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Highlights
Clinical observations and data from
immunomodulatory biologic therapies
highlight the complexity of the host–
pathogen relationship in human tuber-
culosis (TB), with both insufficient and
excessive immune responses leading
to disease.

Multiple lines of evidence, in humans and
animal models, indicate that local factors
within each TB lesion govern the out-
come; progression and regression can
occur simultaneously.
Mycobacterium tuberculosis (Mtb) causes the human disease tuberculosis (TB) and
remains the top global infectious pandemic after coronavirus disease 2019 (COVID-
19). Furthermore, TB has killed many more humans than any other pathogen, after
prolonged coevolution to optimise its pathogenic strategies. Full understanding of
fundamental disease processes in humans is necessary to successfully combat
this highly successful pathogen. While the importance of immunodeficiency has
been long recognised, biologic therapies and unbiased approaches are providing
unprecedented insights into the intricacy of the host–pathogen interaction.
The nature of a protective response ismore complex than previously hypothesised.
Here, we integrate recent evidence from human studies and unbiased approaches
to consider howMtb causes human TB and highlight the recurring theme of extra-
cellular matrix (ECM) turnover.
Unbiased analyses of co-expressed
gene networks demonstrate the role
of excessive inflammation in driving
TB pathology.

Degradation of the extracellular matrix, in
particular by the collagenase matrix
metalloproteinase-1, has emerged as a
key pathological event in TB fromdiverse
approaches.
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Human TB: the intricate and prolonged contest between host and pathogen
TB is a chronic and persistent human killer, causing more deaths in total over time than any other
pathogen and, currently, is the most important infection after COVID-19. Furthermore, the TB
pandemic is likely to worsen due to resources being diverted to severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) control [1]. The causative organism, Mtb, has undergone
long-term coevolution with humans and is an obligate human pathogen [2]. Although there
have been significant steps forward, such as new antibiotics for drug-resistant disease, the
GeneXpert for rapid diagnosis [3] and a promising new vaccine [4], standard treatment, diagnosis,
and vaccination strategies in most high-incidence TB countries are unchanged. This partly reflects
the fact that we still do not understand human TB sufficiently to design transformative strategies to
achieve global TB control.

Accumulating evidence from biological therapeutics and genomic analyses have suggested that
we need to refine our concepts of the spectrum of human disease [5,6]. Importantly, this includes
confirmation in patients that an excessive immune response can be just as harmful as an insuffi-
cient response, as illustrated by increased TB incidence with PD-1 inhibition in cancer immuno-
therapy [6–8]. These new data highlight the fine balance that exists between protection and
disease, with either an insufficient or excessive immune response being harmful [9]. Furthermore,
the concurrent progression and regression of lesions within the same individual highlights the
intricacy of the host–pathogen interaction [10,11]. A recently emerging theme from unbiased
analyses is that ECM turnover is a cardinal feature of human TB, which is well described clinically.
Here, we consider human TB in light of these emerging phenomena and the accumulating omics data
sets, interpreting these findings alongside clinical characteristics of disease.

