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Abstract: Mammalian paraoxonase-1 hydrolyses a very broad spectrum of esters such as certain
drugs and xenobiotics. The aim of this study was to determine whether carbamates influence the
activity of recombinant PON1 (rePON1). Carbamates were selected having a variety of applications:
bambuterol and physostigmine are drugs, carbofuran is used as a pesticide, while Ro 02-0683 is
diagnostic reagent. All the selected carbamates reduced the arylesterase activity of rePON1 towards
the substrate S-phenyl thioacetate (PTA). Inhibition dissociation constants (Ki), evaluated by both
discontinuous and continuous inhibition measurements (progress curves), were similar and in the
mM range. The rePON1 displayed almost the same values of Ki constants for Ro 02-0683 and
physostigmine while, for carbofuran and bambuterol, the values were approximately ten times lower
and two times higher, respectively. The affinity of rePON1 towards the tested carbamates was about
3–40 times lower than that of PTA. Molecular modelling of rePON1-carbamate complexes suggested
non-covalent interactions with residues of the rePON1 active site that could lead to competitive
inhibition of its arylesterase activity. In conclusion, carbamates can reduce the level of PON1 activity,
which should be kept in mind, especially in medical conditions characterized by reduced PON1 levels.

Keywords: paraoxonase-1; arylesterase activity; phenyl acetate; S-phenyl thioacetate; p-nitrophenyl
acetate; carbamates; reversible inhibition

1. Introduction

Paraoxonase-1 (PON1) is one of the most common esterases in human serum where it is associated
with the high-density lipoprotein (HDL) complex [1]. PON1 prevents oxidation of low-density
lipoprotein (LDL) and is associated with risks of developing atherosclerosis, cardiovascular disease,
and myocardial infarction [2,3]. The deficiency or inhibition of PON1 activity leads to the development
of a wide variety of diseases such as diabetes [4], kidney [5] and liver diseases [6], neurological
diseases [7], thyroid disease [8], and cancer [9]. In mammals, PON1 has arylesterase, lactonase, and
phosphotriesterase activities [10–12], which make it capable of hydrolysing a very wide spectrum of
esters, lactones, and certain organophosphorus compounds (OPs), including paraoxon, an oxidized
form of the pesticide parathion against which PON has been named [13]. The recently published
structure of the G2E6 variant of recombinant PON1 [14] showed that all three hydrolytic activities of
the enzymes take place in the same active site, but according to different models and with different
conformations of the active site of the enzyme [15–17]. Structural and site-directed mutagenesis studies
have provided us with much information on the role of individual amino acid residues in the active site
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of recombinant PON1 [14–16], but the exact description of all of the interactions that promote catalysis
with this enzyme still remains elusive. However, its lactonase and arylesterase activities are proposed
to be hydroxide-ion generated via general base catalysis by H115–H134 dyad [14,15], and quantitative
structure-activity relationships [11] and recent exploration of PON1 catalysis through solvent kinetic
isotope effects and phosphonate-based isosteric analogue of tetrahedral reaction intermediate [18]
have suggested that this mechanism of the PON1-catalysed reaction pathway might be correct.

Although many insecticides are esters of carbamic acid, and technical monographs haves suggested
that the hydrolysis of ester bonds of carbamates plays an important role in the detoxification of these
compounds, detailed studies about enzymes hydrolysing carbamates in vertebrates are not available.
Certain carbamate hydrolysing activities are associated to serum albumin and by carboxylesterase
depending on the structure of carbamate and on the species origin of the carboxylesterase [19]. In the
literature, there are very few data related to the role of PON1 in the metabolism of carbamates. It was
demonstrated that carbamate pesticides oxamyl and aldicarb are partially metabolised by PON1
in human liver [20]. Since PON1 is involved in the metabolic or detoxification pathway of certain
OP compounds [12,21], and, due to its ability to hydrolyse esters, PON1 could also be expected to
exhibit a certain affinity to carbamates. Some studies have described the decrease of PON1 activity
in the presence of certain carbamates [20], while in others, no effect of carbamates on PON1 activity
was found [22–25]. The main mode of action of OPs and carbamates in vertebrates is the inhibition
of acetylcholinesterase (AChE) and the related enzyme butyrylcholinesterase (BChE) which lead to
overstimulation of the cholinergic nervous system [26,27]. Research aimed at determining possible
effects of carbamates on PON1 activity would contribute to the characterization of the role of individual
residues in the mechanism of hydrolysis of various substrates by PON1, and to its possible role in
the biotransformation of carbamic acid derivatives. More recently, the carbamate group has become
an important part of the structure of many FDA-approved drugs, having antitumor, antibacterial,
antifungal, antimalarial, antiviral, anti-inflammatory, anticonvulsant, or anti-helminthic effects on a
wide range of targets [28,29]. Additionally, the need for research aimed at clarifying the metabolic
path of carbamates with a diverse structure is underlined by the development of carbamate-based
prodrugs [30] whose activation would depend on the esterases of the human serum and by the fact
that PON1 is considered as a scavenger enzyme in nervous system poisoning by OP compounds.

