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Abstract

 

The major histocompatibility complex (MHC) restriction element for a human Ni

 

2

 

�

 

 reactive
T cell, ANi-2.3, was identified as DR52c. A series of experiments established that the func-
tional ligand for this T cell was a preformed complex of Ni

 

2

 

�

 

 bound to the combination of
DR52c and a specific peptide that was generated in human and mouse B cells, but not in fibro-
blasts nor other antigen processing–deficient cells. In addition, ANi-2.3 recognition of this
complex was dependent on His81 of the MHC 

 

�

 

 chain, suggesting a role for this amino acid in
Ni

 

2

 

�

 

 binding to MHC. We propose a general model for Ni

 

2

 

�

 

 recognition in which 

 

�

 

His81
and two amino acids from the NH

 

2

 

-terminal part of the MHC bound peptide coordinate Ni

 

2

 

�

 

which then interacts with some portion of the V

 

�

 

 CDR1 or CDR2 region.

Key words: hypersensitivity • T cell receptor • antigen presentation • hapten • nickel

 

Introduction

 

Although much of what we know about 

 

��

 

TCR recogni-
tion comes from the study of peptide antigens, 

 

��

 

TCRs
can recognize ligands that contain moieties other than, or
in addition to, peptides. For example, the class Ib MHC
molecule CD1 presents lipids and glycolipids to T cells (1).
Haptens are another group of chemicals that have been
shown to be capable of forming part of the 

 

��

 

TCR recep-
tor ligand. Small organic haptens such as dinitrophenol
(DNP), trinitrophenol (TNP), and fluorescein (FL) have
long been used experimentally to study T cell responses
and hypersensitivity. Also, metals, such as nickel, gold, or
beryllium, form another group of chemicals for which T
cell hypersensitivity has been demonstrated. Contact sensi-
tivity to nickel in jewelry is quite common (2). Patients un-
dergoing colloidal gold therapy can develop hypersensitiv-
ity (3). Sensitivity to beryllium is a serious problem in
industries that handle this element (4).

In the case of CD1, the MHC binding groove is very
hydrophobic and appears to bind the lipid portion of the
antigen, presenting the most hydrophilic portion of the
antigen on the MHC surface (5). Studies with TNP have
suggested that a hapten-modified MHC bound peptide is
most often the relevant antigen (6, 7). However, there
are a few cases in which haptens appear to dominate the
interaction with the 

 

��

 

TCR, such that the interaction
can be measured even in the absence of peptide and
MHC (8, 9).

In the case of hypersensitivity to metals, it is most likely
that 

 

��

 

TCRs recognize metal ions complexed with the
MHC/peptide surface in a manner analogous to the or-
ganic haptens, but to date there is no formal demonstration
of this complex. In the present study, we have defined the
ligand for the 

 

��

 

TCR of a Ni

 

2

 

�

 

 reactive T cell clone
(ANi-2.3) isolated from a patient with Ni

 

2

 

�

 

 hypersensitiv-
ity (10, 11). We show that recognition by this 

 

��

 

TCR re-
quires the combination Ni

 

2

 

�

 

, a particular MHC molecule,
DR52c (DRA

 

*

 

0101, DRB3

 

*

 

0301), and an unknown spe-
cific MHC bound peptide produced in B cells, but not fi-
broblasts nor other nonprofessional APC. These results are
consistent with the recognition of Ni

 

2

 

�

 

 bound to the
MHC surface by amino acid side chains from the MHC
and/or the MHC bound peptide.
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The Ligand for a Ni
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 Reactive T Cell Clone

 

Materials and Methods

 

Oligonucleotides, Peptides, and Superantigen.

 

Oligonucleotides
used in DNA constructions, mutagenesis and sequencing were
produced in the Molecular Resources Center at National Jewish
Medical and Research Center. The following peptides were also
produced at this facility: pTT, amino acids 830–840 of tetanus
toxin (12); pTu, amino acids 342–359 of the elongation factor
Tu; pDRA, amino acids 110–128 of HLA DR 

 

�

 

 chain; p

 

�

 

,
amino acids 11–29 of human Ig lambda chain (13). The superan-
tigen, staphylococcal enterotoxin B (SEB),

 

*

 

 was purchased from
Sigma-Aldrich.