The granuloma: the critical arena determining outcome
The Mtb human life cycle involves multiple stages and ironically for such a successful pathogen,
Mtb usually reaches a dead end in most humans, failing to transmit to a new host (Figure 1)
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Figure 1. The human tuberculosis (TB) life cycle. A patient with pulmonary TB generates an aerosol by coughing, which
is inhaled into the lower part of the lungs. Initial proliferation occurs, often leading to a Ghon focus visible on the chest X-ray
(circle). In the absence of an efficacious immune response, disseminatedmiliary TB develops, with mycobacterial proliferation
in many organs, but this is a dead end for the pathogen. Once the adaptive immune response activates, Mycobacterium
tuberculosis (Mtb) proliferation is controlled, and a period of latency typically occurs. Infection can reactivate in other
organs, such as lymph nodes, but again this does not typically transmit. In ~6% of individuals, typically those aged 20–25 with
a robust immune response, Mtb drives extensive lung inflammation, leading to lung matrix destruction, cavitation, and
transmission to new hosts. However, even extensive lesions can regress, with approximately one-third of ‘consumptives’
spontaneously healing during the pre-antibiotic era. Part of figure created with BioRender (www.BioRender.com').
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Glossary
C-Cmotif chemokine ligand 7 and 8
(CCL7, CCL8): secreted chemokines
that recruit monocytes to areas of
inflammation.
Cavities: air-filled holes within the lung
that result from complete destruction of
the extracellular matrix, as the end result
of the process of cavitation. Mtb
proliferates in the cavity walls
exponentially, leading to patients who
are highly infectious, chronic
transmission, and an increased risk of
treatment failure.
Family with sequence similarity 124
member A (FAM124A): although
poorly characterised, may interact with
NFκB activating protein, consistent with
a role in propagating inflammation.
Gene co-expression analysis:
bioinformatic approach based on
mathematical graph theory, in which
clusters/modules of co-expressed
genes are identified in an unbiased way
based on the correlation in level of
expression between each pair of genes/
transcripts across study samples.
Granuloma: organised collection of
inflammatory cells, including activated
macrophages, T cells, B cells, and
fibroblasts, that forms in response to
Mtb infection.
Immunopathology: adverse outcome
of the host immune response to
persistent Mtb infection, involving cell
death, matrix destruction, and impaired
tissue function due to excessive cellular
infiltration.
Galectin 14 pseudogene
(LGALS17A): has an as-yet undefined
function and, thus, its role in TB
pathogenesis is uncertain.
Matrix metalloproteinases (MMPs):
family of enzymes with the collective
ability to degrade all fibrillar components
of the extracellular matrix at neutral pH,
in particular the triple helix of type I
collagen, which provides the tensile
strength of the lung.
Miliary tuberculosis: disseminated
infection, with appearance of millet
seeds across the chest X-ray; frequently
accompanied by central nervous system
involvement.
Oxidised low-density lipoprotein
receptor 1 (OLR1): formerly known as
LOX1. Initially identified through its role in
atherosclerosis, this receptor has a
range of functions, including
propagating inflammation and
regulating foamy macrophage
formation.
[12,13]. Infection is spread by aerosol from an individual with pulmonary TB, and those with lung
cavities (see Glossary) are the most infectious and drive the epidemic [14]. Therefore, for efficient
transmission, Mtb must cause immunopathology and lung matrix destruction at the apices of
the lung to exit the host and spread onward [15]. In addition, recent PET-CT data suggest that
propagation of TB within the lung starts with cavitation, followed by the seeding of new infection
foci via bronchial spread [16]. Therefore, cavitation appears to be central for disease progression
within the host as well as onward transmission in the population.

In initial infection,Mtb aerosol droplets are typically inhaled to the well-ventilated lower lobes and
phagocytosed by alveolar macrophages, although definitive proof in humans is difficult to obtain
and not all early lesions are basal. Alveolar macrophages are poor at controllingMtb [17], and an
initial proliferation generates a large focus of infected cells, often over 5 mm in diameter, as
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Solute carrier family 11 member 1
(SLC11A1): formerly known as
NRAMP1. The first gene linked to TB
susceptibility in population studies,
when known as natural
resistance-associated macrophage
protein 1. Its functions include divalent
cation transport and also regulation of
macrophage activation.
Trained innate immunity: modulation
of innate immune responses over time
by epigenetic reprogramming.
Tuberculin: sterile protein extract from
cultures ofMycobacterium tuberculosis,
typically used to test for immunological
memory by intradermal injection and
measurement of resulting swelling 3
days later.
demonstrated by the Ghon focus in the lung base [18]. During this period, Mtb proliferation is
unrestricted by an adaptive host immune response, and it uses a variety of evasion capabilities
to proliferate within a range of phagocytes, such as inhibiting phagolysosomal fusion [19].
Subsequently, at around 6 weeks, a T cell response develops, which is delayed relative to
other respiratory pathogens [20] but ultimately leads to more efficacious control of Mtb. By this
stage,Mtb needs to have spread to the lung apex, from where it will exit and restart the infectious
cycle [13]. How Mtb travels from the lung base to apex is unknown [21], although it is likely that
infected phagocytes act as Trojan horses carrying the mycobacteria [22,23]. In patients who
never develop an adaptive response, Mtb disseminates throughout the body [24], with miliary
TB nodules across the chest X-ray and in other organs, as described as early as 1700 by Manget
[11]. This suggests that Mtb spreads extensively, with the goal of forming a niche in the upper
lung, where factors favour persistence over immune eradication. Seminal postmortem studies
by Opie confirmed Mtb survival in apical lung lesions in otherwise healthy individuals [25]. From
this niche, Mtb must then cause inflammation, immunopathology, and cavitation to transmit and,
although this can happen at any point, most cases reactivate in the first 2 years after infection
[26]. With this time frame, disease evolution is typically a slow process, and changes in the peripheral
transcriptome can be detected many months before presentation of active disease [27].