The aim of the present study was thus to determine whether selected carbamates inhibit the
activity of the G2E6 variant of recombinant PON1. We have therefore determined the affinity of
PON1 towards four carbamates used in different applications (Figure 1), i.e., bambuterol, which acts
as a bronchodilator, physiostigmine as a drug for treating glaucoma and delayed gastric emptying,
carbofuran, that is in use as a pesticide, and Ro 02-0683, used as a diagnostic reagent for phenotyping
human serum butyrylcholinesterase. We have also rationalized the in vitro affinity for enzyme-inhibitor
complex formation by molecular modelling.
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2. Results

2.1. rePON1 Arylesterase Activity

Hydrolysis of phenyl acetate (PA), p-nitrophenyl acetate (PNPA) and of S-phenyl thioacetate
(PTA) was measured spectrophotometricaly at 270, 405, and 412 nm, respectively. The initial velocity
of product formation was expressed in ∆A/min (change of absorbance per minute) and determined at
six substrate concentrations over the range 100 µM to 5 mM for PA and PTA, and to 3 mM for PNPA.

The rePON1-catalyzed rates of substrate hydrolysis as a function of concentration follow the
Michaelis–Menten kinetics, as illustrated in Figure 2, and the corresponding catalytic constants Km

and Vmax were calculated from the theoretical curves that fit the Michaelis–Menten model equation
(Table 1). The extinction coefficients of the phenol, TNB¯ anion, and p-nitrophenolate anion used for
the calculation were 1,310 [31], 14,150 [32] and 12,750 M−1

·cm−1 [33], respectively. Since the enzyme
dilution ratios were not equal for all substrates, the limiting specific activity (SAmax) of rePON1 per
mL of its stock solution under substrate saturation conditions was also determined for comparison
(Table 1).
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Figure 2. The rates of hydrolysis of phenyl acetate (PA), p-nitrophenyl acetate (PNPA) and of S-phenyl
thioacetate (PTA) by rePON1. Points represent average values of three independent experiments
corrected for the spontaneous hydrolysis of the corresponding substrate. Solid lines are curves
calculated by the Michaelis–Menten equation and the parameters given in Table 1.

Table 1. Catalytic constants Km and Vmax. The rates of rePON1 hydrolysis of phenyl acetate (PA),
p-nitrophenyl acetate (PNPA) and S-phenyl thioacetate (PTA) were determined from at least three
experiments, and in each case all of the activities were measured in duplicates.

Substrate Km (mM) ∆Amax/min Vmax (µM·min−1) * SAmax (µmol·min−1·mL−1)

PA 0.92 ± 0.06 0.255 ± 0.006 194 ± 5 582 ± 15
PNPA 0.95 ± 0.10 0.079 ± 0.003 6.2 ± 0.2 18.6 ± 0.6
PTA 0.29 ± 0.04 0.116 ± 0.004 8.2 ± 0.3 123 ± 5

*For recalculating rates from ∆A/min data the following relationship was used: ∆A
min = ε·l· ∆c

min = ε·l·v, where
ε, l, and v stand for the extinction coefficient, cuvette length and rate of product formation in the reaction
mixture, respectively.

The Michaelis constants showed that the G2E6 variant of rePON1 has the same affinity (1/Km) for
PA as for PNPA, while its affinity towards PTA is three times higher. The specific activities show that
rePON1 hydrolyses PA about five times faster than does PTA and about 30 times faster than PNPA.

The pseudo-first order rate constants for spontaneous hydrolysis of substrates were also evaluated
according to Equation (1), and the results are given in Table 2.
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Table 2. The pseudo first-order rate constants of spontaneous hydrolysis of PA, PNPA and PTA
determined in 50 mM Tris/HCl buffer, pH = 8.0, containing 1.0 mM CaCl2 at 25 ◦C.

PA PNPA PTA

ksp (10−3 min−1) 0.61 ± 0.07 12.4 ± 0.7 3.5 ± 0.3

The highest pseudo-first order rate constant was that for the hydrolysis of PNPA, while the
hydrolysis of PA was almost negligible and occurred significantly only at concentrations higher than
2 mM.

