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Abstract 

Recombinant thermostable direct hemolysin from Grimontia hollisae (Gh-rTDH) exhibits 
paradoxical Arrhenius effect, where the hemolytic activity is inactivated by heating at 60 oC 
but is reactivated by additional heating above 80 oC. This study investigated individual or 
collective mutational effect of Tyr53, Thr59, and Ser63 positions of Gh-rTDH on hemolytic 
activity, Arrhenius effect, and biophysical properties. In contrast to the Gh-rTDH wild-type 
(Gh-rTDHWT) protein, a 2-fold decrease of hemolytic activity and alteration of Arrhenius 
effect could be detected from the Gh-rTDHY53H/T59I and Gh-rTDHT59I/S63T double-mutants and 
the Gh-rTDHY53H/T59I/S63T triple-mutant. Differential scanning calorimetry results showed that 
the Arrhenius effect-loss and -retaining mutants consistently exhibited higher and lower 
endothermic transition temperatures, respectively, than that of the Gh-rTDHWT. Circular 
dichroism measurements of Gh-rTDHWT and Gh-rTDHmut showed a conspicuous change 
from a β-sheet to α-helix structure around the endothermic transition temperature. Con-
sistent with the observation is the conformational change of the proteins from native globular 
form into fibrillar form, as determined by Congo red experiments and transmission electron 
microscopy. 

Key words: Grimontia hollisae, thermostable direct hemolysin, Arrhenius effect, Circular Dichro-
ism, virulence factor 

Introduction 
Grimontia hollisae, formerly described as Vibrio 

hollisae, usually causes moderate gastroenteritis in 
humans by ingestion of contaminated raw seafood, or 
contact with the environmental reservoir [1-6]. The 
pathogen, along with V. vulnificus, has been suggested 
to have a predilection for bloodstream invasion in 

people with liver abnormalities [2,7]. In addition, the 
organism can adhere to and invade tissue culture cells 
[8]. Recently, patients with severe gastroenteritis, 
hypovolemic shock, bacteremia, and septicemia have 
been identified with G. hollisae infection alone, sug-
gesting a likely underestimation of the incidence of 
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the G. hollisae infection as an invasive disease [8-13]. 
Thermostable direct hemolysin (TDH) of Vibrio 

species has long been suspected in virulence for bac-
terial pathogenesis. A major virulence factor of Vibrio 
parahaemolyticus is TDH (Vp-TDH), which is com-
posed of 189 amino acids containing a 24 amino acid 
signal peptide in the N-terminal region and a 165 
residue matured peptide in the C-terminus region. 
The TDH of G. hollisae (Gh-TDH) is antigenetically 
and genetically related to that of Vp-TDH [5,14-20]. 
Previous studies suggested that the Gh-TDH exhib-
ited different heat stability of hemolytic activity 
compared to that observed for the Vp-TDH, in that 
Gh-TDH is heat labile, while the Vp-TDH is thermo-
stable after heating for 10 min at 70 or 100 oC [16]. 
Moreover, a paradoxical phenomenon known as the 
Arrhenius effect, whereby the hemolytic activity is 
inactivated by heating at 60 oC but is reactivated by 
additional heating above 80 oC, was observed for 
Vp-TDH but not reported for Gh-TDH [21]. These 
results provoked us to investigate whether the 
Gh-TDH exhibits a similar Arrhenius effect as that of 
Vp-TDH. Detailed comparison of the TDH protein 
sequences from various G. hollisae strains revealed a 
few residues that may be involved in increasing hy-
drogen bonding, electrostatic interactions, and/or 
secondary structure and contribute to the enhanced 
thermostability [22]. In this study, we report the indi-
vidual or collective mutational effect at positions 53, 
59, and 63 on the Arrhenius effect, hemolytic activity, 
and biophysical properties, based on the sequence 
differences among various TDHs and their heat sta-
bility relative to Vp-TDH [19,21,23]. Our results indi-
cated that amino acid mutations at these positions can 
alter the protein’s Arrhenius effect and hemolytic ac-
tivity. Furthermore, results from circular dichroism 
(CD) and differential scanning calorimetry (DSC) ex-
periments showed consistent correlation between 
conformational change and endothermic transition 
temperature. Finally, data from transmission electron 
microscopy and Congo red experiments also supports 
a model in which conformational changes trap the 
protein into an aggregated fibrillar form. 

