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Abstract: Cancer has been identified as a leading cause of death worldwide, and the increasing num-
ber of cancer cases threatens to shorten the average life expectancy of people. Recently, we reported a
3-azido-3-deoxythymidine (AZT)-based amphipathic small molecule, ADG-2e that revealed a notable
potency against tumor metastasis. To evaluate the anticancer potential of ADG-2e, we assessed its
anticancer potency in vitro and in vivo. Anticancer screening of ADG-2e against cervical cancer cells,
HeLa CCL2, and BT549 mammary gland ductal carcinoma showed significant inhibition of cancer
cell proliferation. Furthermore, mechanistic investigations revealed that cancer cell death presumably
proceeded through an oncosis mechanistic pathway because ADG-2e treated cells showed severe
damage on the plasma membrane, a loss of membrane integrity, and leakage of α-tubulin and β-actin.
Finally, evaluation of the antitumorigenic potential of ADG-2e in mouse xenograft models revealed
that this compound potentially inhibits cancer cell proliferation. Collectively, these findings suggest
that ADG-2e can evolve as an anticancer agent, which may represent a model for nucleoside-based
small molecule anticancer drug discovery.

Keywords: anticancer; oncosis; necrosis; drug discovery; small molecule

1. Introduction

Cancer and its consequences continue to pose a threat to humanity by causing serious
damages to socio-economic factors. According to WHO reports, cancer is the leading cause
of death worldwide, with approximately 19.3 million new cases and 10.0 million deaths
in 2020. Additionally, the projected global cancer occurrence in 2040 is approximately
28.4 million, an increase of 47% [1]. Human cancer involves complex processes, where
cellular and molecular alterations are stimulated by various endogenous and exogenous
factors that trigger uncontrollable cell growth by abnormal cell divisions [2–4]. Cancer
requires an arsenal of treatment methodologies. Early detection, surgery, radiation therapy,
and chemotherapy are critical approaches that have been most effective in treating tumors
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to reduce cancer mortality. It is imperative to note that the prevalent application of small-
molecule chemotherapeutics is an inevitable choice because of their remarkable potency
against a wide range of tumors and their ability to penetrate solid tumors [5,6]. Therefore,
identification of highly effective small molecule anticancer drugs for chemotherapy is an
attractive strategy for anti-cancer drug discovery, despite being highly challenging [7].

The cancer cell surface is enriched with negatively charged phospholipids, phos-
phatidylserine (PS) that is susceptible to electrostatic interactions with cationic groups in
anti-cancer drugs [8,9]. In contrast, in normal cells, the negatively charged phospholipids
projected in the inner leaflet, and the outer leaflet of the plasma membrane are rich in
neutral phospholipids, such as phosphatidylcholine (PC) and sphingomyelin (SM). The
reversal of phospholipid patterns in tumour cells is usually induced by the generation of
inflammatory cytokines, oxidative stress, acidity, and thrombin [10].

Cationic peptide antibacterials (CPAs) are amphipathic peptides that comprise bal-
anced portions of cationic and hydrophobic residues [9,11]. Given that the membrane
phenotype of bacteria also constitutes negatively charged phospholipids and lipopolysac-
charides, numerous naturally occurring CPAs have been found to inhibit cancer [12–14].
Consequently, several naturally occurring CPAs have progressed to clinical trials as anti-
cancer therapeutics. For instance, LL37 advanced to phase I and II clinical trials by showing
promising efficacy against melanoma, colon, and gastric cancers [15]. In addition, LTX-315,
a derivative of bovine lactoferricin, showed prominent potency against several drug-
resistant cancer cell lines and advanced to phase II clinical trials [16,17]. Similarly, clinical
phase II results of dusquetide (SGX942), an innate defense regulator (IDR), revealed that it
inhibited severe oral mucositis (SOM) in patients with head and neck cancer [18]. Buforin
IIb showed cytotoxicity against 62 cancer cell lines, including leukemia, breast, prostate,
and colon cancer [19]. Melittin was found to be effective against skin cancers [20]. In
addition, human neutrophil peptide-1(HNP-1) [21], aurein 1.2 [22], and pleuricidin [14,17]
are other CPAs that show promising effects against various drug-resistant cancer cell lines.