2.2. The Effect of Carbamates on rePON1 Activity

2.2.1. Dissociation Constants Determined from the Initial Rates

The effect of carbamate esters on rePON1 arylesterase activity was determined by measuring
its activity in the absence and the presence of carbamates. As a measure of the inhibition potency of
the tested carbamates, the dissociation constants (± standard error of mean) of the enzyme-inhibitor
complex (Ki) were determined. Four substrate concentrations in the range of 100 to 500 µM were
used; the highest being about 70% of the maximal enzyme activity. For each substrate concentration,
three concentrations of carbamate that inhibited PON1 in the range of 20%–50% were chosen. Higher
concentrations of carbamates could not be used due to the low solubility of carbamates. Linear
regression analysis using the Hunter–Downs equation, i.e., Equation (2), yields the kinetic constants Ki

and Ks (Table 3). The y-intercepts in Figure 3 indicate the enzyme-inhibitor dissociation constants (Ki) for
various carbamates, while the slopes determine the ratio Ki/Ks, and, consequently, the enzyme-substrate
dissociation constant Ks.

The linear dependence of Ki,app on the substrate concentration (Figure 3) for all the carbamates
tested, and the values of the determined Ki constants (Table 3) for enzyme-carbamate dissociation close
to the Ks value of PTA, show that the inhibitors compete with PTA for binding at the catalytic site of
the enzyme.
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Table 3. Reversible inhibition of rePON1 by the carbamates tested in the presence of PTA at 25 ◦C.
Kinetic parameters Ki and Ks (± standard error of mean) were evaluated with Hunter–Downs Equation
(2) from at least three experiments.

Carbamate Ki (mM) Ks (mM)

Ro 02-0683 3.9 ± 0.6 1.2 ± 0.7
Bambuterol 3.1 ± 0.4 0.6 ± 0.2

Physostigmine 3.0 ± 0.6 0.4 ± 0.1
Carbofuran 0.65 ± 0.05 1.3 ± 0.4

2.2.2. Stability of the G2E6 Variant of rePON1

The stability of the activity of the G2E6 variant of rePON1 diluted 3000, 6000, 12,000, and 24,000
times in Tris/HCl buffer supplemented with 1.0 mM CaCl2, pH = 8.0 with 1.0 mM PA as substrate at
25 ◦C is shown in Figure 4.
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2.2.3. Dissociation Constants Determined from the Progress Curves
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The curve for PTA hydrolysis in the absence of carbamates reached a plateau that corresponds to
50 µM PTA. This plateau was reached on raising the concentrations of the carbamates. Rate constants
were calculated from progress curves in the presence (k) and in the absence of carbamates (k0). As a
result, the dissociation constants of the enzyme-inhibitor complex (Ki) (Table 4) were evaluated from
the ratio, k/k0, of rate constants versus inhibitor-concentration (Figure 6) as described by Equation (5).Molecules 2019, 24, x FOR PEER REVIEW 7 of 16 
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Table 4. Reversible inhibition of rePON1 hydrolysis of PTA by selected carbamates (Ki ± standard error
of mean) evaluated using the progress curves from at least three experiments.

Carbamate Ki (mM)

Ro 02-0683 11.3 ± 0.4
Bambuterol 6.8 ± 0.4

Physostigmine 5.6 ± 0.2
Carbofuran 0.77 ± 0.07

2.3. Molecular Modelling of the PON1-carbamate Complex

Molecular docking was conducted using the structure of PON1 (PDB ID 1V04) [14] to reveal the
key interactions of carbamates that appear to be important for the inhibition of rePON1 arylesterase
activity. Phosphate ions and water molecules were removed from the crystal structure before modelling.
All the interactions in the PON1 active site are listed in Table 5.

In general, all modelled PON1-carbamate complexes were positioned close to the catalytic Ca2+,
forming hydrogen bonds and/or π–π interactions with the residues of the catalytic dyad (His 115 and
His134) or with residues Glu53 and Asp269 that are involved in the ligation of catalytic Ca2+ (Figure 7).
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Figure 7. Simulation of the dissociation complex of PON1 and Ro 02-0683 (A), bambuterol (B),
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Table 5. PON1-carbamate complex binding interactions with the active site gorge residues evaluated
by molecular docking. The crystal structure of PON1 used was PDB ID 1V04.

Carbamate
Type of Interaction

H-bond π Interactions * Aliphatic Non-polar Interactions

Ro 02-0683 Glu53, Asp269 His134, Lys192, Phe222 Val346
Bambuterol Lys192, Asp269, Phe292 Tyr71, His115, Phe222, Phe292, Phe347 Leu240

Physostigmine Asp183, His285 His115, His134 Leu69
Carbofuran Asp183 Phe222, His285, Phe292, Phe347 Leu240, Ile291, Val346

* π—Interactions refers to π–π, CH-π and cation-π interactions.