Results 
Molecular cloning, site-directed mutagenesis, 
and recombinant production of G. hollisae 
thermostable direct hemolysin protein 

The Gh-tdh gene was amplified from G. hollisae 
ATCC 33564 genomic DNA and subcloned into the 
plasmid pCR®2.1-TOPO to generate the 

pTOPO-Gh.tdh recombinant plasmid. The recombi-
nant pTOPO-Gh.tdh plasmid was subjected to protein 
over-expression and subsequent site-directed muta-
genesis. The amino acid residues at positions Tyr53, 
Thr59, and Ser63 of Gh-TDH were individually or 
collectively mutated to His53, Ile59, and Thr63, to 
construct single-, double-, and triple-mutants. The 
wild-type and mutated Gh-tdh genes were separately 
subcloned into the plasmid pCR®2.1-TOPO, and sub-
sequently transformed into Escherichia coli 
BL21(DE3)(pLysS) cells for proteins over-expression. 
The PCR®2.1-TOPO plasmid itself, which contained 
no tdh gene insert, was used as a negative control. 
Following incubation for 16 h at 37 °C, the produced 
recombinant wild-type and mutated proteins 
(Gh-rTDHs) were collected, extracted, and subjected 
to protein purification methods repeatedly using 
Phenyl-Sepharose 6 Fast Flow columns. Electropho-
resis of the purified Gh-rTDHs revealed homogene-
ous bands at approximate 22 kDa, as determined by 
sodium dodecyl-polyacrylamide gel electrophoresis 
(SDS-PAGE) (Fig. 1A). The protein identities of the 
Gh-rTDHs were also confirmed by 
MALDI/TOF/TOF mass spectrometry (data not 
shown). The immunoblot analysis also revealed that 
both Gh-rTDH wild-type (Gh-rTDHWT) and mutants 
(Gh-rTDHmut) produced single bands (Fig. 1B). To 
determine the protein’s native state, the Gh-rTDHWT 
and Gh-rTDHmut proteins were examined using 
non-denaturing PAGE, showing a single band of ap-
proximately 90 kDa (Fig. 1C). Interestingly, the 
Gh-rTDHY53H/T59I and Gh-rTDHT59I/S63T dou-
ble-mutants and the Gh-rTDHY53H/T59I/S63T tri-
ple-mutant migrated slightly faster on the 
non-denaturing PAGE gel than that of the 
Gh-rTDHWT and other Gh-rTDHmut proteins. In par-
allel, the hemolytic activities of Gh-rTDHWT and var-
ious Gh-rTDHmut proteins were detected when these 
proteins were embedded in a blood agar plate (Fig. 
1D). For the Gh-rTDHWT, the molecular mass was also 
detected from the sedimentation coefficient (s) of an-
alytical ultracentrifugation and gel filtration chroma-
tography as 71.3±10.8 and 75 kDa, respectively (Fig. 
2A and 2B). Finally, transmission electron microscopy 
(TEM) analysis of negatively stained Gh-rTDHWT ol-
igomers revealed the presence of particles organized 
into a square configuration comprised of four smaller 
particles (Fig. 2C). These results indicated that the 
Gh-rTDHWT protein exists as a monomer under de-
natured condition and associates as a homotetramer 
in solution. 
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Consistent with the observation is that no further 
change at 201 nm could be detected for Gh-rTDHWT 
protein at 70 oC, while a further increase of the nega-
tive ellipticity at 201 nm absorbance could be detected 
for those of Gh-rTDHY53H/T59I, Gh-rTDHT59I/S63T, and 
Gh-rTDHY53H/T59I/S63T mutants at temperatures above 
70 oC. In parallel, an isodichroic point at 195 nm was 
observed for both the Gh-rTDHWT and all the 
Gh-rTDHmut proteins, supporting a two-state transi-
tion for all measured proteins between 55 and 80 oC. 
Further increasing the temperature from 70 to 95 oC, a 
decrease of the absolute ellipticity in the far-UV re-
gion was observed for Gh-rTDHWT, characteristic of 
the secondary structure change into an unfolded state. 
However, at temperatures above 80 oC, the 
Gh-rTDHY53H/T59I, Gh-rTDHT59I/S63T and 
Gh-rTDHY53H/T59I/S63T proteins exhibited distinct CD 
spectra from that of the Gh-rTDHWT, which no ap-
parent change of the absolute ellipticity could be ob-
served for Gh-rTDHY53H/T59I, Gh-rTDHT59I/S63T and 
Gh-rTDHY53H/T59I/S63T. A second isodichroic point at 
198 nm could be detected for the Gh-rTDHWT but not 
for Gh-rTDHmut proteins, indicating a second 
two-state transition occurred specifically for 
Gh-rTDHWT (Fig. 6A inset). These results suggest that 
the Gh-rTDH proteins exhibit the first secondary 
structure change generally for both the Gh-rTDHWT 
and the Gh-rTDHY53H/T59I, Gh-rTDHT59I/S63T and 
Gh-rTDHY53H/T59I/S63T proteins around the endother-
mic transition temperature, and exhibit the second 
secondary structure change specifically for the 
Gh-rTDHWT at temperature above 70 oC. Therefore, at 
least three states, a native state below the endothermic 
transition temperature, an intermediate state at 55-70 
oC, and an unfolded state above 80 oC, could be de-
tected for the heat-induced transitions of the 
Gh-rTDHWT protein. Conversely, perhaps a two-state 
but not a three-state transition occurred for the 
Gh-rTDHY53H/T59I, Gh-rTDHT59I/S63T and 
Gh-rTDHY53H/T59I/S63T proteins, which the amino acid 
mutation within the Gh-rTDHWT that causes the loss 
of the Arrhenius effect. 