 

Cell Lines.

 

Production and characterization of the Ni

 

2

 

�

 

 reac-
tive T cell transfectoma bearing the 

 

��

 

TCR of ANi2.3, has been
described previously (14). The T cell transfectoma, AL8.1, was a
gift from Dr. U. Blank (Pasteur Institute, Paris, France; reference
12). It is specific for pTT presented by an allele of DR13
(DRB1

 

*

 

1302, DRA). The EBV transformed B cell line, HO301,
was a gift from Dr. J. Hansen (University of Washington, Se-
attle, WA). The MHC class II alleles expressed in HO301
are DRA

 

*

 

01012, DRB1

 

*

 

1302, DRB3

 

*

 

0301, DQA

 

*

 

101021,
DQB1

 

*

 

0604, DPA1

 

*

 

01, and DPB1

 

*

 

1601 (15). The mouse B cell
lymphoma line, M12.C3, was obtained from Dr. Laurie Glimcher
(Harvard University, Cambridge, MA). It is a variant of M12 that
fails to express MHC class II due to mutations in both the IA

 

d

 

 and
IE

 

d

 

 

 

�

 

 chain genes (16). The mouse fibroblast cell line DAP was a
gift from Dr. J. Bill (University of Colorado Health Sciences Cen-
ter, Denver, CO). The human cell line T2 is a B cell/T cell hy-
brid (17) that carries a large genomic deletion (18) including the
structural genes for all MHC class II molecules and for DM. The
MHC class II

 

�

 

 mouse mastocytoma line, P815 and the DR1

 

�

 

(DRB1

 

*

 

0101,DRA) EBV-transformed human B cell line, LG2,
were obtained from the American Type Culture Collection.

 

Monoclonal Antibodies.

 

B cell hybridoma, FK7.3.19.1, which
produced a mAb specific for DR52c (19), was a gift from Dr. F.
Koning (Leiden University Medical Center, Netherlands). L243
(anti-DRB1) and L227 (anti-DR

 

�

 

) B cell hybridomas were ob-
tained from the American Type Culture Collection.

 

Cell Fixation.

 

EBV B cells were fixed with paraformalde-
hyde. 2 

 

�

 

 10

 

6

 

 cells were incubated with 1 ml of 0.25% parafor-
maldehyde at 37

 

�

 

C for 40 min and then washed thoroughly with
balanced salt solution (BSS).

 

IL-2 Production.

 

IL-2 production by stimulated transfectoma
T cells was assayed as previously described (20, 21) using the IL-
2–dependent T cell line, HT-2. Briefly, cultures were prepared
containing 10

 

5

 

 transfectoma T cells and 10

 

5

 

 antigen-presenting
cells. Unless otherwise stated, stimuli were either nothing, 100

 

	

 

M Ni

 

2

 

�

 

 (as NiCl

 

2

 

), or 50 

 

	

 

g/ml SEB.

 

Preparation of Soluble DR52c.

 

DR52c was isolated from ly-
sates of HO301 by an adaptation of published methods (22, 23).
Briefly, 1–5 

 

�

 

 10

 

9

 

 HO301 cells were harvested and washed three
times with cold BSS. Cells were suspended in lysis buffer (20 mM
octanoyl-N-methylglucamide (MEGA-8), 20 mM nonanoyl-N-
methylglucamide (MEGA-9), 1 mM PMSF, 50 mM iodoacet-
amide, 10 

 

	

 

g/ml leupeptin, 0.2 mg/ml EDTA, and 0.7 

 

	

 

g/ml
pepstatin A in PBS, pH 7.4) and incubated on ice for 30 min.
The lysate was centrifuged at 100,000 

 

g

 

 for 1 h at 4

 

�

 

C and passed
through a prewashed FK7.3.19.1 coupled Sepharose column.
Class II molecules were eluted with pH 11.4, 50 mM 3-[cyclo-
hexylamino]-1-propanesulfonic acid, 150 mM NaCl, 20 mM

MEGA-8, and 20 mM MEGA-9. The eluate was collected into
siliconized glass tubes and neutralized with 2 M Tris (pH 6.8). All
reagents were purchased from Sigma-Aldrich. To remove the
transmembrane domain from natural DR52c, 8 vol of 1.5 mg/ml
DR52c were incubated with 3 vol of 0.1 mM dithiothreitol, 0.1
mM EDTA, 1 mM Tris, and 0.1 mg/ml papain solution for 1 h
at 37

 

�

 

C. The reaction was stopped with 1 vol of 20 mM iodo-
acetamide and 100 mM Tris solution, pH 8, incubated on ice for
30 min. This was stored in PBS.