A comparison of the size of the carbamates and their positioning in the active site revealed that
the more voluminous carbamates, bambuterol (360 Å3) and Ro 02-0683 (318 Å3), form hydrogen bonds
with Asp269 that are involved in the ligation of catalytic Ca2+. This may explain the competitive
inhibitory effects of bambuterol and Ro 02-0683 on rePON1 activity. For the smaller carbamates,
physostigmine (267 Å3) and carbofuran (211 Å3), the hydrogen bond formed with Asp183 appears to
be crucial for the observed competitive inhibitory effect. Further, the rigid structure of carbofuran may
contribute to the higher PON1 affinity. In other words, the more flexible ligand, bambuterol, needs to
adopt the binding conformation that would be complementary to the conformation of the mobile loop
positioned above the catalytic site.
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3. Discussion

PON1 hydrolyses a wide range of substrates, such as esters, thioesters, phosphotriesters, lactones
and thiolactones, as well as 5-thioalkyl butyrolactones [34]. The main physiological role of PON1 appears
to be the hydrolysis of oxidized lipids in macrophages that yields lyso-glycerophosphatidyl lipids in
cell membranes [35] and provides protection against protein N-homocysteinylation [36]. The highest
activities observed in vitro are against the synthetic substrates PA for esterase and dihydrocumarine for
lactonase activity [10,11] that have no physiological relevance. As PON1 shows several promiscuous
reaction activities, it might be expected that it could also catalyse the hydrolysis of carbamate bonds.
Carbamates are semi-substrates for cholinesterases, although they act as inhibitors because of their
relatively high affinity binding in the reaction site, resulting in active serine carbamylation followed by
slow reactivation with a low decarbamylation rate [37]. The ability of rePON1 to hydrolyse carbamates
was studied in this work by using the competing kinetics method based on analysis of the kinetics of
competition of pairs of two substrates in such a way that the hydrolysis of only one substrate was
measured at a time [38,39]. Although a carbamate, as an ‘invisible’ semi-substrate, could be hydrolysed,
it behaves as a competing ligand towards ‘visible’ substrates such as PA, and its effect on the enzyme
activity is thus similar to the effect produced by a reversible competitive inhibitor. In that case the
ratio of the specificity rate constants (Vmax/Km) for ‘invisible’ and ‘visible’ substrates, i.e., competition
matrix R, is significantly lower than 1 (R << 1) [38,39].

PA is the most commonly used substrate for measuring the arylesterase activity of PON1. However,
it is based on measuring the increase of phenol concentration at λ = 270 nm, the part of the spectrum in
which compounds with an aromatic ring also exhibit maximum absorption. This became a problem
in the case of the carbamates used in this study (Figure 1), since the increased phenol concentration
during the hydrolytic process interferes with the absorbance of their aromatic rings. For this reason,
the other two aryl esters, PNPA and PTA, that are also PON1 substrates for which PON1 activity
could be measured spectrophotometrically in the visible part of the spectrum, were tested as possible
replacements for PA [11,40–43]. Evaluated kinetic parameters for those substrates are given in Tables 1
and 2. The ratios of rePON1 catalytic proficiencies (SAmax/Km)/ksp for PA: PTA: PNPA are approximately
660: 80: 1, despite the fact that 4-nitro phenoxide (pKa (4-nitro phenol) = 7.2) and thiophenoxide
(pKa (thiophenol) = 6.6) anions are better leaving groups during the hydrolysis than the phenoxide
(pKa (phenol) = 10) anion. We thus estimate that the hydrolysis of PA is an energetically favoured
process, by five-fold (=R·T·ln(660/80)) and by 16-fold (=R·T·ln(660/1)) kJ/mol relative to PTA and PNPA,
respectively. This finding is in accordance with previous published results [15,18,38] and with the
reaction mechanism model that proposes that the catalytic power of rePON1 can be mostly rationalised
by concerted two-proton exchange referred to the histidine shuttle dyad. Considering a 20-fold higher
catalytic efficiency (SAmax/Km) and an 80-fold higher catalytic efficiency (SAmax/Km)/ksp of rePON1
towards PTA compared to that for PNPA, we have selected PTA as a replacement for PA in the following
inhibition study on PON1 and carbamates.