Although many CPAs have proven to be remarkable anticancer peptides (ACPs), their
transformation into therapeutics is hampered by potential disadvantages, including poor
stability, proteolytic degradation, short plasma half-life, and low bioavailability [23,24].
In addition, to perform a structure-activity relationship study (SAR), synthesis of long-
sequenced peptides involves huge manufacturing costs due to complex synthetic routes
to locate the desired functional groups at appropriate positions. The production cost is
reported to be more than 10-fold higher than the manufacturing cost of small molecules [25].
Thus, designing amphipathic small molecules that mimic the structural features of CPAs is
an effective strategy [24,26].

To accomplish this, we envisioned 3′-azido-3′-deoxythymidine (AZT), which offers
synthetic feasibility to incorporate desired functional groups to attain amphipathicity. Fur-
thermore, in recent years, AZT-based therapeutics have drawn significant attention because
of their proven medicinal importance as HIV drugs [27], antitumor effects [28], antioxi-
dant [29], and AZT prodrugs for anticancer and antiviral activities [30,31]. In particular,
AZTs have a wide range of applications as anticancer agents that inhibit several tumor cell
lines, including colon [32], breast [33], bladder [29,34], and esophageal cancers [35].

Recently, we reported a series of amphipathic 3′-azido-3′-deoxythymidine (AZT)
derivatives containing amine or guanidine sidechains to mimic lysine and arginine, respec-
tively, which were balanced by various hydrophobic residues. Through intensive SAR,
we identified ADG-2e as a potent CPA that showed notable antimetastatic activity [36].
It is pertinent to note that metastasis is the prime factor that increases cancer mortality
by causing failures in cancer treatment [37,38]. Even though the present clinical appli-
cation of anticancer drug numbers greater than 200, most of them did not inhibit cancer
metastasis [39,40], prompting an urgent need to develop new therapeutic modalities that
treat cancer and metastasis simultaneously. In addition, inspired by the clinical use and
preclinical development of nucleosides in the treatment of cancer [41,42], and to explore the
therapeutic potential of ADG-2e, we evaluated its anticancer potential in vitro and in vivo.
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The mechanism of action on cancer cells was investigated by studying morphological
changes in the cell membranes.

2. Materials and Methods
2.1. Chemistry

ADG-2 was synthesized according to the procedure [36], and the experimental section
is provided in the supplementary information. As described previously [43], all reactions
were performed under argon atmosphere in flame-dried glassware using dry solvents,
unless otherwise noted. Anhydrous organic solvents of purity greater than 99.9% were
purchased from Aldrich and used directly in the reaction. All reagents and few starting
materials were purchased from commercial chemical suppliers, including Sigma-Aldrich,
TCI, and Across Organics and used as received. Analytical thin-layer chromatography
(TLC) was performed on Merck aluminum sheets with silica gel 60 F254 using 0.25 mm
plates and was visualized by ultraviolet light, staining with KMnO4 and ninhydrin. Col-
umn chromatography purification was performed on Merck silica gel 60 (70–230 mesh or
230–400 mesh). Bruker DRX-500 and DRX-800 NMR spectrometers were used to record
1H and 13C NMR spectra. NMR chemical shifts (δ) are denoted in parts per million (ppm)
and coupling constants (J) are given in hertz (Hz). MALDI-TOF mass was recorded using a
Shimadzu mass spectrometer.