 

Extraction of MHC Bound Peptides.

 

DR52c molecules in 10
mM Tris buffer, pH 7.5, were incubated 2

 

�

 

 with 2.5 M acetic
acid for 30 min at 37

 

�

 

C. This solution was passed twice through
Centricon C-10 filters. The pass-through was collected and ly-
ophilized to dryness. The residue was redissolved in water and ly-
ophilized to dryness three more times.

 

Vectors, Constructs, and Transduction of Cell Lines.

 

The genes
for the 

 

�

 

 and 

 

�

 

 chains of DR52c were transduced into various
cells using an MSCV retroviral system in which green fluorescent
protein (GFP) or thy-1.1 served as surrogate markers (24, 25).
Bacteria stock carrying the plasmid pBEX WT46 BIII that en-
coded the DRB3–0301 

 

�

 

 chain of DR52c, was a gift from Dr. J.
Gorski (Milwaukee Blood Center, Milwaukee, WI). cDNA en-
coding the full length DR52C 

 

�

 

 chain was cloned into MSCV-
GFP between the BglII and NotI restriction sites of the
polylinker. cDNA encoding the full length DR

 

�

 

 chain gene was
cloned into MSCV-thy1.1 between the EcoRI and NotI restric-
tion sites of the polylinker. The plasmids were transfected into a
retroviral packaging cell line as described (25). 4 ml of the result-
ant viral stock was then used to transduce 5 

 

�

 

 10

 

5

 

 target cells us-
ing a spinfection protocol. Transductants were then cloned at
limiting dilution. A variant of the DR52c 

 

�

 

 chain/MSCV-GFP
construct was made in which the PCR was used to change the
codon for His (CAC) to that of Gln (CAG) at the position en-
coding amino acid 81 of the 

 

�

 

 chain.

 

Results

 

DR

 

�

 

3–0301 Is the Restriction Element for ANi-2.3.

 

The
ANi-2.3 T cell clone was originally isolated from a patient
with nickel hypersensitivity (11). The clone and a T cell
hybridoma transfectant (14) expressing an 

 

��

 

TCR con-
taining the ANi-2.3 V

 

�

 

 and V

 

�

 

 linked to mouse C

 

�

 

 and
C

 

�

 

 respond to autologous antigen-presenting cells pulsed
with Ni

 

2

 

�

 

. Based on the reactivity of the clone to Ni

 

2

 

�

 

presented by a series of APCs of different HLA genotypes
and the inhibition of its reactivity with a specific anti-DR

 

�

 

mAb, the restriction element of this clone was thought to
be DR13 (DRB1

 

*

 

1302, DRA

 

*

 

0101; references 11 and
14). However, in preliminary experiments in which we
transfected the DRB1

 

*

 

1302 

 

�

 

 chain gene into a number of
cells types that contained the DR

 

�

 

 gene, we were unable
to transfer Ni

 

2

 

�

 

 presenting ability (data not shown). There-
fore, we considered that some other class II MHC mole-
cule in this patient was the Ni

 

2

 

�

 

 presenting element. As
DRB1

 

*

 

1302 is in very tight linkage disequilibrium with
the DR52c 

 

�

 

 chain gene (26, 27), we turned our attention
to this molecule.