Inhibition constants, Ki, were first estimated from the initial rates of non-inhibited and inhibited
measurements for four substrate concentrations in the range of 100–500 µM. The highest substrate
concentration was about 70% of the maximum enzyme activity. For each substrate concentration,
three concentrations of carbamate that inhibited PON1 in the range of 20%–50% were chosen. Higher
concentrations of carbamate needed to achieve about 80% inhibition of PON1 activity could not be
used because of the limited solubility of carbamates in methanol or in water. Additionally, the use of
higher carbamate concentrations would increase the methanol concentration in the enzyme activity
assay. The enzyme-inhibitor complex dissociation constants were determined from the Hunter–Downs
plot (Figure 3, Table 3). rePON1 displayed similar affinities towards Ro 02-0683, bambuterol and
physostigmine, while that toward carbofuran was about four times higher. However, the affinities of
rePON1 towards the tested carbamates were 2 to 13 times lower than that toward the Km value of 0.29
mM for PTA. The appropriate affinities, Ks, of rePON1 toward PTA varied significantly in the presence
of different carbamates.
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We therefore decided to evaluate the inhibition constants from the progress curves because this
methodology has been to be a powerful tool for the determination of relevant kinetic constants for
other esterases [44]. Long-time experiments showed that diluted rePON1 would be stable for up to
120 min under our experimental conditions (Figure 4). These results are in accordance with those in a
previous study, wherein it was shown that an EDTA sensitive esterase from human sera diluted 2160
times in Tris/HCl containing 1.0 mM CaCl2, pH = 8.4 was stable at room temperature for up to 30
min [45].

The progress curves for the hydrolysis of PTA with a starting concentration of 0.05 mM significantly
below the Km (0.29 mM) showed that, with increased concentrations of the carbamates, the plateau of
the reaction was reached later, as illustrated in Figure 5. Such a pattern of enzyme activity changes
in the presence of carbamates indicates that they bind to PON1 by forming noncovalent interactions
within the active site, thereby competing with binding of the substrate, PTA. This result is consistent
with those in a previous study where an approximately 10% decrease in rabbit serum activity toward
PA was observed and remained at the same level after 30 min incubation with physostigmine [46].
In other words, since the specificity rate constants (Vmax/Km) for carbamates are well below the value
of the same parameter for PTA, carbamates act either as reversible inhibitors or as extremely poor
‘invisible’ competing substrates [38,39]. We propose a simple reaction scheme (Scheme 1) that assumes
binding of carbamates to the active site PON1 that enables simultaneous fitting of both non-inhibited
and inhibited experimental curves. The subsequent fitting curves followed closely the experimental
points, indicating that the proposed mechanism describes well the mode of binding of carbamate to the
active site of PON1. Although all the carbamates have Ki constants in the millimolar range (see Table 4),
and although those obtained from progress curves for all carbamates except carbofuran are higher than
those evaluated from initial rate calculations (Table 3), the time-course kinetic measurements provide
additional support for our results obtained from initial rate experiments; i.e., that carbamates are poor
rePON1 inhibitors. In addition, the best known reversible PON1 inhibitor, 2-hydroxyquinoline, has Ki

constants for the most familiar substrates in micromolar range [11]. It seems that the size and rigidity
of the compounds is crucial for adopting the optimal position into the PON1 active site for achieving
interactions with amino acid residues that stabilize the compound-PON1 complex [16].

To the best of our knowledge, it is shown here for the first time that carbamate affects PON1
activity. Although we have proposed a reversible competitive mode of their action, it cannot be
disproved that weak hydrolysis of carbamate esters also proceed in the rePON1 active site, since the
reversible competitive inhibition behaviour of carbamates can be the only apparent effect of the very
low competition matrix R [38]. However, it appears that the aryl carbamate ester hydrolysis reaction
probably occurs predominantly via an elimination-addition (E1cB) mechanism for N-H carbamates
(physostigmine and carbofuran, Figure 1), while the disfavoured addition-elimination (BAc2) pathway,
involving a tetrahedral intermediate could only operate effectively for carbamate esters lacking an
N-H group (bambuterol and Ro 02-0683, Figure 1) [47]. It is estimated that, for hydrolysis of the aryl
carbamates, there is a free energy difference between spontaneous E1cB and BAc2 transition states
(Figure 8) of more than 50 kJ/mol [48].
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Figure 8. Proposed transition states on two possible reaction pathways for hydrolysis of an aryl
carbamate ester: (a) via an energetically less favoured addition-elimination (BAc2) mechanism, or (b)
via the energetically more favoured elimination-addition (E1cB) mechanism. The latter mechanism is
not possible for carbamate esters lacking an N-H group.

As there are no significant differences in the inhibition constants Ki for the two types of carbamates,
we may conclude that the rate-limiting step in the enzyme-catalysed reaction in the PON1 active
site is coordinated with the acid-base activation of a water molecule that attacks the carbonyl carbon
atom, supporting the disfavoured addition-elimination (BAc2) pathway that involves a tetrahedral
intermediate. Moreover, the binding energy of up to 50 kJ/mol may not be available in the rePON1
active site, since all the carbamates tested bind with low affinities. It thus appears that this enzyme is
not able to change the reaction pathway to one through another transition state. However, additional
studies will have to be carried out to further identify the mechanism of the rePON1-catalysed reaction
pathway for the hydrolysis of carbamate esters.