2.2. Cell Culture and Cell Viability Assay

HeLa, BT549 and MRC5 were purchased from the American Type Culture Collection
(ATCC, Manassas, VA, USA). CCD34SK and CCD986SK cells were obtained from the Bio
Evaluation Center of KRIBB. HeLa CCL2, BT549, and MRC5 cells were grown in DMEM,
and CCD34SK cells were grown in EMEM medium. CCD986SK growth was observed in
the IMDM media. All media contained penicillin/streptomycin (Thermo Fisher Scientific,
Waltham, MA, USA) and 10% fetal bovine serum (Gibco, Logan, UT, USA). The cells
were incubated at 37 ◦C with 5% CO2. HeLa CCL2 cells (4 × 103 cells/well) were seeded
in 96-well cell culture plates and incubated for 18 h. Cells were treated with various
concentrations of ADG-2e. All experiments were performed in triplicate. After 24 h of
additional incubation, 10 µL of MTT solution (Daeil Lab service, Daejeon, Korea) was
directly added and incubated at 37 ◦C for 2 h. The absorbance was measured at 450 nm
using a SPARK 10M (TECAN, Männedorf, Switzerland) and IC50 was measured using
GraphPad Prism 6.0 program (San Diego, CA, USA)

2.3. Live and Dead Assay

HeLa CCL2 cells were seeded in 96-well plates and incubated for 18 h. Then, 0, 25,
and 50 µM ADG-2e were added and incubated for an additional 24 h. 2 µM of Calcein-AM
(Live-cell; Green) and 4 µM EthD-1 (Dead cell; Red) were treated on each well for 30 min
and incubated at 37 ◦C. DNA was stained by Hoechst 33342 (Blue; Sigma-Aldrich, St. Louis,
MO, USA). Images were captured using a fluorescence microscope (Carl Zeiss).

2.4. FACS Analysis

HeLa CCL2 cells were seeded in 12-well plates for 18 h. Cells were treated with 25 µM
ADG-2e. After incubation for an additional 24 h, cells were harvested and stained with
propidium iodide (PI) or anti-Annexin V-APC (eBioscience TM Annexin V Apoptosis Detec-
tion Kit APC, Invitrogen, Carlsbad, CA, USA) for 30 min. Cell death was measured by flow
cytometry (CytoFLEX; Beckman Coulter, Miami, FL, USA). Wavelengths of 650/660 nm
were used for laser excitation and emission, respectively, for APC detection. Wavelengths
of 535/617 nm were used as excitation and emission wavelengths, respectively, for PI
detection. The results were analyzed using FlowJo software (BD Biosciences, Franklin
Lakes, NJ, USA).
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2.5. Live Image Assay

HeLa cells were seeded in Lab-Tek II 2 chamber cover glass wells (Nunc, Rochester,
NY, USA) and incubated at 37 ◦C for 18 h. Then, they were placed on the stage of the
Zeiss microscope (Carl Zeiss Microimage Inc., Thornwood, NY, USA) with ZEN software
and inverted microscope equipped with an environmental chamber (Precision Plastics,
Beltsville, MD, USA) to provide temperature, humidity and CO2 control. The cells were
treated with 0, 25, or 50 µM ADG-2e. Time-lapse images were captured every 2 min using
a differential interference contrast (DIC) microscope.

2.6. Tumor Xenograft Analysis and Immunohistochemistry

All animal studies were conducted in accordance with relevant guidelines and reg-
ulations approved by the Institutional Animal Care and Use Committee of KRIBB (No.:
KRIBB-AEC-20258, approval date, 23 October 2020). Male BALB/c nude mice (six weeks)
were purchased from Daehan Biolink. 3 × 105 HeLa cells/mouse were inoculated sub-
cutaneously into mice. When tumor volumes reached 100 mm3, the mice were divided
into two groups. Each group consisted of six mice, and three times a week, IP injections
of 30 mg/kg of ADG-2e or vehicle (20% DMA (N, N′-dimethylacetamide), 20% Kolliphor,
60% HPBCD(2-hydroxypropyl)-β-cyclodextrin) were administered until the tumor volume
reached 1000 mm3. Every three days interval the volume of tumors was measured. The
day after the final injection, the mice were sacrificed, and images were captured. The
tumor tissues were harvested and fixed in 4% paraformaldehyde overnight at 4 ◦C. For
immunohistochemistry, the sections were deparaffinized and blocked overnight with 5%
BSA. Sections were incubated with primary antibodies, such as anti-cleaved caspase 3 and
α-tubulin antibodies, overnight at 4 ◦C. After washing with DPBS three times, the sections
were incubated with secondary antibodies for 1 h. DNA was stained with Hoechst 33342
(Sigma-Aldrich).