Two types of experiments convincingly demonstrated
that DR52c is in fact the MHC restriction element for

 

*

 

Abbreviations used in this paper:

 

 BSS, balanced salt solution; GFP, green
fluorescent protein; SEB, staphylococcal enterotoxin B.
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Ni2� presentation to ANi-2.3. In the first, we used the
EBV transformed cell line, HO301, which is homozygous
for both DRB1*1302 and DR52c, as an APC for Ni2� pre-
sentation. Fig. 1 A shows the expression of DR13 and
DR52c on HO301 using the � specific mAbs L227 (anti-
DRB1) and FK-7.3 (anti-DR52c). Both � chains are well
expressed as is the common DR� chain detected with the
mAb, L243. Fig. 1 B shows the reactivity of ANi-2.3 to
Ni2� presented by HO301. As a control we used another T
cell transfectoma, AL8.1, which is specific for a tetanus
peptide presented by DRB1*1302 (12). ANi-2.3 re-
sponded to Ni2� presented by HO301 and AL8.1 re-
sponded to the tetanus peptide. The response of ANi-2.3
to Ni2� was nearly completely blocked by the DR52c and
DR� specific mAbs, but not the DRB1 specific mAb. As
expected, the AL8.1 response to the tetanus peptide was
inhibited by the DRB1 and DR� specific mAbs, but not
by the DR52c specific mAb. These results strongly impli-
cated DR52c as the Ni2� presenting MHC restriction ele-
ment for ANi-2.3.

In a second experiment, we used a retroviral vector to
transduce the gene for the DR52c � chain into the EBV
transformed cell line, LG2. LG2 is homozygous for
DRB1*0101 and does not express DR52c. We then com-
pared LG2 to its DR52c transductant for the ability to
present Ni2� to ANi-2.3 (Fig. 1 C). The nontransduced
LG2 cells did not present Ni2� to ANi-2.3, but the trans-
ductant presented Ni2� very well. Taken together these re-
sults confirmed that DR52c was the required MHC restric-
tion element for Ni2� presentation to ANi-2.3.

Ni2� Presentation Occurs via a Preformed Peptide/MHC
Complex. Previous experiments had shown that fixed
APCs could present Ni2� to ANi-2.3 cells (10), indicating
that antigen processing was not required and suggesting
that the Ni2� was presented by a preformed MHC/peptide
complex. We performed several experiments to confirm

this suggestion. In the first experiment, we showed that
Ni2� interaction with fixed APC was reversible under con-
ditions consistent with a protein/Ni2� complex. Fixed
H0301 cells were preincubated with Ni2�, extensively
washed and then exposed to various pHs in an attempt to
remove any bound Ni2�. The treated cells were tested for
stimulation of ANi-2.3 cells with or without adding back
Ni2� to the IL-2 production culture. The results are shown
in Fig. 2. Ni2� pulsed, fixed H0301 cells exposed to neutral
pH presented Ni2� to ANi-2.3 cells equally well, whether
or not additional Ni2� was added to the culture, showing
that the preincubation with Ni2� stably saturated the pre-
senting ability of the fixed cells. As the pH of the treatment
was lowered below pH 5.5, there was a precipitous drop of
presenting ability that could be restored by adding Ni2�

back to the culture medium. Treatment below pH3.5 re-
sulted in irreversible loss of Ni2� presenting ability.

These results suggest that Ni2� is reversibly bound to
the fixed APC surface via a pH sensitive (pH 3.5 to 5.0)
interaction consistent with coordination by amino acid
side chains from histidine (pK �6) and/or aspartic/
glutamic acids (pK �3.5). These amino acids and cysteine
are those most commonly found coordinating transition
metal ions in proteins. The irreversible loss of Ni2� pre-
senting ability at pH 3 and below suggested loss of DR52c
integrity, perhaps by loss of peptide from its binding
groove, a possibility we explored further as described be-
low in the following section.

We then tested directly whether or not the MHC/pep-
tide complex for Ni2� presentation preexisted on the sur-
face of H0301. In tissue culture wells, we immobilized
DR52c that had been immunoaffinity purified from lysates
of H0301. This immobilized MHCII was able to present
Ni2� to ANi-2.3 (Fig. 3). This result indicated that Ni2�,
DR52c, and a bound peptide were sufficient for engaging
the ��TCR of ANi-2.3.

