, which has dimension −1. In this work we exclude the empty
simplex, as it is not required. We include, however, the void simplicial complex, which
is the simplicial complex consisting of the empty collection of sets.We denote the void
simplicial complex by ∅, which has the assigned dimension of −∞. Further details
on these degenerate cases are found in (Kozlov 2008, Page 8, Remark 2.3).

We shall move freely between the interpretations of simplicial complexes as both
geometric and abstract objects, since they are equivalent and both contain the same
combinatorial information; and we have no need for the topological aspects of geo-
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metric simplicial complexes. Notationally, if v1, v2, . . . , vn are vertices that span a
simplex K then we denote K as {v1, v2, . . . , vn} when we want to emphasise the
spanning vertices. Note that vertices are therefore denoted as both vi and {vi }.

2.2 Model comparison by equivalence

We refer to a specific conceptual detail of a given model as a component of the
model. Every model consists of a finite number of components and the conceptual
interconnections between these components. For example, a Turing-pattern system of
reaction-diffusion equations is a model of a developmental-patterning process, and
includes components such as morphogens, diffusion, reactions, boundary conditions,
and a morphogen gradient, along with the interconnections between particular com-
ponents such as a morphogen and its diffusion.

To compare a collection of models we first determine the set of all model com-
ponents, at the required level of conceptual detail, associated with the models in the
collection. The model components are the scientific concepts represented within the
model, interpreted with knowledge of the relevant scientific domains.

Definition 2.1 (Model components, generated model) Let C be the set of all required
components from the collection of models under consideration for comparison. We
say that each model in the collection is generated by a subset of components from C.

We represent each model in the collection for comparison as a labelled simplicial
complex, which we call a simplicial representation, where each model component is
represented as a labelled 0-simplex. The label associated with a 0-simplex corresponds
to the relevant concept in the model, and for simplicity and ease of automation could
have a numerical label:

Notation 2.2 (Representations of model components) Let Ord : C → {1, 2, . . . , |C|}
be a bijection that specifies an arbitrary order for the categorical data elements in C.
We represent each model component from C as a 0-simplex that is labelled with the
name of the model component or the corresponding positive integer under Ord.

Definition 2.3 (Simplicial representation) Let C be the set of all required components
from the collection of models under consideration for comparison. To each model
generatedbya subset of components fromCweassociate a labelled simplicial complex,
whichwe call a simplicial representation, where the labelled 0-simplices correspond to
components of the model, and the one- and higher-dimensional simplices correspond
to the conceptual interconnections between the model components as determined by
the model.

The ordering functionOrd provides for efficient labelling of simplices. For example,
a 2-simplex can be labelled as {1, 2, 3}, where the 0-simplices are {1}, {2}, and {3},
and the 1-simplices are {1, 2}, {1, 3}, and {2, 3}.

For a particular level of component detail of a given model we associate a sim-
plicial representation consisting of labelled 0-simplices, which represent the model
components, along with the one- and higher-dimensional simplices that represent
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the conceptual interconnections between the components: the dyadic interactions are
1-simplices, the triadic interactions are 2-simplices, and so forth as required. The
labelling of the 0-simplices induces a labelling of the higher-dimensional simplices
through their spanning 0-simplices. Since the models for comparison are generated
by the same set of components C, a particular labelled simplex representing specific
components and interconnections can be identified within different simplicial repre-
sentations associated with the models.

Our definition of the equivalence of two models is in terms of a formal equivalence
between the two corresponding simplicial representations. The formal equivalence is
based on partial operations on the relevant set of simplicial representations, which we
make explicit here.

Definition 2.4 (Partial operation on a set) Let X be a set. A partial operation on
X is a partial unary function f : X⇀X . Denoting the domain of definition of f as
D ⊆ X , we say that f is invertible if there exists a partial operation g : X⇀X such
that (g ◦ f )|D = idD and ( f ◦ g)| f (D) = id f (D).

Note that the domain of definition of a partial operation may have cardinality one.

Definition 2.5 (Equivalence of simplicial representations) Let C be the set of all com-
ponents that appear in the collection of models under consideration for comparison,
and let S be a collection of simplicial representations corresponding to models gener-
ated by subsets from C. Further, letO be a set of partial operations onS. Two simplicial
representations K , L ∈ S are equivalent with respect to O if and only if there exists
a (possibly empty) sequence of invertible partial operations ( fi )ni=0 in O such that
fn ◦ · · · ◦ f1 ◦ f0(K ) = L .

Remark 2.6 Note that the equivalence of simplicial representations is always relative
to the set O of partial operations on S. The choice of the set O determines which
model components will be considered as conceptually equivalent. We employ partial
operations on S that we call admissible, meaning that they only relate model compo-
nents that we consider to be conceptually equivalent. We discuss this further below
when we define the operations that we employ.

Remark 2.7 It follows from our notion of equivalence of simplicial representations
in Definition 2.5 that the set { (K , L) ∈ S × S | K and L are equivalent } is an
equivalence relation on S.
Remark 2.8 Note that the equivalence of two simplicial representations K , L ∈ S
can also be defined as follows: K and L are equivalent if and only if there exist two
(possibly empty) sequences of invertible partial operations ( fi )mi=0 and (gi )ni=0 on S
such that fm ◦ · · · ◦ f1 ◦ f0(K ) = gn ◦ · · · ◦ g1 ◦ g0(L). In this work we use the
fact that this form of equivalence of simplicial representations implies the form in
Definition 2.5.

We previously defined five partial operations that we use to establish equivalence
of simplicial representations, namely: (Operation 1) Adjacent-vertex identification,
(Operation 2)Nonadjacent-vertex identification, (Operation 3)Vertex split, (Operation
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4) Inclusion, and (Operation 5) Vertex substitution. These five partial operations are
each induced by amap between simplicial complexes, and are all invertible for suitable
domains of definition: an adjacent-vertex identification is mutually inverse with a
corresponding vertex split; a nonadjacent-vertex identification is mutually inverse
with an inclusion; and, a vertex substitution is mutually inverse with another vertex
substitution. From the perspective of Remark 2.8 we will only explicitly consider
Operations 1, 2, and 5, while Operations 3 and 4 will be implicit.

For the equivalence of simplicial representations to be conceptually meaningful
we need to ensure that the employed partial operations are themselves conceptually
meaningful, or admissible, meaning that the operations preserve the conceptual rep-
resentation of the general physical system. Importantly, an established equivalence
between models is based on the components of the models that we choose to iden-
tify as equivalent, and therefore the corresponding partial operations that we consider
admissible. The equivalence of two models is therefore determined by the formal
requirements in terms of partial operations, along with tight domain-specific con-
straints.

We now state Operations 1, 2, and 5. Further details are in Vittadello and Stumpf
(2021). Recall that two distinct vertices in a simplicial complex are adjacent if they
belong to the same simplex, and for a vertex u in a simplicial complex K we denote
the set of all vertices adjacent to u as VK (u), noting that u /∈ VK (u). Further, let C
be the set of all components of models under consideration, and let K and L be two
simplicial representations with labels from C.

Definition 2.9 (Operation 1: Adjacent-vertex identification) Let u and v be a pair of
adjacent vertices in K such that the following all hold:

• VK (u) \ {v} = VK (v) \ {u}.
• For any nonempty subset W ⊆ VK (u) \ {v}, the vertices W ∪ {u} span a simplex
in K if and only if the vertices W ∪ {v} span a simplex in K .

A simplicial map π1 : K → L is an adjacent-vertex identification if π1 is surjective,
and is injective and label preserving on every vertex except at the pair of vertices u
and v which are mapped to a single vertex c ∈ L(0).

Definition 2.10 (Operation 2: Nonadjacent-vertex identification) Let u and v be a pair
of nonadjacent vertices in K such that the following all hold:

• VK (u) = VK (v).
• For any nonempty subset W ⊆ VK (u), the vertices W ∪ {u} span a simplex in K
if and only if the vertices W ∪ {v} span a simplex in K .

A simplicial map π2 : K → L is a nonadjacent-vertex identification if π2 is surjective,
and is injective and label preserving on every vertex except at the pair of vertices u
and v that are mapped to a single vertex c ∈ L(0).

Definition 2.11 (Operation 5: Vertex substitution) A simplicial map π5 : K → L is a
vertex substitution if π5 is bijective and preserves all labels except for one whereby
the labelled vertex u ∈ K (0) is mapped to the labelled vertex c ∈ L(0).
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We may extend each partial operation to effect, for example, multiple vertex iden-
tifications or substitutions by extending the assumptions in Operations 1, 2, and 5.

Remark 2.12 We note here that our model-comparison methodology is designed to be
flexible, so that the partial operations can be chosen based on specific requirements.
Different operations may produce different model equivalences, however operations
that correspond to very weak conceptual similarity may yield conceptual equivalences
that are not scientifically meaningful.

The specific partial operations on simplicial representations that we employ (ver-
tex identifications and substitution) are chosen to represent our notion of conceptual
similarity for the models and underlying biological systems that we consider here. Of
primary interest for our work are the vertex-identification operations, which identify
vertices in a simplicial representation corresponding to conceptually-related model
components; the identification of such vertices in a simplicial representation in a rig-
orous and automatable manner is the subject of Sect. 3. Additional partial operations
may be useful for grouping models based on equivalence, however the operations that
we consider provide much flexibility while preserving conceptual equivalence.

3 Results and discussion

Here we have twomain objectives. The first is to develop an automatable methodology
for identifying equivalent components in models. The second is to provide a represen-
tation of models as groups, as an alternative to simplicial representations, with which
models can be compared in a manner equivalent to that with simplicial representa-
tions. We begin with an overview of our approach for formalising the identification of
equivalent model components with group actions.