As the T cell response develops, Mtb needs to change strategy to reflect the more hostile envi-
ronment of the host. The recent unpublished identification of changes in Mtb metabolism in
response to IFN-γ gives some insight into these events. In sensing host IFN-γ, Mtb is able to
change its metabolic rate and transcriptional programme, suggesting that it can respond to
host immunological cues [28]. Once into this second phase of the host–pathogen interaction,
Mtb must survive on a tightrope, ultimately needing to drive a host immune response that leads
to cavitation while avoiding an effective immune response that causes its eradication. The critical
structure during this ‘post-primary’ stage is the granuloma (Figure 2) [29]. This was historically
thought to be restrictive to Mtb growth, but such concepts of granuloma function and structure
have been questioned recently. For example, key studies in the Mycobacterium marinum/
zebrafish model have shown that recruitment of monocytes to the granuloma can favour patho-
gen proliferation [22,30]. Indeed, in the same model system, limiting the formation of epithelioid
macrophages, which help to wall off the granuloma, in fact helps to limit mycobacterial growth
by allowing immune cells access to the granuloma [31]. In addition, the traditional ‘sphere-like’
structure of granulomas has been questioned by micro-CT approaches, which suggest a more
TrendsTrends inin MolecularMolecular MedicineMedicine

Figure 2. Human tuberculosis (TB
granulomatous inflammation
Haematoxylin and eosin staining
of a lung nodule that cultured
Mycobacterium tuberculosis (Mtb)
The typical granuloma in the centre is
an organised structure of activated
macrophages, T cells, and fibroblasts
Star indicates central caseous necrosis
arrowheads indicate a ring of epithelioid
macrophages. However, much o
the surrounding inflammation is much
more poorly organised than typically
represented in schematics, and
the concept of individual spherica
granulomas being the source of TB
cavities is being challenged.
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complex root-like structure of interconnected areas [32], in whichmicroenvironments may vary. In
addition, whether cavities emerge from the middle of caseous necrotic granulomas or from con-
fluent areas of lipoid pneumonia has also been disputed [33].

Despite these uncertainties, it is clear that the immune response is both necessary to control
infection and essential to drive the tissue destruction that leads to cavitation and spread [15].
Multiple types of immunodeficiency can lead to uncontrolled Mtb infection, such as advanced
HIV infection, anti-TNF-α treatment, and mutations within the IFN-γ/IL-12/STAT signalling
pathway [19]. This has led to research that primarily focuses on identifying what is missing from
the immune response to Mtb that leads to disease. However, evidence that an absence of an
immunological component(s) identified in individuals who progress to active TB disease does not
mean that an excess will be beneficial [34], and, in fact, diverse evidence shows that inflammation,
driven by excessive immunity, is damaging in TB. This debate is not new and dates back to bitter
disputes between Koch and Virchow [35], over whether Koch’s tuberculin vaccine would cure
infection or provoke an immune response that degraded the granuloma and enhanced disease.
On the one hand, human studies and animal models provide clear evidence that immunological
memory from TB exposure is protective [36,37]. On the other hand, in a seminal large-scale epide-
miological study, Comstock demonstrated the surprising finding that, among tuberculin reactors,
those with the greatest delayed-type hypersensitivity response had the highest risk of subsequent
development of TB many years later [38]. One potential interpretation is that an excessive immune
response to Mtb antigens is detrimental. With the onset of the HIV pandemic, the clinical features
differentiating ‘standard’ TB from immunocompromised TB proved that the immune response
contributes to lung immunopathology and spread, because cavities are rarely observed in individ-
uals with advanced HIV-related immunocompromise, but occur on immune reconstitution with
antiretroviral treatment [39]. The demonstration that T cell epitopes of Mtb are hyperconserved
compared with nonepitope regions further suggests that the pathogen derives an evolutionary
benefit from promoting the host T cell response [40,41].