Figure 1. Identification of DR52c as the Ni2� pre-
senting element for ANi-2.3. (A) Fluorescent staining
with mAb’s was used to assess the surface expression of
DR13 and DR52c on the surface of HO301 cells.
Three mAbs were used: L243, specific for the common
DR� chain; L227, specific for all DRB1 � chains (in
this case DRB1*1302); and FK7.3, specific for DR52c
� chain. HO301 cells were incubated with biotinylated
versions of the antibodies, which were then detected
with phycoerythrin streptavidin (unfilled histograms).
The negative controls (filled histograms) were HO301
cells incubated with only phycoerythrin streptavidin.
(B) The same set of anti-DR mAb’s was used in an
attempt to inhibit IL-2 production by either ANi-2.3
stimulated by Ni2� or AL-8.1 stimulated by pTT pre-
sented by HO301. The antibodies (10 	g/ml) were
added at the initiation of the IL-2 production cultures.
(C) The DRB1*0101 homozygous EBV transformed
B cell line, LG2, was tested before and after transduc-
tion with the gene for DR52c � chain for its ability to
present Ni2� to ANi-2.3.
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Ni2� Presentation to ANi-2.3 Requires a Specific B Cell–
derived Peptide. While our results thus far established that
a preformed DR52c/peptide complex was required for
Ni2� presentation to ANi-2.3, they did not tell us the func-
tion of the peptide in the recognition. It was possible that
this peptide functioned only to stabilize the DR52c mole-
cule and that its specific sequence was not important for
Ni2� presentation. Several experiments have led us to conclude
that this is not the case and that a particular bound peptide
is required for DR52c presentation of Ni2� to ANi-2.3.

First, in transduction experiments, we expressed the
DR52c molecule on the surface of a number of different
mouse and human cell types, by cotransducing the DR52c
and the DR� gene. The transductants were compared for
their ability to present Ni2� to ANi-2.3. The results are
shown in Fig. 4. As was the case with the human EBV B
cell line, LG2, good Ni2� presentation was seen with the
transduced mouse IAd

�
–/IEd

�
– BALB/c B lymphoma vari-

ant cell line, M12.C3 (16). However, three transduced cell
types failed to present Ni2�: P815, a MHCII�/H2-DM�

mouse mastocytoma cell line; T2, a human mutant B/T
cell hybrid line that lacks the genes for MHCII and HLA-
DM; and DAP, a mouse fibroblast line. While these latter
three transductants expressed less surface DR52c than did
the M12.C3 transductant, the results suggest that the cor-
rect Ni2� presenting DR52c/peptide complex is generated
only in a professional, functional antigen-presenting cell
and may only occur in B cells. Two possibilities are that
this peptide is derived from a B cell–specific protein or is
generated from a ubiquitous protein but for loading into
DR52c requires a fully functioning CII vesicle compart-
ment that is lacking in P815, T2, and DAP.

To test this idea of a specific peptide further, we ex-
tracted and purified bulk peptides from DR52c immu-
nopurified from H0301 lysates. We preincubated these
peptides with two types of APCs that expressed DR52c,
but failed to present Ni2� to ANi-2.3: DR52c transduced
DAP fibroblasts and fixed, pH 3 treated H0301 cells. The
peptide preincubated cells were then tested for Ni2� pre-
sentation to ANi-2.3 (Fig. 5). As above, neither the trans-

duced DAP cells nor the fixed and acid stripped H0301
cells could present Ni2� to ANi-2.3. However, after prein-
cubation with H0301-derived DR52c bound peptides,
both APCs presented Ni2�. Several peptides dominantly
bound to DR52c on an EBV transformed cell line have
been identified (13). To see if any peptide strongly bound
to DR52c would restore Ni2� presentation we tested three
of these peptides, pTu, pDRA, and p�, for their ability to
confer Ni2� presenting activity to these APC. A high con-
centration of any of these peptides was not able to restore
Ni2� presentation when added to the DR52c bearing cells.
We concluded from these experiments that ANi-2.3 re-
quires Ni2�, DR52c, and a particular peptide that is gener-
ated in human and mouse B cells (and perhaps other pro-
fessional APCs), but not in other cell types.