3.1 Overview

The most difficult aspect of establishing the equivalence of two simplicial represen-
tations is in determining whether two adjacent or two nonadjacent vertices in one
simplicial representation can be identified conceptually with a vertex in the other
simplicial representation, either via a vertex identification or vertex split operation.
Identifiable vertices in a simplicial representation must be in positions that are concep-
tually equivalent, and in particular in symmetric positions within the corresponding
unlabelled simplicial complex. We can therefore employ group actions on simplicial
complexes to greatly simplify and expedite the process of determining the existence
of identifiable vertices, while also providing for the process to be automated. The
existence of a relevant nontrivial group action then induces a vertex-identification
operation.

Given a simplicial representation, our goal is to determine whether any pairs of
vertices are in symmetrical positions in the simplicial complex, and so are candidates
for a possible vertex-identification operation. We therefore need to determine whether
the simplicial complex has any symmetries of a certain class. By a symmetry of a
simplicial complex we mean a permutation on the set of vertices of the complex that
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acts simplicially, so sends simplices to simplices, and that sends the whole complex
to itself. We are interested in a class of symmetries, which we may call exchange
symmetries, of the complex that exchange two vertices and leave the other vertices
fixed, since these symmetries reveal the vertices that are candidates for a possible
vertex-identification operation. From a set of exchange symmetries of the complex we
then obtain a new simplicial complex in which the exchangeable vertices are identified
by a vertex-identification operation; this process can be iterated until a simplicial
complex is obtained for which no exchange symmetries exist, and only relabelling of
the vertices need be considered by a vertex-substitution operation.

3.2 Identification of equivalent model components through group actions

We begin by establishing the relevant symmetries of simplicial complexes, which are
described by a group action. Recall the definition of a permutation of a set:

Definition 3.1 (Permutation, Transposition) A permutation of a set X is a bijection
from X onto itself, and the set of all permutations of X is the symmetric group on X
which we denote by Sym(X). A transposition is a permutation that exchanges two
elements of X and leaves the other elements fixed.

Notation 3.2 We write permutations in both function notation and cycle notation, as
is convenient, and we compose permutations from right to left. In cycle notation a
transposition is a 2-cycle, written (x y) for x , y ∈ X .

Remark 3.3 Herein our convention is to view permutations in the active sense.

Formally we refer to a symmetry of a simplicial complex as an automorphism.
Recall the following standard definition:

Definition 3.4 (Automorphism of a simplicial complex, Automorphism group) An
automorphism, or symmetry, of a simplicial complex K is a permutation on the set
of vertices Vert(K ) that acts simplicially. The automorphism group of K is the set
of all automorphisms of K , denoted Aut(K ), which is isomorphic to a subgroup of
Sym

(
Vert(K )

)
.

Herein we denote the set of positive integers from 1 to n as [n].
Notation 3.5 Let π be an automorphism of a simplicial complex K , and denote
Vert(K ) = {vi }ni=1. If σ := {vi }i∈I is a simplex in K for some subset I ⊆ [n], then we
denote the action of π on σ by π(σ) = {π(vi )}i∈I . We will usually denote vertices as
singleton sets of positive integers, in which case Vert(K ) = {{ai }

}n
i=1 where each ai

is a positive integer, and we then denote the action of π on σ by π(σ) = {{π(ai )}
}
i∈I .

The automorphisms of a simplicial complex are described by the action of a group
on the complex. Our definition of a (left) group action on a simplicial complex is
standard (Bredon 1972, Chapter III, Page 115).

Definition 3.6 (Group action) Let G be a group with identity e, and let X be a set. An
action of the group G on X is a map � : G × X → X such that:
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1. �(gh, x) = �(g,�(h, x)) for all g, h ∈ G and x ∈ X ;
2. �(e, x) = x for all x ∈ X .

If K is a simplicial complex then, setting X = K , we also assume that:

3. For each g ∈ G the map θg : K → K , given by θg(σ ) = �(g, σ ) for σ ∈ K , acts
simplicially on K .

We say that each g ∈ G acts simplicially on K , and each such action of a group G is
called a G-action.

Remark 3.7 Equivalently, an action of the group G on the set X is a group homomor-
phism � : G → Aut(X). In particular, recalling that an automorphism of a simplicial
complex K is simplicial, a simplicial action of the group G on the simplicial complex
K is a group homomorphism � : G → Aut(K ).

Notation 3.8 For an action of the group G on the set X , and for g ∈ G and x ∈ X , we
denote �(g, x) = �(g)(x) by g · x .

While conditions of regularity (Bredon 1972, Chapter III, Page 116, Definition 1.2)
are generally assumed for G-actions, such conditions are neither required nor desir-
able for our purposes since we are interested in identifying labelled simplices that,
upon permutation of the spanning vertices, produce an invariant simplicial represen-
tation. Indeed, a regular simplicial action of the group G on the simplicial complex
K is a simplicial action that satisfies the following condition for the action of each
subgroup of G (Bredon 1972, Chapter III, Page 115, Statement (B)): Condition (A)
— if g1, g2, . . . , gm ∈ G, and {v1, v2, . . . , vm} and {g1 · v1, g2 · v2, . . . , gm · vm} are
both simplices of K , then there exists an element g ∈ G such that g · vi = gi · vi
for all i ∈ [m]. Condition (A) implies the following Condition (B) (Bredon 1972,
Chapter III, Page 116, Statement (A′) and the following two paragraphs): Condition
(B) — if g ∈ G, v is a vertex in K , and v and g · v belong to the same simplex, then
v = g · v. Condition (B) illustrates that regular actions fix vertices that are sent to
the same simplex. To the contrary, we require nonregular actions that allow for the
permutation of the vertices of a given simplex, as illustrated in the following simple
example.

Example 3.9 Let K be the 1-simplex
{ {1}, {2}, {1, 2} }

, regarded as a simplicial repre-
sentation. Since the vertices {1} and {2} are adjacent and in symmetrical positions in the
complex, they are conceptually equivalent so may be identified by an adjacent-vertex
identification. While we can directly observe from K that the two vertices are concep-
tually equivalent, this is very difficult for more complicated simplicial representations,
and the use of group actions simplifies the process. In this case, let G = 〈

(1 2)
〉
be

the permutation group on the set {1, 2} generated by the transposition (1 2), that is,
G = {

e, (1 2)
}
. Then G acts simplicially on K by permuting the vertices of K (we

discuss such actions in detail below). Now, {1, 2} and {
e · 1, (12) · 2} = {1} are both

simplices of K , however there is no g ∈ G such that g · {1, 2} = {1}. So G does
not satisfy Condition (A), and hence is not a regular action. Such a group action is,
however, a symmetry of interest in our work here, since the permutation of the vertices
of the simplex K results in an invariant complex.
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To reveal any conceptually-equivalent vertices in a simplicial representation we
require a specific class of simplicial automorphisms, which we call exchange auto-
morphisms (see (Papadopoulos 2012, Section 3.2, Page 322, Definition 3.20)).

Definition 3.10 (Exchange automorphism, Exchangeable vertices) Let K be a simpli-
cial complex, and let u, v ∈ Vert(K ). An exchange automorphism for the vertices u
and v is an automorphism φ ∈ Aut(K ) such that φ(u) = v, φ(v) = u, and φ(w) = w

for all w ∈ Vert(K ) \ {u, v}. If an exchange automorphism exists for vertices u and v

then we say that u and v are exchangeable in K .

Note that if K is a simplicial complex and u, v ∈ Vert(K ) are exchangeable then
the associated exchange automorphism on K is unique.

Remark 3.11 Let K be a simplicial complex. The binary relation { (u, v) | u, v ∈
Vert(K ) are exchangeable } over the set of exchangeable vertices in K is an equiv-
alence relation. Reflexivity follows from the identity automorphism on K , and
symmetry follows from the definition of exchangeable vertices. For transitivity we
observe that if φ ∈ Aut(K ) is an exchange automorphism for the vertices u and
v, and ψ ∈ Aut(K ) is an exchange automorphism for the vertices v and w, then
φ ◦ ψ ◦ φ ∈ Aut(K ) is an exchange automorphism for the vertices u and w.

We employ group actions of a particular class:

Definition 3.12 (Group action by exchangeable vertices) A group action by exchange-
able vertices on a simplicial complex K consists of an action of a group G on K such
that G = 〈M〉 where:
• M ⊆ Sym

(
Vert(K )

)
is a set of transpositions (u v) where u and v are exchange-

able in K ; and,
• the action of each (u v) ∈ M is the exchange automorphism on K that exchanges
u and v.

Once identifiable vertices are found in a simplicial representation through a group
action, we can obtain a new simplicial complex, called the orbit space, with these
vertices identified as single vertices. The definition of the orbit space of an action of a
group on a simplicial complex follows (Bredon 1972, Chapter III, Page 117, Paragraph
2).

Definition 3.13 (Orbit, Orbit space) Let K be a simplicial complex, and suppose that
the group G acts on K . The orbit, or G-orbit, of an element σ ∈ K is the set G · σ :=
{ g ·σ | g ∈ G }. The orbit space, or quotient, of an action of a group G on K , denoted
K/G, is the set consisting of the orbits Vert(K/G) := {G · v | v ∈ Vert(K ) }, along
with the finite subsets {G · vi }ni=1 of Vert(K/G) for which {ui }ni=1 spans a simplex in
K , where each ui is a representative of G · vi , and the existence of such a simplex in
K is not required for all systems of representatives of the orbits G · vi .

Example 3.14 Let K be the simplicial 2-complex
{{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3},

{1, 2, 3}}, which is geometrically a filled triangle. Let G := 〈
(1 2)

〉 ∼= Z/2Z be the
cyclic subgroup of S3, the symmetric group of degree 3, generated by the transposition
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(a) (b)

(c) (d)

Fig. 1 Geometric illustration of the action of the group G on the simplicial complex K : (a) The action of
the transposition (1 2) on K ; (b) The orbit space K/G is the 1-simplex with vertices

{{3}} and
{{1}, {2}}.