Most recently, accumulating evidence that anti-PD-1 treatment for cancer can activate latent TB
further highlights the danger of an excessive response, with enhanced T cell cytokine production
implicated in driving immunopathology [7,8,42,43]. Taken together, these observations suggest
a complex interplay between innate and adaptive responses, along with mycobacterial load,
determining a range of outcomes from disseminated and noncavitary disease in the absence of
an effective adaptive immune response, control/elimination with an optimal response, and matrix
destruction, cavitation, and spread when excessive localised inflammation occurs [9]. Along
similar lines, the concept that the optimal strategy for humans might be to sequester and tolerate
Mtb has been proposed, and the breakdown of this tolerance leads to active disease [44,45]. The
fraction of individuals defined as latently infected who in fact harbour viable bacteria is debated
[46], but reactivation ofMtb can occur decades after initial infection [47], suggesting that this tol-
erant phenotype can be extremely durable.

Adding to the complexity of TB immunology is the fact that TB lesions can have diverse outcomes
even in the same individual [11]. This was summed up neatly by Georges Canetti in 1955, based
on examining thousands of tuberculous lungs before the advent of antimicrobial treatment:
‘Consider the bacillus in the lesion, experiencing such different fates in various foci of the same
patient, and the same fate in widely different patients; destroyed in a certain histologic reaction
and thriving in another nearby’ [48]. Likewise, Dubos wrote in 1952 ‘all these processes may
occur in the same person either at different times or often simultaneously…which is still almost
as much a puzzle today’. This concurrent progression and regression of lesions has been
elegantly confirmed in modern imaging studies of infected non-human primates (NHPs) [10].
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Consequently, it appears that the outcome of infectious foci is determined at a local granuloma
level and not systemically, adding to the challenges of dissecting determinants of outcome.
One proposed paradigm is that a balance within granulomas is necessary, with both proinflam-
matory and anti-inflammatory mediators leading to control of infection [49,50]. With their pivotal
role in orchestrating the immune response, dendritic cells are also likely to have a central role in
shaping the immune response and defining outcome [51]. However, because these events
occur within tissue, they are challenging to investigate, and studying the host response in the
periphery is unlikely to convey sufficient granularity about individual lesions [52].

Emerging insights from unbiased analyses
Therefore, events determining outcome within individual TB granulomas remain a highly pressing
question, and omics analyses should provide a wealth of data to give mechanistic understanding.
Recently, several studies reported unbiased analyses aiming to unpick the process. A strategy of
comparing TB granulomas with sarcoidosis, a non-infectious granulomatous disease, was
utilised to overcome the issue of cell-specific gene expression patterns [53]. Diverse analytical
approaches demonstrated that the collagenase matrix metalloproteinase-1 (MMP1) was
highly upregulated in TB and was the most significantly differentially expressed gene between
TB and sarcoidosis. Analysis of gene correlations identified a seven-gene TB-specific cluster,
comprising MMP1, the monocyte chemoattractants C-C motif chemokine ligand 7 and 8
(CCL7 and CCL8), the divalent transition metal transporter solute carrier family 11 member
1 (SLC11A1; formerly known as NRAMP1), oxidised low-density lipoprotein receptor 1
(OLR1; formerly known as LOX1), family with sequence similarity 124 member A
(FAM124A), and galectin 14 pseudogene (LGALS17A). Several of these genes have already
been implicated in TB pathogenesis, and consideration of their known functions together informs
a putative sequence of events that leads to progression of TB lesions (Figure 3, Key figure). Thus,
sequencing of clinical material followed by unbiased analysis generated a hypothesised cascade
of disease evolution that can be experimentally investigated. Further bioinformatic analyses in
combination with a 3D biomimetic model identified that sphingosine 1 kinase inhibition sup-
pressedMtb growth, thereby progressing from basic disease understanding to novel therapeutic
targets in an unbiased manner [53].