Figure 2. pH-dependent, reversible binding of Ni2� to fixed HO301
cells. HO301 cells were fixed with paraformaldehyde and then incubated
with 250 	M Ni2� overnight at 37�C. The cells were washed to remove
unbound Ni2� and then incubated at various pHs for 40 min at 37�C.
The cells were then centrifuged and washed three times with BSS. The
treated cells were used as antigen presenting cells for ANi-2.3, alone
(squares), plus 100 	M Ni2� (circles), or plus 50 ng/ml SEB (triangles).

Figure 3. Natural DR52c purified from HO301 cells can present Ni2�.
Various amounts of papain treated DR52c, immunopurified from
HO301 cells were immobilized by absorption to plastic tissue culture
wells. The immobilized MHCII was then used to present either Ni2�

(100 	M, left panel) or SEB (50 ng/ml, right panel) to ANi-2.3. As a
control, HO301 cells (X) were used for antigen presentation.

Figure 4. Ni2� presentation requires DR52c expression in a professional
APC. A number of human and murine cell lines lacking DR expression
were transduced with the genes for the common DR � chain and the
DR52c � chain. Surface expression of DR52c on the transductants was
monitored by staining with FK-7.3 (mean channel fluorescence shown in
parentheses). Cells were used before (white bar) and after (black bar)
transduction to present Ni2� (100 	M) to ANi-2.3. Untransduced
HO301 cells were used as a control APC.
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Possible Role of DR52c �81His in Ni�� Presentation.
Our results suggested that surface amino acids of the
DR52c and/or its bound peptide coordinate Ni2� in a
way that presents the cation for recognition by the
��TCR. We had no information about sequence of the
functional peptide, but we examined the predicted surface
amino acids of the MHC � or � chains for possible candi-
dates for Ni2� coordination. As our experiments suggested
the involvement of histidine, we looked for a predicted
pair of histidines, such as is often found in transition metal
ion binding sites. In fact, only one MHC histidine (�81) is
predicted to lie on the surface of DR52c within what has
been the ��TCR interaction footprint on MHC seen in
structures of ��TCR/MHC complexes (for reviews, see
references 28 and 29). This histidine lies on the top of the
� chain � helix near the NH2-terminal end of the bound
peptide. It is conserved in nearly all MHCII alleles and
isotypes of all species. In all crystal structures of MHCII
thus far, the side chain of this histidine points toward the
peptide making a important H-bond with the peptide
backbone. This histidine has in fact been shown be capable
of coordinating Zn2� as part of the interaction site be-
tween MHCII and Zn2� containing bacterial superanti-
gens (30, 31).

Therefore, we tested the importance of this histidine in
Ni2� presentation to ANi-2.3 by mutating it in the DRB3-
*0301 � chain to glutamine. The geometry of the gluta-
mine side chain should allow it to H-bond to the peptide
backbone similarly to histidine, but glutamine would not
normally be predicted to coordinate Ni2�. The mutated �
chain gene was transduced into LG2. The mutated � chain
was well expressed on the surface of the transduced LG2
cells, but had lost its ability to present Ni2� to ANi-2.3
(Fig. 6). This result is consistent with a role for � histidine

81 in coordinating Ni2�, but, of course, does not eliminate
the alternate interpretation that this amino acid is a contact
residue for ��TCR/MHC, rather than Ni2�/MHC, inter-
action.

Discussion
A number of laboratories have isolated Ni2� reactive T

cell clones from patients with Ni2� hypersensitivity (10, 32,
33). The properties of these clones have varied dramati-
cally. There has been no particular MHCII allele or isotype
associated with Ni2� sensitivity. Some clones, such as the
ANi-2.3 clone studied here are self-MHC–restricted in
their specificity requiring one of the patient’s allelic forms
of an MHC molecule as the Ni2� presenting element. Oth-
ers have proven to be much more promiscuous, in that
they can respond to Ni2� presented by foreign allelic forms
of the MHC molecule. These results contrast to those seen
in berylliosis in which there is a very high correlation be-
tween Be sensitivity and the presence MHCII DP2 allele
(34). Furthermore, in vitro, T cells from berylliosis patients
require DP2 bearing antigen presenting cells to respond to
Be (35).