Geometric illustration of the action of the group H on the simplicial complex K : (c) The action of the
permutation (1 2 3) on K ; (d) The orbit space K/H is the 0-simplex

{{1}, {2}, {3}}

(1 2). Then g ·K = K for all g ∈ G. The action ofG on K is illustrated geometrically
in Fig. 1a, where (1 2) is a reflection. We have G · {1} = G · {2} = {{1}, {2}} and
G · {3} = {{3}}, hence Vert(K/G) = {

G · {1},G · {3}}. Since {1, 3}, or alternatively
{2, 3}, is a simplex in K ,

{
G · {1},G · {3}} is a simplex in K/G. Therefore K/G ={

G · {1},G · {3}, {G · {1},G · {3}}
}
is a 1-simplex, as illustrated in Fig. 1b, resulting

from the identification of the symmetric vertices {1} and {2} in K .
Now let H := 〈

(1 2 3)
〉 ∼= Z/3Z be the cyclic subgroup of S3 generated by the

cyclic permutation (1 2 3). Then h · K = K for all h ∈ H . The action of H on K is
illustrated geometrically in Fig. 1c, where (1 2 3) is a counter-clockwise rotation. We
have H ·{1} = H ·{2} = H ·{3} = {{1}, {2}, {3}}, and it follows that K/H = {

H ·{1}}
is a 0-simplex, as illustrated in Fig. 1d, resulting from the identification of the three
vertices in K .

It is a standard observation that the orbit space K/G is a simplicial complex (Bredon
1972, Chapter III, Page 117, Paragraph 2), however we provide a proof for complete-
ness.

Proposition 3.15 Let K be a simplicial complex, and let G be a group action on K .
Then the orbit space K/G is a simplicial complex with vertex set Vert(K/G).

Proof By definition, K/G consists of the set of vertices Vert(K/G) := {G · v | v ∈
Vert(K ) } along with the subsets {G · vi }i∈I of Vert(K/G), for index set I , for which
there exists (ui )i∈I ∈ ∏

i∈I G · vi such that {ui }i∈I spans a simplex in K .
To show that K/G is a simplicial complex we need to show that for each subset

{G · vi }i∈I of Vert(K/G) that spans a simplex in K/G, every nonempty subset of
{G ·vi }i∈I also spans a simplex in K/G. So let {G ·v j } j∈J be a subset of {G ·vi }i∈I ∈
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K/G, where J ⊆ I is nonempty. Since {G · vi }i∈I ∈ K/G, there exists a simplex
{ui }i∈I ∈ K with (ui )i∈I ∈ ∏

i∈I G · vi . Then {u j } j∈J is a subsimplex of {ui }i∈I
in K , with (u j ) j∈J ∈ ∏

j∈J G · v j , hence {G · v j } j∈J is a simplex in K/G, as
required. ��

We now show that there is a canonical map from a simplicial complex onto the orbit
space corresponding to aG-action. This simplicial map induces a vertex-identification
operation between the two simplicial complexes.

Proposition 3.16 Let K be a simplicial complex, and let G be a group action on K .
Then the canonical vertex map v �→ G · v extends to a surjective simplicial map
p : K → K/G.

Proof Let ψ : Vert(K ) → Vert(K/G) be the canonical vertex map such that v �→
G · v. Define the map p : K → K/G by p

({vi }i∈I
) := {

ψ(vi )
}
i∈I for a simplex

{vi }i∈I ∈ K , noting that the ψ(vi ) may be equal for distinct indices in I . Then
p is simplicial since, letting J ⊆ I be a subset of smallest cardinality such that{
ψ(v j )

}
j∈J = {

ψ(vi )
}
i∈I , we have that {v j } j∈J is a simplex in K and hence, by the

definition of K/G,
{
ψ(v j )

}
j∈J is a simplex in K/G. Surjectivity of p follows from

the surjectivity of ψ , and p extends ψ since p|Vert(K ) = ψ . ��
Notation 3.17 We refer to the canonical map p : K → K/G in Proposition 3.16 as
the projection map.

When we identify conceptually-equivalent vertices in a simplicial representation
K to give an orbit space, we would expect that the orbit space is isomorphic to a
simplicial subcomplex of K as a consequence of the underlying symmetry identified
with the group action. We now confirm that this is indeed the case, beginning with
two lemmas.

Lemma 3.18 Let G be a group acting on a simplicial complex K by exchangeable
vertices, and let u ∈ Vert(K ). If v, w ∈ G · u then the transposition (v w) is in G. In
particular, v and w are exchangeable in K .

Proof Since v, w ∈ G · u there exists g ∈ G such that g · v = w, where g =
tntn−1 · · · t2t1 is a product of transpositions ti ∈ G for i ∈ [n]. Without loss of
generality we may assume that there is no proper subsequence of the sequence of
transpositions (ti )ni=1 whose product sends v to w. In particular: v is an element of t1
only; w is an element of tn only; and the transpositions are mutually disjoint unless
they are successive in the sequence, whereby their intersection is a singleton. We then
have t1 = (v x1), ti+1 = (xi xi+1) for i ∈ [n − 2], and tn = (xn−1 w), for some
{xi }n−1

i=1 ⊆ Vert(K ). It follows that (v w) = t1t2 · · · tn−1tntn−1 · · · t2t1 ∈ G. ��
Lemma 3.19 Let G be a group acting on a simplicial complex K by exchangeable
vertices. Suppose that {G · vi }i∈I spans a simplex in K/G, for some index set I , and
{ui }i∈I spans a simplex in K with (ui )i∈I ∈ ∏

i∈I G · vi . Then for each (wi )i∈I ∈∏
i∈I G · vi we have that {wi }i∈I spans a simplex in K , and there is a g ∈ G such

that, for each i ∈ I , g · ui = wi , g · wi = ui , and g · v = v for all v ∈ Vert(K ) \({ui }i∈I ∪ {wi }i∈I
)
.
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Proof Suppose (wi )i∈I ∈ ∏
i∈I G ·vi . It follows from Lemma 3.18 that for each i ∈ I

the transposition ti := (ui wi ) is in G. So define g ∈ G as the product g := ∏
i∈I ti ,

where the order inwhich the ti aremultiplied is unimportant since these group elements
mutually commute: indeed, two vertices from distinct G-orbits are not exchangeable.
Then g ∈ G is the required group element, and it follows that the action of g maps
the simplex spanned by {ui }i∈I to the simplex spanned by {wi }i∈I . ��
Definition 3.20 (Fundamental domain) Let K be a simplicial complex with an action
of the group G on K . A fundamental domain for the action of G on K is a full
subcomplex L of K that intersects each vertex G-orbit exactly once.

Note that a fundamental domain is not necessarily unique, and the group action
transforms between the different fundamental domains of the complex. We now show
that a fundamental domain exists for a group action on a simplicial complex by
exchangeable vertices, and that the corresponding orbit space is isomorphic to the
fundamental domain. From this result one infers that all fundamental domains are iso-
morphic for a given group action on a simplicial complex by exchangeable vertices.

Theorem 3.21 Let G be a group acting on a simplicial complex K by exchangeable
vertices. Then a fundamental domain exists for the action of G on K , and the orbit
space K/G is isomorphic to the fundamental domain.

Proof We first show that a fundamental domain exists for G on K . Let Vert(K/G) :=
{G ·vi }i∈I be the set of distinct vertex orbits where I is the index set, choose (wi )i∈I ∈∏

i∈I G · vi , and let L be the full subcomplex of K with vertex set {wi }i∈I . Then L is
a fundamental domain.

It remains to show that K/G is isomorphic to L . Let λ : K/G → L be the map
such that if σ is a simplex in K/G spanned by the vertices {G ·v j } j∈J , where J ⊆ I ,
then λ(σ) is the simplex in L spanned by the vertices {w j } j∈J . The map λ is well
defined, since if the simplex σ ∈ K/G is spanned by {G · v j } j∈J then there exists
a simplex in K spanned by a set of vertices {u j } j∈J with (u j ) j∈J ∈ ∏

j∈J G · v j ,
so by Lemma 3.19 the vertices {w j } j∈J span a simplex in K , which is also in the
full subcomplex L . The map λ is then a simplicial bijection, and hence a simplicial
isomorphism. ��

Since the orbit spacemay have exchangeable vertices that were either not accounted
for or not present in the original complex, we can obtain the orbit space of the orbit
space, and so on for a finite number of steps until an orbit space is obtained which has
no further exchangeable vertices. To see this more clearly, we now show how a group
action on a simplicial complex by exchangeable vertices relates to the full group action
on the corresponding orbit space by exchangeable vertices. Note that we say that a
group action on a simplicial complex by exchangeable vertices is a full group action
when the group action gives all possible exchange automorphisms of the complex. We
first require a lemma.

Lemma 3.22 Let G be a group action on a simplicial complex K by exchangeable
vertices, and let t be a transposition, not necessarily in G, from the full group action
on K by exchangeable vertices that acts to exchange the vertices u, w ∈ Vert(K ).
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Further, let H be the full group action on K/G by exchangeable vertices, and let
{G·vi }i∈I be the set of distinct orbits in K/G which partitionVert(K ). Then there exists
a transposition t ∈ H that acts to exchange the vertices G · v j , G · vk ∈ Vert(K/G)

where j , k ∈ I , u ∈ G · v j , and w ∈ G · vk . Further, t is the identity transposition if
and only if t ∈ G.

Proof Suppose that t ∈ Sym
(
Vert(K )

)
transposes the vertices u, w ∈ Vert(K ), and

that (u, w) ∈ G · v j × G · vk for some j , k ∈ I . The permutation πt on the vertices
{G ·vi }i∈I of K/G which transposesG ·v j andG ·vk and fixes all other vertices induces
a map φt : K/G → K/G which sends a simplex τ ∈ K/G spanned by {G · vi }i∈J

for some J ⊆ I to the simplex φt (τ ) spanned by
{
πt (G · vi )

}
i∈J where G · v j and

G · vk are exchanged, if required.
To show that φt is well defined we need to establish that φt (τ ) is a simplex in K/G.