4. Materials and Methods

4.1. Chemicals

The substrates S-phenyl thioacetate (PTA), phenyl acetate (PA) and p-nitrophenyl acetate (PNPA)
were purchased from Alfa Aesar (Ward Hill, MO, USA), Sigma Aldridge (St. Louis, MO, USA)
and Polyscience (Warrington, PA, USA), respectively. The carbamates Ro 02-0683 and bambuterol
were purchased from PolyScience Inc. (Warrington, PA, USA) and Astra Draco (Lund, Sweden),
while physiostigmine, carbofuran, and 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) were purchased
from Sigma Aldridge (St. Louis, MO, USA). Nickel-nitrylotriacetic acid (Ni-NTA) was from Qiagen
(Hilden, Germany); all other chemicals for the expression and purification of rePON1 were from Sigma
Aldridge (St. Louis, MO, USA). All chemicals for the preparation of Tris/HCl buffer and solvents were
purchased from commercial sources. Carbamates Ro 02-0683 and bambuterol were dissolved in water,
physostigmine and carbofuran in methanol.

4.2. Recombinant PON1 Expression and Purification

The G2E6 variant of recombinant PON1 (rePON1) was used as a source of enzyme. RePON1
protein was expressed and purified in the Escherichia coli bacterial system according to the procedures
reported previously [49] with minor modifications [18]. A single colony obtained after transformation
with plasmid pET32b(+)-rePON1 into Origami B(DE3)pLysS cells was used to inoculate 10 mL of LB
medium with 100 µg/mL ampicillin, 25 µg/mL chloramphenicol and 1 mM CaCl2 and the culture was
grown at 37 ◦C for 17 h. Then, 500 mL of LB medium containing 100 µg/mL ampicillin, 25 µg/mL
chloramphenicol and 1 mM CaCl2 was inoculated with 5 mL of overnight culture and grown at
37 ◦C to an OD600 of 0.7. Expression of the rePON1 variant was induced by adding 1 mM isopropyl
β-d-1-thiogalactopyranoside (IPTG), and the culture was grown for 17 h at 25 ◦C. The cells were
harvested by centrifugation at 6000× g for 15 min and the pellet stored overnight at −20 ◦C. The cells
were resuspended in 30 mL of lysis buffer (50 mM Tris, pH = 8.0, 1 mM CaCl2 and 0.1 mM dithiothreitol
(DTT) supplemented with 1 µM pepstatin A, 1 mM phenylmethylsulfonyl fluoride (PMSF) and 0.03%
n-dodecyl-β-d-maltopyranoside (C12-maltoside), then lysed by sonification. The lysate was centrifuged
at 10,000× g for 10 min and the supernatant stirred for 1 h at 4 ◦C. After centrifugation at 20,000× g for 20
min, the soluble fraction was treated with ammonium sulphate (55%, w/v, at 0 ◦C). The precipitate was
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centrifuged at 10,000× g for 15 min, resuspended and dialyzed twice against lysis buffer supplemented
with 0.01% C12-maltoside. After dialysis, the protein was added to Ni-NTA resin, and the mixture
shaken gently overnight at 4 ◦C. The resin was first washed with lysis buffer with 0.03% C12-maltoside,
then with 10 and 20 mM imidazole in lysis buffer with 0.03% C12-maltoside. It was finally eluted
with 150 mM imidazole in lysis buffer with 0.03% C12-maltoside. Fractions with the highest rePON
activity were pooled, dialyzed and purified further by ion-exchange chromatography. The protein
was applied on a 5 mL HighTrap Q HP column (GE Healthcare, City, Marlborough, MA, USA) with a
linear gradient from 26% to 33% of buffer B (20 mM Tris, pH = 8.0, 1 mM CaCl2, 0.1 mM DDT, 0.03%
C12-maltoside, 1 M NaCl) in buffer A (buffer B without 1 M NaCl). Fractions with the highest rePON
activity were analysed on an 11% SDS–PAGE gel, pooled, dialyzed against buffer A and concentrated.
Finally, sodium azide (0.02%) was added and the protein stored at −70 ◦C.

The purity of the rePON1 (95%) was finally assessed by SDS-PAGE, and its concentration
determined using the Bradford assay (Bio-Rad, Hercules, CA, USA). A stock solution of 1.9 mg/mL
rePON1 was used for all measurements, except for progress curve measurements where the stock
solution of 0.2 mg/mL rePON1 was used.