The specific role of the MHC bound peptide in Ni2�

presentation has not been extensively examined. The abil-
ity of Ni2� to bind to an MHC bound peptide was dem-
onstrated in one series of experiments, by showing that
peptide dependent binding of Ni2� to an MHC/peptide
complex could interfere with conventional T cell recog-
nition of the complex (36). However, there is very little
direct data on the role of the MHC bound peptide in
Ni2� presentation.

Our experiments with ANi-2.3 suggest an essential role
for a particular MHC bound peptide in Ni2� presentation
whose function is more than simply stabilizing the MHCII
molecule. Among the cells we examined, only B cells with
an intact antigen processing pathway were able to generate
this peptide. However, we did not examine other profes-

Figure 5. Peptides isolated from HO301 produced DR52c can transfer
Ni2� presenting ability to other DR52c bearing cells. Peptides were acid
stripped and purified from DR52c immunopurified from HO301 cells.
An aliquot of the peptides (3 � 108 cell equivalents) were added to either
DR52c expressing DAP cells or pH3-treated fixed HO301 cells. The
cells were used either before (white bar) or after (black bar) peptide expo-
sure to present Ni2� (100	M) to ANi-2.3 cells. As negative controls
(hatched bar), peptides (pTu, pDRA, p�) known to bind well to DR52c
were used (100 	g/ml). Presentation by untreated HO301 cells served as
the positive control.

Figure 6. DR52c �His81 is important for ANi-2.3 recognition of
DR52c presented Ni2�. LG2 cells were transduced with the gene for the
DR52c � chain in which the codon for �His81 was changed to that for
Gln. Presentation of Ni2� to ANi-2.3 cells by the LG2 cells transduced
with the mutant � chain (hatched bar) was compared with that seen with
untransduced LG2 cells (white bar) or LG2 cells transduced with the wild
type � chain (black bar).



T
h
e 

Jo
u
rn

al
 o

f 
E
xp

er
im

en
ta

l 
M

ed
ic

in
e

572 The Ligand for a Ni�� Reactive T Cell Clone

sional antigen presenting cells such as macrophages and
dendritic cells. Furthermore, other peptides with a wider
cellular distribution and less stringent processing require-
ments may be adequate for Ni2� presentation to other T
cell clones (37). Since in our studies we used a costimula-
tion independent T cell transfectoma to detect Ni2� pre-
sentation, we cannot say whether in vivo a requirement for
costimulation might also limit the type and state of antigen
presenting cells driving the response to Ni2�.

The variety of MHCII alleles capable of Ni2� presenta-
tion and the MHC promiscuity of some Ni2� reactive
clones might be taken as evidence that Ni2� can be pre-
sented to T cells in many different ways. However, our
findings that the ANi-2.3 clone requires a specific peptide
for Ni2� presentation and is dependent on His81 of the
MHC � chain suggest the possibility of a common theme
in Ni2� presentation. As mentioned above, �His81 is con-
served in nearly all MHCII molecules regardless of allele or
isotype. In crystal structures reported thus far this His forms
a hydrogen bond to the peptide backbone. For example,
Fig. 7 A shows this area of the DR1 molecule bound to an
influenza hemagglutinin peptide (38). In this case �His81 is
hydrogen bonded to the backbone carbonyl of a Lys at the
p-1 position of the peptide. It is reasonable to assume that
the �His81 of DR52c is in a similar configuration.

If the loss of Ni2� recognition by ANi-2.3 upon our
mutation of DR52c �His81 to Gln, indicates a role for
�His81 in Ni2� coordination, than we can predict several
additional properties of the Ni2� presenting MHC/pep-
tide complex. First, there must be a new rotamer for the
side chain of �His81. Second, as there are no other suit-
able amino acids on the MHC surface in the vicinity to
provide additional Ni2� coordination, these must be sup-
plied by the peptide. The peptide amino acids in positions
to perform this function are located at p-1 and p2. There-
fore, in the DR1 structure we modeled an Asp and a His
for the influenza peptide amino acids at positions p-1 and
p2 respectively (Fig. 7 B). Allowing only preferred rota-

mers for these two substituted amino acids and for �His81,
we could easily place these side chains in positions nearly
ideal for tetragonal coordination of Ni2�. No accommo-
dations were required of the MHC or peptide backbone
or of the rotamers of any other amino acids. Square planar
or tetragonal coordination involving aspartic acid and his-
tidine is very common in Ni2� ion complexes to proteins
(39–41) and would be consistent with our findings of the
low pH sensitivity of Ni2� binding to fixed antigen pre-
senting cells. While the order of the Asp and His in the
peptide theoretically could be reversed, this alternate con-
figuration did not yield ideal tetragonal geometry with
only preferred rotamers.