Since {G · vi }i∈J spans the simplex τ ∈ K/G, there exists (ui )i∈J ∈ ∏
i∈J G · vi

such that {ui }i∈J spans a simplex σ ∈ K by the definition of K/G. By Lemma 3.19
we may assume without loss of generality that u j = u if j ∈ J and uk = w if
k ∈ J . Then the image of σ under the action of t is the simplex t · σ ∈ K spanned
by {t · ui }i∈J where u and w are exchanged, if required. Now, if i �= j or k then
t · ui = ui ∈ G · vi = πt (G · vi ), if i = j then t · ui = t · u j = uk ∈ πt (G · v j ), and
if i = k then t · ui = t · uk = u j ∈ πt (G · vk). It follows that the simplex t · σ ∈ K
satisfies (t · ui )i∈J ∈ ∏

i∈J πt (G · vi ), hence φt (τ ) is a simplex in K/G. So φt is a
well-defined simplicial map.

Since φt is self-inverse it is bijective and therefore an automorphism. It follows that
φt is an exchange automorphism that exchanges the vertices G · v j and G · vk , so the
transposition t := (G · v j G · vk) is in H .

Finally, t ∈ G if and only if u and w are in the same G-orbit if and only if
G · v j = G · vk if and only if t is the identity transposition, where the first equivalence
uses Lemma 3.18. ��
Proposition 3.23 Let G and F be two group actions on a simplicial complex K by
exchangeable vertices, and let H be the full group action on K/G by exchangeable
vertices. Then there is a group homomorphism α : F → H such that α(tn · · · t2t1) =
tn · · · t2t1 for each element tn · · · t2t1 ∈ F, where the ti for i ∈ [n] are generating
transpositions in F, and ker(α) = F ∩ G.

Proof We first show that α : F → H is a well-defined map. Let f ∈ F , and suppose
that f = tm · · · t2t1 where the ti , for i ∈ [m], are generating transpositions in F . By
Lemma 3.22, each t i for i ∈ [m] is a transposition in H , so f := tm · · · t2t1 ∈ H .
Now, if we also have that f = sn · · · s2s1 where the si , for i ∈ [n], are generating trans-
positions in F , then the corresponding permutations of Vert(K/G), namely tm · · · t2t1
and sn · · · s2s1, are equal. It follows that α is well defined.

To show thatα is a homomorphism, let tm · · · t2t1 and sn · · · s2s1 be twopermutations
in F , in terms of the generating transpositions. Then α

(
(tm · · · t2t1)(sn · · · s2s1)

) =
(tm · · · t2t1)(sn · · · s2s1) = α(tm · · · t2t1)α(sn · · · s2s1), and the result follows.

It remains to show that the kernel of α is equal to F ∩G. For this, let {G · vi }i∈I be
the set of distinct vertices in K/G, which partition Vert(K ). Suppose that f ∈ ker(α),
so that α( f ) = f is the identity in H . Then f fixes each vertex G · vi of K/G, so the
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definition of f implies that f · (G · vi ) ⊆ G · vi for i ∈ I . We can write f as a product
of disjoint permutations, f = ∏

i∈I pi , where each such permutation pi permutes
only elements in G · vi with the same action as f on G · vi , and pi fixes all elements
in Vert(K ) \ G · vi . Then each pi can be expressed as a product of transpositions in
G, hence f ∈ G. It follows that ker(α) ⊆ F ∩ G. Conversely, if f ∈ F ∩ G then,
since f ∈ G, α( f ) = f ∈ H fixes the G-orbits of Vert(K ), which are the vertices of
K/G, so α( f ) is the identity in H , hence f ∈ ker(α). Therefore F ∩ G ⊆ ker(α). ��

In Sect. 3.3 we employ the theory developed here to provide a methodology for
determining model equivalence.

3.3 Methodology for determiningmodel equivalence

To compare the simplicial representations corresponding to two models, with respect
to equivalence, we can compare the two corresponding orbit spaces that have no
further exchangeable vertices, which we refer to as the final orbit spaces. These orbit
spaces, which may be smaller than the original simplicial complexes, allow for the
identification of subsets of equivalent components within each model, and in turn the
equivalence of components between the two models.

Employing the theory in Sect. 3.2 for identifying equivalent componentswithin sim-
plicial representations, we now provide a general methodology for determining model
equivalence in terms of Operations 1, 2, and 5. There is not necessarily a unique order
with which Operations 1, 2, and 5 should be applied to a simplicial representation.
Given two simplicial representations, however, the easiest approach is to first reduce
the simplicial representations by applying vertex identifications (Operations 1 and
2) when possible, and finally relabelling one of the complexes by a vertex substitu-
tion (Operation 5). We will assume that all possible vertex identifications for a given
simplicial representation are applied simultaneously. We could apply a proper subset
of the possible vertex identifications to the simplicial representation, and then apply
the remaining identifications to the corresponding orbit space (see Proposition 3.23),
however applying them all at once minimises the number of required simplicial maps.

The following steps describe the process of finding model equivalences using sim-
plicial representations. For the purpose of automation on computer we can relabel the
vertices of the simplicial representations, which correspond to model components,
with positive integers so that the simplices of the simplicial representations are sub-
sets of these positive integers. Assume that K and L are two simplicial representations
corresponding to two models.

Step 1. Find all pairs of exchangeable vertices of K and L:We describe the process
for K , and the process for L is similar. Two vertices u and v in Vert(K ) are
exchangeable if exchanging the labels of the two vertices leaves K unchanged
(Definition 3.10). All exchangeable vertices of K can be found by exchanging
all pairs of vertices of K in succession, however this process can bemademore
efficient in a number of ways: for example, exchangeable vertices must have
the same number of adjacencies, so two vertices with different numbers of
adjacencies are not exchangeable. Given a pair of exchangeable vertices u and
v in Vert(K ) there is a corresponding transposition (u v) ∈ Sym

(
Vert(K )

)
,
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and the set of all such transpositions corresponding to exchangeable vertices
in K generates a subgroup G1 of Sym

(
Vert(K )

)
. We then have an action of

G1 on K by automorphisms, from which we construct the orbit space K/G1
with vertices the G1-orbits of the vertices in K (Definition 3.13). If K has
no exchangeable vertices then G1 is the trivial subgroup which acts as the
identity automorphism of K , so we can then take K/G1 to be K since these
complexes are isomorphic.
A transposition (u v) ∈ G1 acts as an exchange automorphism of K that
exchanges the vertices u, v ∈ K , and induces a corresponding adjacent-
/nonadjacent-vertex identification operation in terms of a surjective simplicial
map p : K → K/

〈
(u v)

〉
which sends both u and v to a single ver-

tex in K/
〈
(u v)

〉
and fixes all other vertices in K . Note that p is the

projection map (Proposition 3.16). Applying all permutations in G1 simul-
taneously corresponds to G1 acting on K , and therefore induces a finite
number of vertex-identification operations in terms of the projection map
p1 : K → K/G1.

Step 2. Find the sequences of orbit spaces corresponding to K and L: Again, we
describe the process for K , and it is similar for L . Finding the exchange-
able vertices of K/G1 follows a process analagous to that for K in Step 1,
except the vertices of K/G1 are subsets of vertices of K . Given a pair of
exchangeable vertices u and v in Vert(K/G1) there is a corresponding trans-
position (u v) ∈ Sym

(
Vert(K/G1)

)
, and the set of all such transpositions

corresponding to exchangeable vertices in K/G1 generates a subgroup G2
of Sym

(
Vert(K/G1)

)
. We then have an action of G2 on K/G1 by automor-

phisms, from which we construct the orbit space (K/G1)/G2 with vertices
the G2-orbits of the vertices in K/G1. The action of G2 on K/G1 induces
a finite number of vertex-identification operations in terms of the projection
map p2 : K/G1 → (K/G1)/G2.
Continuing in this manner until we obtain an orbit space with no exchange-
able vertices, namely the final orbit space, results in the following sequence
of simplicial complexes and projection maps pi representing vertex identifi-
cations,

K
p1−−→ K/G1
p2−−−→ (K/G1)/G2

p3−−−→ · · · pm−−−→
(

· · · ((K/G1)/G2
) · · ·

)
/Gm, (1)

where the final orbit space in the sequence, which we denote by K̂ , has no
exchangeable vertices. Similarly, for the simplicial representation L we have
a sequence of subgroups Hi generated by transpositions giving the following
sequence of simplicial complexes and simplicial maps qi representing vertex
identifications,

L
q1−−→ L/H1
q2−−→ (L/H1)/H2

q3−−→ · · · qn−−→
(

· · · ((L/H1)/H2
) · · ·

)
/Hn, (2)
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where the final orbit space in the sequence, which we denote by L̂ , has no
exchangeable vertices.
Note that if any complex from the sequence in Eq. (1) is isomorphic to a
complex from the sequence in Eq. (2), as unlabelled simplicial complexes,
then K̂ and L̂ are isomorphic as unlabelled simplicial complexes. Therefore,
it suffices to determine whether or not K̂ and L̂ are isomorphic, which are
the simplest complexes in their respective sequences.
With regard to the sequences in Eqs. (1) and (2) note that the number of
vertices in an orbit space is reduced, relative to the previous complex in
the sequence, by the number of distinct and nontrivial transpositions in the
associated group action. This observation provides ameasure of the reduction
in the number of possible isomorphisms between the orbit spaces of each
simplicial complex.