4.3. Determination of the Catalytic Constants of rePON1 from Initial Rate Measurements

Hydrolysis of PA, PNPA, and PTA was measured in 50 mM Tris/HCl buffer (pH = 8.0) containing
1 mM CaCl2 at 25 ◦C using a Cary 300 spectrophotometer (Varian, Australia). For PA the increase
of phenol was measured at 270 nm, for PNPA p-nitrophenol was measured at 405 nm and for PTA,
the release of thiophenol was measured in the presence of DTNB, as a thiol reagent, at 412 nm, using
the Ellman method [50]. Stocks of PA, PTA and PNPA were prepared in MeOH; 6.0 mM DTNB was
dissolved in 10 mM phosphate buffer, pH = 7.4. The concentration of phosphate in the final reaction
mixture containing DTNB was 0.5 mM. The final dilutions of rePON1 stock solution were 3000 times
for PA and PNPA activity measurements and 15,000 times for PTA. The percentage of methanol was
kept at 1% in all reaction mixtures.

The rates (v) of spontaneous hydrolysis for all three substrates were also measured, and the
pseudo-first order rate constants (ksp = kH2O·[H2O]) were calculated for each substrate as:

v =
∆[P]
∆t

= ksp·[S] (1)

where ∆[P] is the increase in phenol, p-nitrophenolate and TNB¯ anion concentrations over time ∆t,
and [S] is the initial PA, PNPA or PTA concentration. Consequently, rePON1 activity was corrected for
spontaneous hydrolysis of the substrate.

The catalytic constants Km (the Michaelis constant) and Vmax (the maximal rate) were determined
by applying the Michaelis–Menten equation [51] using the GraphPad Prism 6 software (GraphPad
Software, San Diego, CA, USA).

4.4. Determination of the rePON1-carbamate Complex Dissociation Constants

RePON1 activity was determined from the measurement of initial velocities in the absence (v0)
and in the presence (vi) of various carbamate concentrations [I], using PTA as a substrate at a given
concentration [S]. For each substrate concentration, the apparent dissociation constant (Ki,app) was
calculated by linear regression analysis using the Hunter–Downs equation [52] as:

Ki,app =
vi·[I]

(v0 − vi)
= Ki +

Ki
KS
·[S] (2)

where Ki stands for the enzyme-carbamate dissociation constant and KS for the enzyme-substrate
dissociation constant. Kinetic constants were determined using GraphPad Prism 6 software (GraphPad
Software, San Diego, CA, USA).
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4.5. Stability of the G2E6 Variant of rePON1

Stability was studied in Tris/HCl buffer supplemented with 1.0 mM CaCl2 at pH = 8.0. The enzyme
activity was measured with 1.0 mM PA as substrate at 25 ◦C. The enzyme stock solution was diluted 30,
60, 120 and 240 times and kept on ice for up to 120 min before the activity measurements. At given time
intervals, aliquots (10 µL) were withdrawn, added to buffer containing substrate, and time-dependent
increase in absorbances were measured in cuvettes with a final reaction mixture volume of 1 mL. Final
dilutions of rePON1 were 3000, 6000, 12,000 and 24,000 times.

4.6. Determination of the Inhibition Constants of Carbamates from Progress Curve Measurements

rePON1 activity was determined from progress curves for the measurement of hydrolysis of
50 µM PTA (about 6 times below the value of Km) in the absence and in the presence of various
concentrations (range 0.2–8.0 mM, depending on the compound) of carbamates using the modified
Ellman’s method [50]. The measurements were performed on a Genesys 10S spectrophotometer
(Thermo Fisher Scientific, Pittsburgh, PA, USA). The hydrolysis of PTA was followed from zero to
the plateau for up to 30 min (i.e., until the change in absorbance became zero). The concentration
of DTNB at the beginning of each measurement was 1.0 mM and measurements were performed at
room temperature. The 2.0 mM stock solution of DTNB was prepared in Tris/HCl, 50 mM, pH = 8.0,
supplemented with 1.0 mM CaCl2. The progress curves were analysed using GraphPad Prism 6
software (GraphPad Software, San Diego, CA, USA).

For the analysis of progress curves, the model of competitive inhibition at substrate unsaturated
conditions was used, as shown in Scheme 1.

In this scheme, E and EI represent the free enzyme and enzyme-inhibitor complex at substrate
concentrations significantly below Km, while S and P stand for substrate and product. Simultaneous
fitting of the hydrolysis of PTA by rePON1 in the absence and presence of carbamates allowed
evaluation of the first-order rate constant (k) using a single exponential Equation (3):

A412 = ∆A412·
(
1− e−k·t

)
+ A0 (3)

where A412 represents the measured time-dependent absorbance, A0 is the initial (baseline) absorbance
at time zero, and ∆A412 stands for the difference between the fitted plateau and baseline values. The
first-order rate constant k is an inhibitor concentration dependent quantity according to Equation (4):

k =
Vmax

Km·(1 + [I]/Ki)
(4)

Normalization of the first-order rate constant k allows evaluation of the inhibition constant Ki

using Equation (5):
k
k0

=
1

(1 + [I]/Ki)
=

Ki

(Ki + [I])
(5)

where the rate constant k0 is calculated from the progress curve in the absence of carbamates.