Inhibitory effects of Congo red on Gh-rTDHWT 
hemolytic activity and fibril formation 

Hemolytic activity analysis revealed that the 
paradoxical Arrhenius effect of the Vp-TDH protein is 
related to structural changes in the protein that pro-
duce fibrils [21]. Previously, inhibitory effect on red 
blood cell hemolysis and a characteristic red shift in 
absorbance spectrum were observed when Congo red 
bound to native amyloidogenic proteins and amyloid 
fibrils, respectively [28,29]. A dose-dependent inhibi-
tory effect of Congo red was also observed on 

Vp-TDH hemolysis [21]. We then investigated the 
effect of accumulation of Congo red to the inhibition 
of Gh-rTDHWT hemolytic activity and its absorbance 
spectrum on binding to Gh-rTDHWT fibrils. The re-
sults showed that Gh-rTDHWT hemolysis is inhibited 
by Congo red in a dose-dependent manner (Fig. 7A). 
The IC50 for Congo red inhibition on Gh-rTDH he-
molysis was approximately 11 μM. To investigate the 
effect of Congo red binding on absorbance wave-
length shift, apo-myoglobin (apo-Mb), native 
Gh-rTDHWT and heat-treated Gh-rTDHWT, respec-
tively, were incubated with Congo red and the cor-
responding absorbance spectra were measured. The 
negative control, the α-helix rich apo-Mb, exhibited a 
characteristic absorbance increase with only a slight 
red shift. In addition, the native Gh-rTDHWT also ex-
hibited an absorbance increase but not a red shift. On 
the contrary, a characteristic absorbance increase with 
a clear red shift (495 to 527 nm) could be detected for 
the heat-treated Gh-rTDHWT (Fig. 7B). Consistent with 
the observation is the detection of Gh-rTDHWT fibrils 
from the TEM assay after heat treatment (Fig. 7C). 
These results indicated that Congo red can bind to the 
native Gh-rTDHWT and inhibit the hemolytic activity 
as well as cause a red shift in the absorbance spectrum 
when the protein produces fibrils. 

Discussion 
The number of reports on the connection be-

tween G. hollisae infection and patients with severe 
gastroenteritis diseases is increasing. In addition, the 
characterization of virulence factors responsible for 
pathogenesis is a prerequisite for future development 
of targeted drug therapy. In this study herein, we 
have characterized the mutational effect of Gh-rTDH 
on the Arrhenius effect, hemolytic activity and bio-
physical properties. Recently, Hamada et al. reported 
that the Vp-TDH protein possesses a tetrameric and a 
monomeric structure in aqueous solvents and high 
salt concentrations, respectively; whereas the protein 
transforms into nontoxic fibrils rich in β-strands by 
incubations at 60 oC [21,40]. Similarly, the expressed 
Gh-TDHWT protein exists as a monomer under dena-
tured condition and associates into a homotetramer in 
solution. In addition, the Gh-rTDHWT protein can be 
transformed into nontoxic fibrils when incubated 
between 60 and 80 oC, as shown by the Congo red and 
TEM results. The Gh-rTDHWT fibrils incubated above 
80 oC dissociate into an unfolded state, which can re-
fold into the toxic Gh-rTDHWT native form upon rapid 
cooling to 37 oC. These phenomena are consistent with 
the Arrhenius effect, in which the protein is detoxified 
by heating at 60-80 oC but reactivated by additional 
heating above 85 oC.  
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prediction, individual substitution of Tyr53 to His, 
Thr59 to Ile, or Ser63 to Thr does affect the β-sheet 
probability [38]. However, collective mutations at 
positions 53 and 59, 59 and 63, or simultaneously in-
cluded 53, 59 and 63, may disrupt the secondary 
structure or tertiary structure. Consistent with the 
prediction is the difference observed in far-UV CD 
spectra for Gh-rTDHY53H/T59I and Gh-rTDHT59I/S63T 
double-mutants and the Gh-rTDHY53H/T59I/S63T tri-
ple-mutant (Fig. 6). 