Step 3. Determine all isomorphisms of K̂ and L̂: An isomorphism between K̂ and
L̂ is a bijective simplicial map from K̂ onto L̂ , that is, a bijective vertex map
from Vert(K̂ ) onto Vert(L̂) that sends a simplex in K̂ to a simplex in L̂ . We
begin by finding all bijective vertex maps from Vert(K̂ ) onto Vert(L̂), noting
that there may be none. If there are multiple bijective vertex maps then we
may reduce the number of these maps by considering properties that must be
preserved by a simplicial isomorphism, such as the dimension of simplices
and the number of edge adjacencies of vertices. Further, if K̂ and L̂ each
have a vertex label containing the same model component then we would
generally ensure that the corresponding vertices must be identified by any
bijective vertex map, based on the requirement for conceptual equivalence.
We could omit the preservation of model components for the bijective vertex
maps, however this will likely only increase the number of bijective vertex
maps to consider without yielding any newmeaningful equivalences between
themodel concepts. It should not be the case that a vertex label in K̂ hasmodel
components in common with two distinct vertices in L̂ , as this would indicate
a conceptual inconsistency with at least one of the simplicial representations.
Given a bijective vertex map, which we can describe by a correspondence
between the positive-integer labels of the vertices in K̂ and L̂ , we then try to
extend it to a bijection from K̂ onto L̂ by relabelling K̂ with the corresponding
vertex labels of L̂ in accordancewith the bijective vertexmaps.We then check
whether the relabelled complex K̂ is the same as L̂ , and if so then the bijective
vertex map extends canonically to a simplicial isomorphism, so that K̂ and
L̂ are isomorphic. If no simplicial isomorphism exists between K̂ and L̂ then
they are not isomorphic as complexes.

Step 4. Equivalence of K and L: If K and L are equivalent then K̂ and L̂ are
isomorphic; therefore, if K̂ and L̂ are not isomorphic then K and L are not
equivalent. If K̂ and L̂ are isomorphic then for each simplicial isomorphism
we can consider, for each pair of vertices identified between K̂ and L̂ via
the isomorphism, whether the set of model components associated with the
vertex in K̂ is conceptually related to the set of model components associated
with the vertex in L̂ . Since there may be more than one isomorphism between
K̂ and L̂ we consider the vertex identifications for each such isomorphism.
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Importantly, an isomorphism between K̂ and L̂ can reveal novel conceptual
relations between K and L , and therefore the corresponding models.
If there is an isomorphism between K̂ and L̂ that provides a conceptually
meaningful relationship between the concepts of the two models then we can
use a vertex-substitution operation induced by the isomorphism to transform
K̂ into L̂ , and then we conclude that K and L , and hence the correspond-
ing models, are equivalent. Otherwise, if no isomorphism between K̂ and L̂
provides a conceptually meaningful relationship between the concepts of the
two models then we conclude that K and L , and hence the corresponding
models, are not equivalent.

Step 5. Restricting conceptual equivalence:A simplicial isomorphism between the
final orbit spaces K̂ and L̂ provides for the maximum conceptual equivalence
between the components of the two models. It may happen, however, that
we regard a certain equivalence for a model, corresponding to a vertex iden-
tification, as invalid. In this case, we don’t consider K̂ and L̂ as equivalent.
There may, however, be equivalent simplicial subcomplexes of K and L with
respect to a restricted set of vertex identifications corresponding to the valid
conceptual equivalences of model components. To determine whether equiv-
alent subcomplexes exist in this restricted sense, we can work backwards
from K̂ and L̂ to remove all of the invalid vertex identifications, while retain-
ing the isomorphic correspondence. If we can remove corresponding vertex
identifications stepwise from both K̂ and L̂ , where each vertex identification
is either adjacent for both complexes or nonadjacent for both complexes, and
arrive at isomorphic complexes with only valid equivalences between model
components then K and L are equivalent, and otherwise not.

Remark 3.24 Here we briefly discuss some computational aspects of our model com-
parison methodology.

1. Orbit spaces: Constructing the orbit space of a simplicial complex K requires first
determining the exchange automorphisms, which only involves exchanging pairs
of vertices in K and checking that K is unchanged. Once all relevant exchange
automorphisms are found, the orbit space is constructed from the vertex orbits and
the known simplices in K .

2. Isomorphism of simplicial complexes:We need to determine whether the final orbit
spaces are isomorphic. In general, checking isomorphism of simplicial complexes
is computationally intensive, however our simplicial complexes are labelled (with
sets of model components, or corresponding positive integers) and we are usu-
ally interested in isomorphisms that preserve model components. This restriction
reduces the number of possible isomorphisms to consider.

3. Automation: Our methodology for model comparison by equivalence consists of
three main parts. Given a model, the first part requires the construction of the
simplicial representation. This requires a translation of themodel into its underlying
concepts and their interrelations. In general this is very difficult to automate, as it
requires the ability to identify the model concepts and interrelations for a model
with any formalism, as well as equivalences between model concepts. The latter is
also dependent on context and individual requirements.

123



A group theoretic approach to model comparison … Page 21 of 38    48 

The second part of our methodology, which we discuss in this article, is completely
automatable up to and including the determination of whether the final orbit spaces
are isomorphic. This provides for possible equivalences between model concepts.
The second part is themost challenging of all three parts, since establishingwhether
vertices in a simplicial representation are in symmetrical positions is difficult for
even small models.
The third part requires determining whether the possible equivalences between
model concepts are valid, which returns to part one, and is difficult to automate in
general.

3.4 Example

In this example we apply our model-comparison methodology to the two main cat-
egories of models for developmental pattern formation, namely Turing-pattern (TP)
models and positional-information (PI) models. We have described models from these
two categories previously (Vittadello and Stumpf 2021): four TP models, namely
activator-inhibitor, substrate depletion, inhibition of an inhibition, and modulation;
five PImodels, namely linear gradient, synthesis-diffusion-degradation (SDD), oppos-
ing gradients, annihilation, and induction-contraction (active modulation). We also
discuss these models in the Appendix (Sect. 5). Interestingly, we found that the TP
activator-inhibitor model is equivalent to the PI annihilation model from a significant
conceptual perspective. This finding was obtained by visual inspection of the two sim-
plicial representations, quite by chance as it is generally difficult to compare simplicial
representations visually. Employing the automatable aspect of our methodology for
model equivalence as described in this article, however, provides simple and rigorous
comparison of simplicial representations, and we now compare all nine models for
equivalence.

Of the nine models for developmental pattern formation we consider here, consist-
ing of four TP models and five PI models, three of the models have final orbit spaces
that are not isomorphic to the final orbits spaces of any of the other eight models, so
each of these three models is not equivalent to any of the other eight models. These
three models are PI induction-contraction, TP inhibition of an inhibition, and TPmod-
ulation. We therefore consider the remaining six models. Note that the labelling for
these simplicial representations, both as positive integers and model components, is
described inVittadello and Stumpf (2021). For each of these simplicial representations
the 0- and 1-simplices are specified by the model, and the higher-dimensional sim-
plices are obtained by forming cliques, where possible, incrementally in dimensions
two and higher. For simplicity, in Figs. 2 and 3 we show only the 1-skeletons of the
simplicial representations.

The three PI models linear gradient, synthesis-diffusion-degradation, and opposing
gradients, all have final orbit spaces that are a 0-simplex, so consist of a single vertex
(Fig. 2). The unlabelled final orbit spaces are therefore isomorphic, so we can compare
the corresponding sets of model components to determine model equivalence.

The orbit space for the PI linear gradient model has the label
{{1, 2, 40, 43}, {6, 7}},

and the orbit space for the PI SDDmodel has the label
{{1, 2, 40}, {3, 6}}. Equivalence
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(a)

(b)

(c)

Fig. 2 1-skeletons of the simplicial representations and orbit spaces for the (a) PI linear gradient, (b) PI
synthesis-diffusion-degradation, and (c) PI opposing gradients models

of these two models requires that we consider the model components in {1, 2, 40, 43}
and {6, 7} as equivalent to the model components in {1, 2, 40} and {3, 6}, respectively.
That is, we need the following: 7 is equivalent to 3; since 1, 2, 40, and 43 are concep-
tually equivalent, any one of the vertex identifications where 1 and 43 are identified as
1, or 2 and 43 are identified as 2, or 40 and 43 are identified as 40. The equivalence of 7
(Outflux 1) and 3 (Degradation 1)maybe reasonable, since they both represent removal
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of Morphogen 1 from the system. The identification of 43 (Global scale-invariance)
with one of 1 (Morphogen 1), 2 (Diffusion 1), or 40 (Monotonic gradient), however,
assumes that we are not considering the property of scale-invariance of the morphogen
gradient for any model for comparison, which would depend on the required level
of conceptual detail. For our purposes, scale-invariance of the morphogen gradient
is important for establishing developmental patterning, so is a necessary conceptual
detail in the models, and we therefore conclude that the PI linear gradient model is
not equivalent to the PI SDD model.

While the PI linear gradient model and PI SDD model each have a single mor-
phogen, the PI opposing gradients model has two morphogens which we regard as an
important conceptual detail, so we do not consider the PI opposing gradients model
as equivalent to the PI linear gradient model or PI SDD model. Indeed, the label for
the orbit space of the PI opposing gradients model shows that the model concepts
associated with 1 (Morphogen 1), that is

{{1, 2}, {3, 6}}, are identified with the model
concepts associated with 9 (Morphogen 2), that is

{{9, 10}, {11, 13}}, to effectively
reduce to a single morphogen.

In Fig. 3 we consider the PI annihilation model, the TP activator-inhibitor model,
and the TP substrate depletion model. These three models have isomorphic unlabelled
final orbit spaces, so we can compare the corresponding sets of model components to
determine model equivalence. Note that there are two possible isomorphisms between
any two of these three orbit spaces when unlabelled, however only one of these iso-
morphisms preserves the labelling when the same label is in both complexes. First we
consider the equivalence of the PI annihilation model and the TP activator-inhibitor
model,whichwe established inVittadello andStumpf (2021), however nowwe employ
the automatable approach using orbit spaces. We regard the model components 6, 13,
26, and 40 as conceptually equivalent to the model components {5, 27}, 12, {28, 29},
and 41, respectively. In particular, we consider vertex identifications where 5 and
27 are identified as 6, and 28 and 29 are identified as 26. We conclude that the PI
annihilation model and the TP activator-inhibitor model are equivalent from a signifi-
cant conceptual perspective. For further discussion of this example, including a more
detailed consideration of the required partial operations, see (Vittadello and Stumpf
2021, Sect. 3.2.4).