4.7. Molecular Modelling of the rePON1-carbamate Complex

The three-dimensional structure of rePON1 PDB code 1V04 [14] was used for molecular modelling.
Carbamate structures were modelled and minimized using the MMFF94 force field implemented in
ChemBio3D Ultra 12.0 (PerkinElmer, Inc., Waltham, MA, USA). Discovery Studio 2017 R2, with the
CDOCKER docking protocol, using a CHARMM force field (BioVia, San Diego, CA, USA), generated
20 docking poses for each carbamate in the active site gorge of rePON1, as described earlier [53].
Poses were scored and ranked according to the calculated CDOCKER energy for interactions between
carbamate and rePON1 active site residues (i.e., hydrogen bonds, π–π interactions, cation–π interactions
and electrostatic interactions).
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5. Conclusions

In this study, it has been shown that selected carbamates can reduce PON1 arylesterase ability to
hydrolyse PTA as a substrate. This reduction is a result of the competition of carbamates and PTA for
binding to the PON1 active site, forming non-covalent interactions with relevant residues. Although
the carbamates tested were not potent PON1 inhibitors, the possibility of inhibition by carbamates
should be kept in mind, especially under conditions characterized by reduced PON1 activity levels.

Author Contributions: A.B. (Anita Bosak) conceived and designed the experiments, performed the kinetic
experiments and analysed the data, drafted the manuscript, A.B. (Aljoša Bavec) expressed, purified the G2E6
rePON1 and analysed the progress curves results, T.K. expressed and purified the G2E6 rePON1, M.G. contributed
to writing the paper, designed and analysed the progress curves results, G.Š. performed the modelling, Z.K.
contributed to writing the paper, all authors contributed to writing and editing the manuscript. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Croatian-Slovenian bilateral project 2016-2017 (BI-HR/16-17-003), the
Croatian Science Foundation (IP-2013-11-4307) and the Slovenian Research Agency (Grant No. P1-170).

Acknowledgments: The authors are grateful to Daniel S. Tawfik for providing the plasmid for the rePON1
G2E6 enzyme.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mackness, M.; Mackness, B. Human paraoxonase-1 (PON1): Gene structure and expression, promiscuous
activities and multiple physiological roles. Gene 2015, 567, 12–21. [CrossRef] [PubMed]

2. Estrada-Luna, D.; Araceli Ortiz-Rodriguez, M.; Medina-Briseño, L.; Carreón-Torres, E.; Izquierdo-Vega, J.A.;
Sharma, A.; Cancino-Díaz, J.C.; Pérez-Méndez, O.; Belefant-Miller, H.; Betanzos-Cabrera, G. Current
therapies focused on high-density lipoproteins associated with cardiovascular disease. Molecules 2018, 23,
2730. [CrossRef] [PubMed]

3. Furlong, C.E.; Marsillach, J.; Jarvik, G.P.; Costa, L.G. Paraoxonases-1, -2 and -3: What are their functions?
Chem. Biol. Interact. 2016, 259, 51–62. [CrossRef] [PubMed]

4. Koren-Gluzer, M.; Aviram, M.; Meilin, E.; Hayek, T. The antioxidant HDL-associated paraoxonase-1 (PON1)
attenuates diabetes development and stimulates β-cell insulin release. Atherosclerosis 2011, 219, 510–518.
[CrossRef]
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paraoxonase-1 through solvent kinetic isotope effects and phosphonate-based isosteric analogues of the
tetrahedral reaction intermediate. Biochimie 2014, 106, 184–186. [CrossRef]

19. Sogorb, M.A.; Vilanova, E. Enzymes involved in the detoxification of organophosphorus, carbamate and
pyrethroid insecticides through hydrolysis. Toxicol. Lett. 2002, 128, 215–228. [CrossRef]

20. Moser, V.C.; Padilla, S. Esterase detoxication of acetylcholinesterase inhibitors using human liver samples
in vitro. Toxicology. 2016, 353, 11–20. [CrossRef]

21. Costa, L.G.; Giordano, G.; Cole, T.B.; Marsillach, J.; Furlong, C.E. Paraoxonase 1 (PON1) as a genetic
determinant of susceptibility to organophosphate toxicity. Toxicology 2013, 307, 115–122. [CrossRef]
[PubMed]

22. Mendoza, C.E.; Shields, J.B.; Augustinsson, K.-B. Arylesterase from various mammalian sera in relation to
cholinesterases, carboxylesterases and their activity towards some pesticides. Comp. Biochem. Physicol. 1976,
55C, 23–26. [CrossRef]
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