2.7. Mouse Behavior Analysis in an Open Field Cage

The apparatus was similar to that used by Reyes-Mendez et al. [44], which consisted
of a dark (black) acrylic enclosure, with a 30 × 30 cm floor area and a 40 cm height
surrounding wall. We investigated the mouse in an open field cage for 7 min, which
consisted of squares. The video data were analyzed for mouse behavior using a Daniovision
video tracking system (Noldus, Wageningen, The Netherlands). The speed and total
movement distances (cm) were calculated and analyzed using the Etho Vision XT software
(Noldus). We performed three independent experiments and averaged three values.

2.8. Statistical Analysis

Values are presented as the mean ± standard deviation (SD) of three or more experi-
ments. Data were analyzed using a nonparametric t-test in GraphPad Prism 6.0. All graphs
were created using the GraphPad Prism version 6. Data are presented as mean ± SD and
considered significant if p ≤ 0.05 (* p < 0.05, ** p < 0.005).

3. Results
3.1. Synthesis of ADG-2e

As we demonstrated previously [36], 3′ and 5′ positions of the sugar in 3′-azidothy-
midine were functionalized to incorporate hydrophobic residues including alkyl and
alkylaryl functionalities through an amide bond. To achieve cationicity, norspermidine
and its functionalized guanidine were incorporated at the C4 position of a pyrimidine to
mimic lysine and arginine, respectively [24]. The amphipathicity of the most potent com-
pound ADG-2e was achieved by incorporating adamantane and guanidine as hydrophobic
and hydrophilic counterparts, respectively. We observed that the guanidine mimetic
(ADG-2e) was more effective than lysine mimetics (ADL-2e) owing to the distribution of
cationic charge.
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ADG-2e was synthesized as delineated in Scheme 1. Briefly, the azidation of alcohol
(1) was effected using tosyl chloride and sodium azide. To functionalize the C4 carbonyl
of pyrimidine, 1,2,4-triazole was anchored in the presence of POCl3. Furthermore, K2CO3
mediated substitution reaction of diboc-norspermidine on 3 by replacing the triazole in
acetonitrile resulted in the formation of 5 in 87% yield. To reduce the azide into amine
for the incorporation of adamantyl group, Pd-C/H2, mediated reduction was performed,
and subsequent coupling with 1-adamantaneacetic acid in presence of EDC, HOBt, and
DIEA afforded the diamide, 6 in 86% yield. Further, deprotection of Boc groups on 6 was
achieved by 1.25 M HCl to result in the formation of amine compound 7, which was under
bisguanidinylation using 1H-pyrazole-1-carboxamidine hydrochloride and subsequent
treatment of 1.25 M HCl solution in methanol resulted in the formation of ADG-2e in good
yield [36].
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Scheme 1. Synthesis of ADG-2e. Reagents and conditions; (a) (i) TsCl, TEA, DMAP, CH2Cl2, 0 ◦C—rt, 15 h; (ii) NaN3, DMF,
60 ◦C, 12 h, 88% (for two steps). (b) 1,2,4-triazole, POCl3, TEA, CH3CN, 0 ◦C—rt, 20 h, 98%. (c) K2CO3, CH3CN, 40 ◦C, 24 h,
87%. (d) (i) Pd/C, H2, MeOH, rt, 6 h; (ii) 1-adamantylacetic acid, EDC, HOBt, DIEA, DMF, rt, 10 h 86% (2 steps) (e) 1.25 M
HCl in MeOH, 50 ◦C, 1 h, 83%. (f) (i). DIEA, DMF, rt, 12 h; (ii). 1.25 M HCl in MeOH, 82%.