Now consider the equivalence of the TP activator-inhibitor model and the TP sub-
strate depletionmodel, whichwould require that themodel components 9 (Morphogen
2), 10 (Diffusion 2), 11 (Degradation 2), 12 (Basal production 2), and {28, 29} (Acti-
vation of Morphogen 2 byMorphogen 1, Inhibition of Morphogen 1 byMorphogen 2)
are conceptually equivalent to the model components 18 (Substrate 1), 19 (Diffusion
of Substrate 1), 20 (Degradation of Substrate 1), and 21 (Basal production of Substrate
1), 34 (Depletion of Substrate 1 by Morphogen 1), respectively. We consider that the
agent Morphogen 2 in the TP activator-inhibitor model is conceptually equivalent to
the agent Substrate 1 in the TP substrate depletion model. Further, the two reactions
corresponding to 28 and 29 form an inhibitory cycle in the TP activator-inhibitor
model, which we consider to be conceptually equivalent to the reaction corresponding
to 20 in the TP substrate depletion model (compare with the discussion in Vittadello
and Stumpf (2021) regarding the equivalence of the PI annihilation model and the TP
activator-inhibitor model). We conclude that the TP activator-inhibitor model and the
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(a)

(b)

(c)

Fig. 3 1-skeletons of the simplicial representations and orbit spaces for the (a) PI annihilation, (b) TP
activator-inhibitor, and (c) TP substrate depletion models

TP substrate depletion model are equivalent from a significant conceptual perspective,
which is not surprising since the TP substrate depletion model is based very closely on
the TP activator-inhibitor model. Since the relation of model equivalence is transitive,
it also follows that the PI annihilation model is equivalent to the TP substrate depletion
model.

3.5 G-representations

In this subsection we provide an overview of an alternative mathematical framework
for our model-equivalence methodology by associating a group to a simplicial rep-
resentation. While the group-theoretic framework is closely related to the simplicial-
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complex framework for model equivalence, the group-theoretic approach provides an
alternative mathematical perspective that allows for the application of group-theoretic
techniques for model comparison. While the mathematical details of the two frame-
works differ, the underlying methodology is the same, so we provide only the minimal
details required to develop the group-theoretic framework for model equivalence.

We first describe a standard construction of a group from a given set.

Proposition 3.25 Let S be a set and let 2S be the power set of S. With the closed binary
operation of symmetric difference, �: 2S × 2S → 2S, the pair (2S,�) is a group.

Proof Under the operation �, 2S is closed, the identity is the empty set ∅, and each
element is self-inverse. It remains to show associativity of the operation, so let A,
B, and C ∈ 2S . We show that (A�B)�C = A�(B�C). Setting some notation, for
a set D ∈ 2S we denote by 1D : S → {0, 1} the characteristic function of D such
that, for x ∈ S, x �→ 1 if and only if x ∈ D. Further, denote by ⊕ the associative
operation such that for any two characteristic functions of sets D, E ∈ 2S we set
(1D ⊕ 1E )(x) := 1D(x) + 1E (x) (mod 2). Associativity of � then follows from

1(A�B)�C = 1A�B ⊕ 1C = (1A ⊕ 1B) ⊕ 1C

= 1A ⊕ (1B ⊕ 1C ) = 1A ⊕ 1B�C = 1A�(B�C).

��
To a simplicial representation we now associate a group as in Proposition 3.25,

which we call a G-representation to indicate that the representation has the structure
of a group. While we could construct the group without any reference to the simplicial
representation, the group encodes the same model structure in terms of model compo-
nents and their interconnections, so it is natural to indicate the relationship between
the group and the corresponding simplicial representation.

Definition 3.26 (G-representation) Let K be a simplicial representation of a model.
The G-representation of the model is the group GK := (2K ,�).

For a simplicial representation K , the elements of GK are subsets of simplicies
from K . These subsets are of three types: a set containing a single simplex from K is
identified as a simplex; a set containing one or more simplices from K is a simplicial
subcomplex of K if it is closed under taking faces, in particular a set containing just
a vertex is both a simplex and a simplicial complex; a set containing two or more
simplices from K that is not a simplicial subcomplex of K is a set of simplices.

Notation 3.27 Let K be a simplicial representation of a model, with corresponding

G-representation GK . The subset Vert(GK ) :=
{ {{v}} | v ∈ Vert(K )

}
of GK is

referred to as the vertices of GK . Further, we denote by ρK : 2Vert(GK ) \ ∅ → K the

map such that ρ(S) = { ∪i∈I {si }
}
for S =

{{{si }
}}

i∈I ∈ 2Vert(GK ) \ ∅, which sends

a set of vertices in GK to the simplex spanned by the corresponding vertices in K .
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Since simplicial representations are labelled simplicial complexes, the elements of
G-representations are also labelled, and there is a canonical bijection K �→ GK from
the set of simplicial representations of models onto the set of G-representations of
models.

Example 3.28 Let K be the 1-simplex with vertices labelled 1 and 2, that is, K =
{{1}, {2}, {1, 2}}. Then GK =

{
∅,

{{1}}, {{2}}, {{1, 2}}, {{1}, {2}}, {{1}, {1, 2}},
{{2}, {1, 2}}, {{1}, {2}, {1, 2}}

}
. Note that

{{1}} and
{{2}} correspond to both sim-

plices and simplicial subcomplexes of K ,
{{1, 2}} corresponds to a simplex of K ,{{1}, {2}} and

{{1}, {2}, {1, 2}} = K correspond to simplicial subcomplexes of K ,
while each of the elements

{{1}, {1, 2}} and
{{2}, {1, 2}} are not closed under taking

faces so are sets of simplices from K .

While the group GK contains subsets of K that are not subcomplexes, we can
describe GK in terms of the simplices in K . Recall that for a prime p, a p-group is a
group in which every element has order a power of p. Since every nontrivial element
ofGK has order 2,GK is therefore an elementary commutative 2-group. Further, since
GK is a finite p-group it follows from the Burnside Basis Theorem (Rotman 1995,
Chapter 5, Page 124, Theorem 5.50) that any two minimal generating sets of GK

have equal cardinality, here equal to |K |, and are therefore generating sets of smallest
cardinality.

Proposition 3.29 Let K be a simplicial representation of a model. Then K := { {σ } |
σ ∈ K

}
is a minimal set of generators for GK .

Proof Let S ∈ GK be nontrivial. Then S ⊆ K by the definition ofGK , so by associativ-
ity of the symmetric difference we have S = �σ∈S{σ }, and it follows thatK generates
GK as a group. Further,K is minimal since, for each {σ } ∈ K, {σ } /∈ 〈K \ {σ }〉 ⊆ GK .

��
Since GK is an elementary commutative 2-group it can be simply expressed as an

internal direct sum of cyclic subgroups of subcomplexes of K , or isomorphically as
an external direct sum of copies of Z/2Z.

Proposition 3.30 Let K be a simplicial representation of a model. Then GK ∼=⊕
σ∈K

〈{σ }〉 ∼= ⊕
σ∈K Z/2Z.

Proof By the fundamental theorem of finite commutative groups (see (Rotman 1995,
Chapter 6, Page 128, Theorem 6.5)), GK is a direct sum of primary cyclic groups.
SinceK is a minimal set of generators for GK by Proposition 3.29, we therefore have
GK ∼= ⊕

σ∈K
〈{σ }〉. Finally, each {σ } ∈ K has order 2 in GK , so

〈{σ }〉 ∼= Z/2Z. ��
Viewing GK as the direct sum

⊕
σ∈K

〈{σ }〉 highlights the structure of the group,
and allows for easier characterisation of, for example, homomorphisms between such
groups.

Following from the definition of distance between two simplicial representations K
and L of twomodels (Vittadello and Stumpf 2021), we can define the distance between
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the two G-representations GK and GL as the cardinality of the symmetric difference
of K and L . Indeed, this distance between G-representations can be formalised as
a metric space, similar to the metric space of simplicial representations, and is also
isometric to the latter.

ThegroupGK associatedwith a simplicial representation K is itself a representation
of the model corresponding to K . The group elements of GK have labels that are
induced by the labelled simplices contained in the group elements, which in turn have
labels induced by the component labels of the model. The labels of the elements of
GK must be accounted for by group homomorphisms when required. We therefore
introduce our concept of a label-preserving group homomorphism.

Definition 3.31 (Label-preserving group homomorphism) Let GK and GL be two
G-representations associated with two simplicial representations K and L of two
models. A group homomorphism φ : GK → GL is label preserving if whenever the
group elements g ∈ GK and h ∈ GL have the same label then φ(g) = h.

Our definition of the equivalence of two G-representations of models is as follows.

Definition 3.32 (Equivalence of G-representations) Let C be the set of all components
that appear in the collection of models under consideration for comparison, and let
G be a collection of G-representations GK associated with simplicial representations
which correspond to models generated by subsets from C. TwoG-representationsGK ,
GL ∈ G are equivalent if and only if there exist two (possibly empty) sequences of
invertible partial operations ( fi )mi=0 and (gi )ni=0 onG such that fm ◦· · ·◦ f1◦ f0(GK ) =
gn ◦ · · · ◦ g1 ◦ g0(GL).

Note that the set { (GK ,GL) ∈ G×G | GK andGL are equivalent } is an equivalence
relation onG. For the equivalence ofG-representations to be conceptuallymeaningful,
just as for the equivalence of simplicial representations, we need to ensure that the
employed partial operations are themselves conceptually meaningful. We consider
specific operations on G-representations that are analogous to those for simplicial
representations. For the G-representations, however, the operations are now induced
by label-preserving group homomorphisms.