The CD properties difference of Gh-rTDHWT, 
Gh-rTDHY53H/T59I and Gh-rTDHT59I/S63T, and 
Gh-rTDHY53H/T59I/S63T can potentially explain the al-
teration of the Arrhenius effect. CD analysis showed 
that Gh-rTDHWT could interconvert among at least 
three conformational states, depending on the tem-
perature; while two states were identified for 
Gh-rTDHY53H/T59I, Gh-rTDHT59I/S63T and 
Gh-rTDHY53H/T59I/S63T mutants. A decrease of CD 
spectrum at 201 nm was observed when the temper-
ature was increased above 60 oC, indicating the de-
struction of β-sheet and the accumulation of α-helical 
intermediates. Similarly, Hamada et al. also reported 
accumulation of α-helical intermediates during the 
unfolding of β-lactoglobulin, a predominantly β-sheet 
protein, supporting our observations [39]. Subse-
quently, Gh-rTDHWT fibrils incubated over 80 oC dis-
sociate into unfolded states, which refold into native 
form upon rapid cooling to 37 oC. Conversely, the 
Gh-rTDHY53H/T59I, Gh-rTDHT59I/S63T and 
Gh-rTDHY53H/T59I/S63T fibrils retained the secondary 
structures when incubated over 80 oC and showed no 
hemolytic activity when cooled to 37 oC, consistent 
with an alteration of the Arrhenius effect. Further-
more, CD and DSC results of Gh-rTDHWT, 
Gh-rTDHY53H/T59I, Gh-rTDHT59I/S63T, and 
Gh-rTDHY53H/T59I/S63T showed close correlation be-
tween conformational change and their endothermic 
transition temperatures. Consistent with this obser-
vation is that a mutationally-induced increase of the 
endothermic transition temperature caused the alter-
ation of the Arrhenius effect and the heat-induced 
fibril development of Gh-rTDHWT and 
Gh-rTDHY53H/T59I/S63T when incubated around 55 oC 
and 60 oC, respectively. 

In summary, a TDH protein from G. hollisae was 
successfully produced, and amino acid residues pu-
tatively involved in affecting Arrhenius effect, hemo-
lytic activity, and biophysical properties were identi-
fied. The Gh-rTDHY53H/T59I, Gh-rTDHT59I/S63T and 
Gh-rTDHY53H/T59I/S63T mutants can alter the protein’s 
Arrhenius effect and hemolytic activity. Furthermore, 
consistent correlation of conformational changes from 
β-sheet to α-helix and subsequent aggregation into 

fibrillar form to the endothermic transition tempera-
ture were also observed from CD, DSC, TEM and 
Congo red experiments. Further studies to elucidate 
the physiological and structural characteristics of 
Gh-rTDHWT and related mutants are warranted. 

Materials and methods 
Bacterial strains and materials 

The G. hollisae strain ATCC 33564 was obtained 
in a freeze-dried form from the Culture Collection and 
Research Center (Hsin-Chu, Taiwan). This bacterium 
showed hemolysis on tryptic soy broth (TSB) agar 
plates containing 1.5% NaCl and 5% sheep blood. 
Phenyl Sepharose 6 Fast Flow and protein molecular 
weight standards were purchased from GE 
Healthcare (Piscataway, NJ). The protein assay kit 
was obtained from Bio-Rad (Hercules, CA). Protein 
purification chemicals were obtained from Calbio-
chem (La Jolla, CA). 

Grimontia hollisae thermostable direct hemoly-
sin: Cloning, expression, purification, and prep-
aration of monoclonal antibodies 

The cloning, expression, purification, prepara-
tion and characterization of monoclonal antibodies of 
Gh-rTDHWT were performed according to the previ-
ous report [24,25]. Site-directed mutations of Tyr53, 
Thr59, and Ser63 in the G. hollisae tdh wild-type gene 
were performed using the QuikChange site-directed 
mutagenesis kit (Stratagene Inc., La Jolla, CA). The 
oligonucleotide primers used are shown in Table 1. 
Mutations were confirmed by DNA sequencing. The 
recombinant plasmids were electroporated into the E. 
coli BL21(DE3)(pLysS) cells, and read for loss or de-
crease of hemolytic activity for growth on 5% sheep 
blood agar plates.  

Assay for hemolytic activity and thermostability 
of the G. hollisae TDH 

Hemolytic activity was assayed according to a 
previously described method with rabbit erythrocytes 
that were washed three times with the 100 mM 
phosphate-buffered saline (PBS) (pH 7.6) and resus-
pended at a concentration of 4% (v/v) [25]. For the 
hemolytic activity assays, 0.1 mL of 0.1% Triton X-100, 
which causes complete release of hemoglobin from 
erythrocytes and results in the maximum change in 
absorbance at 540 nm, was used as a positive control. 
The elution buffers, which caused negligible erythro-
cyte hemolysis compared with sample fractions, were 
used as negative controls. The effect of temperature 
on the hemolytic activity of purified TDH was deter-
mined by incubating 1 μM of the purified protein in 
PBS for 30 min at different temperatures (4, 16, 25, 30, 
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