3.2. Anticancer Effect of ADG-2e

After the successful synthesis of ADG-2e, its cytotoxicity was assessed against cancer
cell lines, including HeLa CCL2 and BT549 as shown in Figure 1A. Interestingly, ADG-2e
exhibited significant anti-proliferative effects against both HeLa CCL2 and BT549 cells.
However, evaluation of ADG-2e against normal cells, including CCD34SK, CCD986SK,
and MRC5 did not show considerable toxicity, demonstrating the selectivity over cancer
cells. It is pertinent to note that ADG-2e inhibits cell growth at relatively low IC50 (from
4.8–9.7 µM) in cancer cell lines.

To verify the induction of apoptosis, we examined ADG-2e against HeLa CCL2 cells
using a live/dead viability/cytotoxicity kit that displays live and dead cells in green and
red colors, respectively. As shown in Figure 1B, control group entirely consist of living cells
marked with green signals. However, cells treated with 25 µM ADG-2e displayed a slight
increase in dead cell counts. Furthermore, flow cytometric analysis of cell cycle distribution
confirmed that treatment of 25 µM and 50 µM of ADG-2e on HeLa cells showed a small
increase in dead cells by 8.8% and 13.4%, respectively (Figure 1C). These results speculate
that apoptosis may not be the cause of cell death.
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Figure 1. ADG-2e inhibits cell growth in tumor cell lines. (A) The antiproliferative effect of ADG-2e showed on the HeLa
CCL2 (cervical cancer cells) and BT549 (mammary gland ductal carcinoma), cell lines. Cells were seeded at 2 × 103 cells in a
96-well plate and treated with 25 µM ADG-2e for 24 h. MTT assay was used to determine the cell growth rate. The graph
shows the degree of cell growth inhibition by ADG-2e. Graphs were represented using Prism GraphPad program. The cell
lines indicated in blue color, such as CCD34SK, CCD986SK, and MRC5 are normal cell lines. The red dotted line indicates
the maximum % of inhibition of the cancer cell line against ADG-2e treatment. (* p < 0.05, ** p < 0.01, n.s: not significant)
(B) HeLa CCL2 cells were cultured in 12-well plates for 18 h and then treated with ADG-2e (25 µM) for 24 h, which was
further treated with the Live/Death detection kit. Images were captured using a microscope at 100×magnification. Green
and red cells represent live and dead cells, respectively. Scale bar indicates 200 µm. (C) Flow cytometric analysis of cell cycle
distribution. HeLa cells were treated with 25 or 50 µM ADG-2e for 24 h. Treated cells were then stained with propidium
iodide (PI)/ACP-Annexin V and subsequently processed for cell population analysis. The data are representative of three
independent experiments.

3.3. Effect of ADG-2e on the Cell Membrane

To examine the induction of necrosis or apoptosis by ADG-2e, it is important to
analyze the morphological changes and biochemical indicators of apoptosis in cancer cells.
ADG-2e is an amphiphilic compound that can bind to cell membranes through its cationic
components by interacting with the negatively charged phospholipids in the plasma
membrane. As expected, the microscope images of ADG-2e treated HeLa CCL2 showed
significant morphological changes on the membrane surface (Figure 2A). To accurately
determine the effect of ADG-2e on cancer cell membranes, live-cell imaging experiments
were performed, where the microscope (Carl Zeiss, Oberkochen, Germany) captured the
images for 3 h at every 12 min interval [45]. Strikingly, cancer cells treated with ADG-2e
showed significant changes in the cell membrane due to severe membrane shrinkage or
burst, as indicated by red arrows (Figure 2B and Supplementary Figure S1). Therefore, it is
speculated that ADG-2e can affect the cytoplasmic proteins.
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Figure 2. ADG-2e damages cells, causing the cell membrane enlargement and kill cells through oncosis. (A) HeLa CCL2
cells were treated with ADG-2e at 25 and 50 µM, and the changes were observed under a microscope. Cells were observed
for 3 h at 12 min intervals, and the images were captured using the Zeiss Axiovert Microscope. The arrowhead indicates
severely changed cells after treatment with ADG-2e. The white scale bar is 100 µm. (B) Cells treated with 50 µM ADG-2e
presented in an enlarged field (×400). The arrowhead indicates membrane swelling caused by oncosis. The red scale bar is
40 µm. Numbers are displayed in hours: minutes. (C) ADG-2e treated cells were subjected to SDS-PAGE and blotted with
the indicated antibodies. The arrowhead indicates cleavage of apoptosis markers.