For brevity we only outline the operations onG-representations, as they correspond
closely with the operations for simplicial operations. Note that for G-representations
the action of an adjacent/nonadjacent-vertex identification does not send two ver-
tices to the same vertex as for simplicial representations, but rather removes all
group elements associated with one of the two vertices. This action is essentially
the same as that for simplicial representations, and allows for a description in terms
of group homomorphisms. Further, we omit definitions for the vertex split opera-
tion and the inclusion operation, both of which can be defined in terms of canonical
injections between the direct-sum decompositions of appropriate G-representations,
since we explicitly describe the equivalence of G-representations with the opera-
tions of adjacent/nonadjacent-vertex identifications and vertex substitution, while the
vertex split and inclusion operations are employed implicitly. Similar to the oper-
ations for simplicial representations, all five of these partial operations on a set of
G-representations are invertible for suitable domains of definition, and the equivalence
of G-representations must be based on the admissibility of the partial operations.
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For all operations, let C be the set of all components of models under consider-
ation, and let GK and GL be G-representations associated with the two simplicial
representations K and L with labels from C.

Adjacent-vertex identification: Suppose
{{u, v}} ∈ GK , where u, v ∈ Vert(K ),

and that assumptions hold for u and v corresponding to those in Definition 2.9. A
label-preserving group homomorphismφ1 : GK → GL is an adjacent-vertex iden-
tification if GL = ⊕

{σ∈K |v /∈σ }
〈{σ }〉 and φ1 : ⊕

σ∈K
〈{σ }〉 → ⊕

{σ∈K |v /∈σ }
〈{σ }〉

is the canonical projection.
Nonadjacent-vertex identification:Suppose

{{u}}, {{v}} ∈ GK ,
{{u, v}} /∈ GK ,

and that assumptions hold for u and v corresponding to those in Definition 2.10.
A label-preserving group homomorphism φ2 : GK → GL is a nonadjacent-
vertex identification if GL = ⊕

{σ∈K |v /∈σ }
〈{σ }〉 and φ2 : ⊕

σ∈K
〈{σ }〉 →

⊕
{σ∈K |v /∈σ }

〈{σ }〉 is the canonical projection.
Vertex substitution: Suppose u ∈ Vert(K ), v ∈ Vert(L), and Vert(K ) \ {u} =
Vert(L) \ {v}. Let π : Vert(K ) → Vert(L) be a map that is injective except that
π(u) = v. A label-preserving group isomorphism φ5 : GK → GL is a vertex
substitution if, for each σ ∈ K , φ5({σ }) = {{ π(w) | w ∈ σ }}.
To determine whether there are conceptually equivalent vertices in a

G-representation GK , we can employ group actions on GK that correspond to
exchange automorphisms for simplicial representations. Recall that an action of a
group H on a groupG is a grouphomomorphism� : H → Aut(G).Whilewe required
orbit spaces for vertex identifications when considering simplicial representations, for
G-representations we have no need for orbit spaces and can employG-representations
directly. The methodology for determining model equivalence detailed in Sect. 3.3 is
easily adapted for G-representations.

4 Conclusion

In this article we develop a rigorous and automatable methodology for determining
whether vertices in a simplicial representation are conceptually related, correspond-
ing to conceptually-related model components, and then identifying these vertices
using simplicial operations. This process is the main consideration of comparison by
equivalence as defined in Vittadello and Stumpf (2021), and exploits the symmetry
associated with conceptually equivalent vertices in a simplicial representation by con-
structing group actions on the simplicial representations. We develop the required
mathematical theory for group actions on simplicial complexes, and demonstrate how
this methodology greatly simplifies and facilitates the process of determining model
equivalence by reducing the initial simplicial representations to simplicial complexes
with no conceptually equivalent vertices. Our approach tomodel comparison by equiv-
alence provides a rigorous and efficient framework for comparing the underlying
conceptual structure of mathematical models of a particular biological system, as well
as mathematical models of different biological systems.

The important point to note is that our approach, like our previous one, differs from
the overwhelming majority of model comparison approaches by being independent of
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outputs: it is solely based on the underlying conceptual structure of the model. Our
definition of model structure is also more inclusive than, for example, motif-based
definitions (Alon 2007), as these are known to fall short of constraining dynamics
(Ingram et al. 2006). By including model properties such as boundary conditions and
symmetry relationships, for example, as components of the simplicial complexes, our
approach here is capable of capturing even subtle differences in the dynamics. Our
methodology is applicable to all models irrespective of mathematical formalism, and
allows for comparison from different conceptual perspectives.

Model comparison is essential for managing the seemingly heterogeneous and
possibly numerous models associated with a system. We conclude this analysis with
a discussion of an alternative mathematical framework for our model comparison
methodology by representing models as groups, which provides for the direct appli-
cation of techniques from group theory within our model-comparison methodology.
That we can represent our model comparison methodology with two distinct mathe-
matical frameworks shows the flexibility of our approach, which is important for the
utilisation of a broad range of mathematical techniques when working on the difficult
problem of model comparison.

Modelling in biology cannot rely on the same fundamental principles—such as
symmetries and conservation laws—that have been so successful in physics. Instead,
statistical methods (Kirk et al. 2013), robustness analysis (Bates and Cosentino 2011),
or algebraic methods (Araujo and Liotta 2018) are required to narrow down the vast
‘universe’ of potential mathematical models in order to identify those models that
can reasonably explain a given scenario. The approach developed here is capable
of taking these models, including large sets of good candidates (Scholes et al. 2019),
and distilling design principles from this analysis. Design principles, or the conceptual
bases formathematical models describing a given system, are arguably our best chance
to gain conceptual mechanistic insights into biological systems.
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5 Appendix

Here we provide the details of the mathematical models that we use in the example in
Sect. 3.4. We also provide a brief discussion on representing the models as simplicial
complexes.

These models are from the two main classes of models for developmental pattern
formation, namely Turing-pattern (TP) models and positional-information (PI) mod-
els.We consider the patterning to occur within a two-dimensional rectangular domain,
with zero-flux boundary conditions on the two sides parallel to the morphogen con-
centration gradient. We assume that the velocities of the cytoplasm and the growing
tissue are negligible; we therefore assume no advection. Further details of the models
and the associated simplicial representations, including the vertex numbers associated
with the simplicial representations, are in Vittadello and Stumpf (2021). Note that the
boundary conditions for the TPmodelsmay beDirichlet, Neumann, Robin, or periodic
(Dillon et al. 1994; Varea et al. 1997; Barrio et al. 1999).

5.1 Positional-information: Linear gradient

A linear concentration profile of a morphogen results when the production and degra-
dation of the morphogen occur outside and on opposite sides of the tissue domain, and
the morphogen undergoes passive diffusion along the domain from the side where it
is produced to the side where it is degraded (Stumpf 1967; Wolpert 1969; Crick 1970;
Čapek and Müller 2019). Mathematically, the steady-state morphogen concentration
in this system satisfies Laplace’s equation, which yields global scale-invariant posi-
tional information. Specifically, if the tissue length is L with initial position at x = 0
then the morphogen concentration m(x, t) can be modelled as

∂m

∂t
= D

∂2m

∂x2
, (3)

where D is the morphogen diffusivity. The steady-state solution of Eq. 3 is the linear
equation m(x) = ax + b, for arbitrary constants a, b ∈ R. The boundary conditions
are influx at one end and outflux at the other end, and we may assume without loss
of generality that influx occurs at x = 0 and outflux at x = L . The original Dirichlet
boundary conditions specify the constant concentrations m(0, t) = m0 > 0 and
m(L, t) = mL ≥ 0, with m0 > mL , so the solution is m(x) = (

(mL − m0)/L
)
x +

m0. Monotonically decreasing linear gradients can also be achieved with Neumann
boundary conditions at one boundary andDirichlet boundary conditions at the opposite
boundary.
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The simplicial representation of the linear model is shown in Fig. 2a. Note that
the simplicial complex is 4-dimensional, however we only show the 1-skeleton of the
simplicial complex for simplicity.

5.2 Positional-information: Synthesis-diffusion-degradation (SDD)

In the SDD model a morphogen gradient forms by morphogen production from a
localised source at the boundary combined with morphogen diffusion and uniform
degradation throughout the tissue (Wartlick et al. 2009; Umulis and Othmer 2013;
Čapek and Müller 2019). Mathematically, the morphogen concentration m(x, t) can
be modelled as

∂m

∂t
= D∇2m − km, (4)

where D is the morphogen diffusivity, and k is the morphogen degradation rate which
is independent of morphogen concentration. The boundary conditions are Neumann
for the influx and zero outflux. The steady-state morphogen gradient is an exponential
function, so this system is not scale invariant unless D, k, and the influx vary with the
tissue length L in a very specific manner (Umulis and Othmer 2013).

The simplicial representation of the SDD model is shown in Fig. 2b. Note that
the simplicial complex is 3-dimensional, however we only show the 1-skeleton of the
simplicial complex for simplicity.

5.3 Positional-information: Opposing gradients

There are two mechanisms whereby two opposing morphogen gradients provide size
information for developmental patterning (McHale et al. 2006): the gene expression
depends on the relative concentrations of the two morphogens. One is the annihilation
model, and the other is the scaling-by-opposing-gradients model.

For the opposing gradients model the sources of each morphogen are at opposite
ends of the domain. The combination of the two morphogen gradients provides effec-
tive local scaling for the boundaries of individual target genes, however it does not
produce global scaling across the entire domain (Wolpert 1969; Houchmandzadeh
et al. 2005; McHale et al. 2006; Čapek andMüller 2019). The degree of scaling for the
opposing gradients mechanism can be increased if the morphogens are irreversibly
inactivated upon binding to each other (McHale et al. 2006). Here we assume no
direct interaction between the two morphogens. Mathematically, the two morphogen
gradients with concentrations m(x, t) and c(x, t) can be modelled as

∂m

∂t
= Dm∇2m − kmm, (5)

∂c

∂t
= Dc∇2c − kcc, (6)

123



   48 Page 32 of 38 S. T. Vittadello, M. P. H. Stumpf

where Dm and Dc are diffusivities, and km and kc are degradation rates. The boundary
conditions for each morphogen are Neumann at both boundaries, with flux at the
source and zero flux at the opposite boundary.

The simplicial representation of the opposing gradients model is shown in Fig. 2c.
Note that the simplicial complex is 4-dimensional, however we only show the 1-
skeleton of the simplicial complex for simplicity.