The attraction of this model is that it suggests a con-
served peptide dependent mode of Ni2� presentation
among many different MHCII alleles and isotypes. This
hypothesis is also consistent with the finding that T cells re-
active to Ni2� often cross react with other metal ions. For
example, ANi-2.3 also responds to copper and gold cat-
ions. These could be expected to be coordinated similarly
to Ni2�. Furthermore, if sometimes the coordinated Ni2�

dominates other peptide contributions to the interface with
the ��TCR, then one could also explain the promiscuity
of some T cell clones in recognizing Ni2� bound to a vari-
ety of MHC alleles. As long as the bound peptide provided
the appropriate coordination groups, the combination of
the bound Ni2� and other conserved amino acids on the
MHC surface common to many alleles could satisfy the T
cell receptor. These ideas can be tested in structural and
functional studies.

One consequence of placing Ni2� at a particular location
on the MHC/peptide surface is a prediction about the por-
tion of the ��TCR that is likely to be in contact with the
Ni2�. There are now numerous crystal structures of ��T-
CRs bound to MHC/peptide complexes involving both
MHCI and MHCII molecules. In all cases, the receptor has
a somewhat diagonal orientation on the MHC/peptide
surface with the V� portion toward the peptide NH2 ter-

Figure 7. Possible model for
Ni2� coordination by MHCII
�His81 and amino acids at posi-
tions p-1 and p2 of the peptide.
In the left panel a portion of the
structure of the DR1
(DRA*0101, DRB1*0101)
bound to a peptide from influ-
enza hemagglutinin (reference
38) is shown in the vicinity of
�His81. The conserved hydro-
gen bond between �His81 and
the peptide backbone is shown
as a dashed line. In the right
panel, using Swiss PDB Viewer,
peptide amino acids at position

p-1 and p2 were changed to Asp and His, respectively. These amino acids and �His81 were given rotamers that create the correct geometry for three
ligands for potential tetragonal coordination (dashed lines) of a Ni2� ion (sphere).
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minus, the V� region toward the peptide COOH terminus
and the CDR3 regions focused on the center of the pep-
tide. Within these constraints there is quite a bit of rota-
tional variation among different ��TCRs. Therefore,
while it is not possible to predict precisely the orientation
of the ANi-2.3 ��TCR on a Ni2�/peptide/DR52c com-
plex, the CDR1 or CDR2 of V� is most likely to be ori-
ented over a Ni2� coordinated by �His81 and the p-1 and
p2 amino acids of the peptide. The V� element used by
ANi-2.3 is AV01s4, whose CDR1 sequence is SYGATPY
and CDR2 sequence is KYFSGDTLV. The most obvious
candidate to provide a fourth group to complete the tetrag-
onal coordination of Ni2� is the Asp in the CDR2 region.
Interestingly, an Asp or Glu is present in the COOH-ter-
minal half of the CDR2 regions of nearly all of the V� ele-
ments of the ��TCRs of Ni2� reactive T cell previously
reported (11, 14, 33). In fact, a T cell with a highly MHC
promiscuous response to Ni2� bears a V� element with a
pair of Asp in this region (33).

Although direct coordination of Ni2� by the side chain
of an ��TCR His or acidic amino acid is the most obvious
choice, there are other possibilities. For example, in the
various solved structures of Ni2� ions bound to proteins,
one of the ligands for the metal can be an oxygen from wa-
ter, the protein backbone or a side chain from Ser or Thr
(39, 41). Furthermore, we cannot rule out the possibility
that the ��TCR recognizes the MHC and peptide amino
acid side chains that have changed their configuration in
order to accommodate the Ni2� rather than the Ni2� itself.
The definitive answer to these questions will require crystal
structures of these complexes. However, in the mean time
the model we propose here offers a good starting point for
designing structure/function studies.
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