Furthermore, we investigated the effect of ADG-2e on nuclear protein lamin B, cy-
tosolic proteins, including α-tubulin and β-actin, and apoptosis indicator proteins, namely
caspase-3 and caspase-9. Western blot analysis (Figure 2C) revealed that α-tubulin and
β-actin decreased in a dose-dependent manner when cells were treated with 50 µM ADG-2e.
However, the nuclear protein, lamin B did not show any effect on ADG-2e treatment. This
result was in agreement with the microscopic fluorescence images of HeLa CCL2 cells
treated with ADG-2e (Figure 3), which showed that the nucleus was unaffected despite the
fact that the membrane was disrupted. In general, the active form of caspase proteins is
cleaved during cell death via apoptosis. However, ADG-2e treatment did not activate the
apoptotic marker proteins, either caspase-3 or caspase-9, confirming that the induction of
cell death was not facilitated by apoptosis (Figure 2C).
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Numbers are displayed in minutes: seconds. The scale bar is 100 µm.

Generally, necrosis commences with cell swelling, which results in cell membrane rup-
ture, and then release the cytoplasmic contents [46]. Necrotic cell death is morphologically
characterized by cell swelling, which is known as oncosis [47]. As shown in Figure 2A,B,
ADG-2e induced ruptures on plasma membrane and eventually disrupted membrane
integrity, which led to subsequent leakage of intracellular contents such as α-tubulin and
β-actin, suggesting tumor cell death through necrosis or oncosis pathway. To ascertain this,
variation in the size of ADG-2e treated cells was analyzed using FACS. ADG-2e treated
cells showed a dose-dependent decrease in cell size, indicating that the plasma membrane
of the cells was destroyed by necrosis or oncosis (Figure 4). Collectively, these factors
suggested that cell death presumably proceeded through necrosis or oncosis.
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Three independent experimental results are summarized in the graph using CytExpert 2.2.

3.4. Evaluation of In Vivo Potency of ADG-2e

Inspired by the in vitro anticancer potency, ADG-2e was investigated for its chemother-
apeutic ability in mice bearing HeLa cell xenograft tumors, which were subjected to IP
injections of ADG-2e or vehicle three times a week, as scheduled in Figure 5A. The cancer
volume growth of each mouse was measured and compared at every three days interval.
In contrast to the vehicle, ADG-2e treated mice group showed remarkable tumor growth
suppression after the final injection, which was approximately 50% volume reduction
(Figure 5B–D).

To ascertain whether the reduction in tumor size was entirely due to the anti-tumor
effect of ADG-2e, we investigated the change in body weight after every injection, as
shown in Figure 6A. The results suggested that the body weight of mice did not show any
changes, proving the anti-tumorigenic effect of ADG-2e. Furthermore, variations in mouse
movements after twenty-four hours of the final injection were investigated (Figure 6B)
by analyzing the movement distances using the Etho Vision XT software. The results
suggest that ADG-2e treated mice showed considerable improvements in the movement
travelled compared to vehicle-treated mice. Therefore, body weight change and activity
change experiments demonstrate the anti-tumor potential of ADG-2e. To verify that anti-
tumorigenesis proceeded through apoptosis, cancer tissues were investigated for cleavage
of caspase 3 signal. As shown in Figure 7, the immunochemical data did not show any
signals for caspase 3 cleavage, suggesting that anti-tumorigenesis of ADG-2e probably
proceeded through the necrosis or oncosis pathway.
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Figure 5. ADG-2e inhibits tumor growth, thereby reducing tumor size. (A) Summary of the schedule of tumor mouse
xenograft experiments (black arrows represent treatment days). (B) After treatment with vehicle and ADG-2e according to
the schedule, compared the size of tumors in mice. The dotted red circles indicate tumor edges on the surface of the skin.
(C) The change in tumor size is shown in the graph. The black color represents the experimental group treated with the
vehicle, and the experimental group administered ADG-2e is marked in red. (D) After ten injections, the cancer tissue was
separated from the mouse, and the weight was measured. The average values of each experimental group are shown in the
graph. Error bars indicate standard deviation, and * indicates p > 0.05.
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4. Discussion and Conclusions