5.4 Positional-information: Induction-contraction

The largest degree of scaling across the patterning domain is obtained when the bio-
physical properties of the morphogen are influenced by an accessory modulator that
senses the size of the domain (Wartlick et al. 2009; Ben-Zvi and Barkai 2010; Umulis
and Othmer 2013; Čapek and Müller 2019). The modulator molecules with concen-
tration c(x, t) may influence the diffusivity, degradation rate, or influx rate, of the
morphogen with concentrationm(x, t). If the kinetics and source of the modulator are
dependent on the morphogen concentration then the mechanism is active modulation.
An example of active modulation is the induction-contraction model, which scales
globally (Rahimi et al. 2016; Shilo and Barkai 2017). In this case, the morphogen
induces the production of a contractor molecule, here the modulator with high dif-
fusivity once again, which contracts the range of the morphogen gradient through a
decrease in the morphogen diffusivity or an increase of the morphogen degradation
rate. Note that while the amplitude and shape of the morphogen gradient is globally
scale-invariant, the same is not necessarily true of the modulator since the modulator
level reflects the domain size and therefore increases or decreases accordingly.

The scaling by modulation model with the induction-contraction mechanism can
be represented mathematically as

∂m

∂t
= Dm(c)∇2m − km(c)m, (7)

∂c

∂t
= Dc∇2c − kcc + ρ(m), (8)

where Dm(c) and Dc are diffusivities, km(c) and kc are degradation rates, and ρ(m)

is the localised production source for the modulator. Note that Dm(c) is a decreasing
function of c, km(c) is an increasing function of c, andρ(m) is an increasing function of
m. Further note that ‘degradation’ in this context refers to not only physical destruction,
but to any mechanism that effects the removal of the morphogen from the patterning
system, including irreversible complex formation. Morphogen boundary conditions
are Neumann for the influx and zero flux at the opposite end of the domain. For the
modulator there are various possibilities for the boundary conditions, such as the same
type of boundary conditions as the morphogen when the modulator source is outside
the domain or, as we consider here, zero flux at both boundaries when the modulator
source is within the domain.
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5.5 Positional-information: Annihilationmodel

The annihilation model, and also the opposing gradients model, are mechanisms
whereby twoopposingmorphogen gradients provide size information for developmen-
tal patterning. In the annihilation model, the target gene responds to the concentration
of Morphogen 1, to which Morphogen 2 irreversibly binds and thereby inhibits the
action of Morphogen 1 on activity of transcription, so that the gradient of Morphogen
2 provides size information to the concentration field of Morphogen 1 (McHale et al.
2006).

The sources of each morphogen are at opposite ends of the domain, and the
morphogens interact by an annihilation reaction with rate k that results in global
scale-invariant patterning (Ben-Naim and Redner 1992; McHale et al. 2006). Mathe-
matically, the two morphogen gradients with concentrations m(x, t) and c(x, t) can
be modelled as

∂m

∂t
= Dm∇2m − kmm − kmc, (9)

∂c

∂t
= Dc∇2c − kcc − kmc, (10)

where Dm and Dc are diffusivities, and km and kc are degradation rates. The boundary
conditions for each morphogen are Neumann at both boundaries, with influx at the
source and zero flux at the opposite boundary.

The simplicial representation of the annihilation mode is shown in Fig. 3a. Note
that the simplicial complex is 4-dimensional, however we only show the 1-skeleton
of the simplicial complex for simplicity.

5.6 Turing-pattern: Activator-inhibitor model

The activator-inhibitor system (Gierer and Meinhardt 1972; Meinhardt 2012; Landge
et al. 2020) consists of two diffusible morphogens, an autocatalytic activator with
concentration m(x, t) and a rapidly diffusing inhibitor with concentration c(x, t).
This model can be represented mathematically as

∂m

∂t
= Dm∇2m + ρm2

c(1 + μmm2)
− kmm + ρm, (11)

∂c

∂t
= Dc∇2c + ρm2 − kcc + ρc, (12)

where Dm and Dc are diffusivities, ρm and ρc are basal production rates, km and kc
are degradation rates, and μm is a saturation constant. The parameter ρ is the source
density, which measures the general ability of the cells to perform the autocatalytic
reaction. The patterning arises through local self-enhancement of the activator, acti-
vation of the inhibitor, and long-range inhibition of the activator. We assume that the
boundary conditions are zero flux at both boundaries.
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The simplicial representation of the activator-inhibitor model is shown in Fig. 3b.
Note that the simplicial complex is 5-dimensional, however we only show the 1-
skeleton of the simplicial complex for simplicity.

5.7 Turing-pattern: Substrate depletion

While long-range inhibition of an autocatalytic activator can occur with an inhibitor,
as in the activator-inhibitor model, the antagonistic effect can also arise from the
depletion of a substrate that is consumed during activator production. In this system,
the production of an autocatalytic activator with concentrationm(x, t) results in either
direct or indirect depletion of a substrate with concentration s(x, t) (Meinhardt 2012).
This model can be represented mathematically as

∂m

∂t
= Dm∇2m + ρsm2 − kmm + ρm, (13)

∂s

∂t
= Ds∇2s − ρsm2 − kss + ρs, (14)

where Dm and Ds are diffusivities, ρm and ρs are basal production rates, km and ks
are degradation rates, and ρ is the source density for the autocatalytic reaction of the
activator, similar to the activator-inhibitor model. The diffusivity Ds of the substrate
must be much faster than the diffusivity Dm of the activator, and it is assumed that the
substrate is produced uniformly throughout the domain. We assume that the boundary
conditions are zero flux at both boundaries.

The simplicial representation of the substrate depletion model is shown in Fig. 3c.
Note that the simplicial complex is 5-dimensional, however we only show the 1-
skeleton of the simplicial complex for simplicity.

5.8 Turing-pattern: Inhibition of an inhibition

Dynamics analogous to the activator-inhibitor model can be realised through an inhi-
bition of an inhibition mechanism (Meinhardt 2012). In this case, two morphogens
with concentrations a(x, t) and c(x, t) inhibit the production of each other, thereby
forming a switching system in which one of the morphogens becomes fully activated
similar to being autcatalytic. In order that pattern formation occur, a third morphogen
with concentration b(x, t) acts as a long-range signal that disrupts the indirect self-
enhancement of either a or c. Morphogen b is rapidly diffusing, is produced under
control of a, and inhibits the inhibition of c production by a, therefore acting as
inhibitor. This model can be represented mathematically as

∂a

∂t
= Da∇2a + ρa

κa + c2
− kaa, (15)

∂b

∂t
= Db∇2b + kb(a − b), (16)
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∂c

∂t
= Dc∇2c + ρc

κc + a2/b2
− kcc, (17)

where Da , Db, and Dc are diffusivities, ρa and ρc are production rates, ka and kc
are degradation rates, kb is both the rate of production and degradation of b, and κa
and κc are saturation constants that limit the production rate if the concentrations of
a or c become too low. We assume that the boundary conditions are zero flux at both
boundaries.

5.9 Turing-pattern: Modulation

The diffusion of a morphogen may be inhibited by adsorption on negatively-charged
extracellularmatrix (ECM)components, resulting inmodulated diffusion and a smaller
effective diffusivity for the morphogen (Nesterenko et al. 2017). The corresponding
modulation model (Nesterenko et al. 2017) is an extension of the activator-inhibitor
model (Gierer andMeinhardt 1972;Meinhardt 2012; Landge et al. 2020). Our descrip-
tion of the modulation model is based on the version of the activator-inhibitor model
described above. The modulation model consists of two diffusible morphogens, an
autocatalytic activator and an inhibitor, along with available binding sites on the ECM
onto which the activator adsorbs. The inhibitor does not bind to the ECM, and the free
activator and the inhibitor have equal diffusivities D. It is assumed that autocatalysis
and activation of the inhibitor by the activator occurs in both the free and adsorbed
states. It is also assumed that the degradation rate of the activator is equal in both the
free and adsorbed states. Free binding sites on the ECM therefore appear due to both
desorption and degradation of the activator. Such modulation allows for stable dis-
sipative morphogens gradients. Mathematically, the free activator has concentration
a(x, t), the bound activator has concentration b(x, t), the inhibitor has concentration
c(x, t), and the concentration of available binding sites on the ECM is s(x, t):

∂a

∂t
= D∇2a + ρ(a + b)2

c(1 + μa(a + b)2)
− kaa + ρa − k1sa + k−1b, (18)

∂c

∂t
= D∇2c + ρ(a + b)2 − kcc + ρc, (19)

∂s

∂t
= −k1sa + (k−1 + ka)b, (20)

where D is the diffusivity, ρa and ρc are basal production rates, ka and kc are degra-
dation rates, μa is the saturation constant, ρ is the source density, k1 is the rate of
adsorption of the activator onto the ECM, and k−1 is the rate of desorption of the
activator from the ECM.We assume that the boundary conditions are zero flux at both
boundaries.
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5.10 Construction of the simplicial representations

The simplicial representations of the four Turing-pattern and five positional-
information models are constructed by first determining the set of components C
on which all of the the models under consideration are based. In this case the general
components are: agents, namely morphogens, modulators, and substrates; reactions
involving the agents, such as self-activation, activation, inhibition and annihilation;
agent degradation; influx and outflux boundary conditions; agent diffusion; profile of
the morphogen gradient; and scale invariance of the morphogen gradient. The ordered
set of these components is shown in Figure 3 in Vittadello and Stumpf (2021).

The reference complex is the simplex spanned by the complete set of components
for all nine models. To construct the simplicial representation of each Turing-pattern
and positional-information model, we first specify the 0-simplices, which represent
the model components, and the 1-simplices, which represent direct interconnections
between the components. While the 0- and 1-simplices are specified by the model, to
give a combinatorial graph, for these models we obtain higher-dimensional simplices
by forming cliques where possible, incrementally in dimensions 2 and higher. These
higher-dimensional simplices indicate higher-dimensional interactions between the
corresponding model components.
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