Cancer is a heterogeneous disorder with a steep increase in incidence and mortality
rates, and remains a threat to socioeconomic life worldwide [1]. Although various treat-
ments including surgery, radiation, and chemotherapy have been employed, the survival
rate of cancer patients has not improved considerably because of the migration of can-
cer cells from the primary site to distant organs through metastasis [12]. At present, over
200 antitumor drugs exist in clinical treatments, but very few of them inhibit metastasis [39].
Therefore, the development of a potential anticancer agent with antimetastatic potential is
necessary to achieve successful therapeutic outcomes.

A recently reported amphipathic small molecule, ADG-2e was found to display sig-
nificant potency against tumor metastasis. To address the above-mentioned issues and to
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evaluate the anticancer effects of ADG-2e, we investigated its anticancer potential. Inter-
estingly, ADG-2e showed a significant anti-proliferative effect, both in vitro and in vivo.
ADG-2e inhibited the proliferation of HeLa CCL2 and BT549 cancer cells, whereas normal
cells were not affected, indicating selective anti-cancer effects. Moreover, ADG-2e showed
a significant anti-tumorigenic effect as a result of cancer inhibition in a cancer-bearing
mouse xenograft model. The selective anticancer effect of ADG-2e might be attributed to
the fact that the existence of electrostatic binding between the positive charges of ADG-2e
and the negative charges located at the outer part of the cancer cell membranes. However,
such electrostatic binding is not feasible in normal cells because the negatively charged
phosphatidylserine localizes in the inner leaflet of the membrane, whereas the outer leaflet
of the plasma membrane comprises neutral phospholipids, including phosphatidylcholine
and sphingomyelins [8,9]. Furthermore, in animal models, ADG-2e exhibited anti-cancer
effects without causing any changes in body weight. After the treatment of the inhibitor,
mice were found to increase mobility, suggesting the potential of ADG-2 to develop as a
model for developing anti-cancer drugs.

Anticancer peptides (ACP) were reported to facilitate cell death through various
processes, including necrosis due to cell membrane lysis, modulation of immune responses,
inhibition of kinase, interference with functional proteins, and induction of apoptosis [17].
Apoptosis and accidental cell death are the key modalities of cancer cell death that have
been reported [39,40]. Apoptosis is a programmed cellular suicide of unhealthy cells that
involves two different pathways namely, (i) extrinsic pathway by activating caspases,
(ii) intrinsic pathway through mitochondrial outer membrane permeabilization (MOMP),
which induces proapoptotic proteins [33,48]. We observed that ADG-2e treated cancer cells
showed damaged plasma membrane. Consequently, swelling of the cell membrane was
also observed, which is characteristic of oncosis. Usually, oncosis leads to necrosis, which is
associated with cell shrinkage and karyolysis. Thus, necrosis contradicts the apoptosis [47].
Indeed, anti-cancer agents such as kahalalide F [49] and artesunate [50] induce cell death
through oncosis. Morphological changes and edema in the cancer cell membrane suggest
the potential of ADG-2e to evolve as an anti-cancer agent, following the necrotic cell death
pathway. In summary, together these results suggest that ADG-2e has the potential to
evolve as a therapeutic model for treating cancer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics13122071/s1, Figure S1: ADG-2e affects the cell membrane and ultimately
destroys the cell membrane, leading to the death of cancer cells, experimental procedure for the
synthesis of ADG-2e.
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