Using a similar transcriptomic approach, analysis of gene expression was compared in skin
stimulated by tuberculin in patients with TB versus healthy controls [54]. Again, MMP1 emerged
as a top divergently upregulated gene, and ingenuity pathway analysis suggested that an
excessive IL-17 response was a key regulator. The IL-17/MMP1 profile resolved with treatment
of infection, implying thatMtb actively primes an excessive, matrix-destructive immune response
that can be replicated by a distal antigenic challenge. The authors highlighted the double-edged
sword of IL-17 in TB, with data supporting a protective role [55,56] and a pathological role when
present in excess [54,57]. These two recent studies have the limitation of analysing a distal
compartment (mediastinal lymph node and skin), and an identical gene expression profile cannot
be assumed in the lung. However, the emergence of MMP1 as a predominant mediator from
these two RNA-sequencing (RNAseq) analyses is also consistent with several previous studies.
In an early microarray analysis of restimulated macrophages, MMP1 was the most divergently
regulated gene in patients with TB, although the authors then focused on a chemokine in
validation stages [58]. Similarly, microarray analysis of lung tissue from patients failing treatment
for multidrug-resistant TB found that MMP1 was very highly upregulated within lesions [59].
Comparison of modular signatures in lung cancer, TB, and sarcoidosis by RNAseq again showed
over-representation in genes related to ECM organisation in TB [60]. A separate RNAseq study
suggested that neuroendocrine signalling was downregulated at the air–caseum interface in
drug-resistant TB, whereas the complement pathway was upregulated [61]. Although MMP
Trends in Molecular Medicine, February 2022, Vol. 28, No. 2 147
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Key figure

Potential sequence of events in tuberculosis (TB) granuloma progression
identified by gene co-expression analysis
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Figure 3. Unbiased analysis of RNA-sequencing data identified a seven-gene cluster unique to TB lymph nodes compared
with the non-infectious granulomatous disease, sarcoidosis. Several of these genes have previously been implicated in TB
pathogenesis. Considering their function together leads to a proposed sequence of events starting with excessive
monocyte recruitment, which are then epigenetically reprogrammed to propagate inflammation, ultimately leading to
excessive matrix metalloproteinase-1 (MMP1) expression, which causes matrix destruction. Part of figure created with
BioRender (www.BioRender.com). Abbreviations: CCL, C-C motif chemokine ligand; FAM124A, family with sequence
similarity 124 member A; OLR1, oxidised low-density lipoprotein receptor 1; SLC11A1, solute carrier family 11 member 1.
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regulation was not directly noted, the oncostatin M (OSM) pathway was upregulated, similar to ob-
servations in the skin tuberculin study [54], and OSM can induce MMP1 secretion [62].

Single-cell RNAseq (ssRNAseq) analysis is beginning to shed light on cellular subsets. One
approach recently used in the NHP model of TB involved parallel ssRNAseq and quantification
of viableMtb bacilli frommultiple individual granuloma [63]. This revealed a high degree of hetero-
geneity between different granulomas in the same individuals, and associations between T1/17 T
cells andMtb control, andmast cells, plasma B cells, andMtb progression. Alternatively, by com-
paring ssRNAseq data from lung tissue isolated from NHPs with either progressive or latentMtb
infection, active TB was found to be associated with an influx of plasmacytoid dendritic cells
(pDCs), activated macrophages, and T cells, and latency with enriched CD27+ natural killer
(NK) cells [64]. In support of these data, NK cells emerged as a signature correlating with latency
in a multi-omic study of human peripheral immune responses, suggesting they have a
148 Trends in Molecular Medicine, February 2022, Vol. 28, No. 2
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predominantly protective role [65]. In separate studies, ssRNAseq was combined with Mtb
strains containing a bacterial stress reporter to identify macrophage subsets able to induce bac-
terial stress in vivo. This revealed distinct and epigenetically constrained macrophage subsets
with differential degrees of permissiveness [66]. Finally, ssRNAseq of granuloma in zebrafish re-
vealed an unexpected association between Th2 signalling and the generation of epithelioid mac-
rophages, which help to ‘wall off’Mtbwithin the granuloma [67]. Interestingly, as discussed in the
preceding text, the same group previously showed that partial disruption of this epithelioid barrier
improvedMtb control by enhancing immune cell access [31], whereas, in this most recent study,
complete abrogation of the barrier led to increasedMtb growth. This neatly illustrates the fine bal-
ance between control and progression at the level of each individual granuloma.

In proteomic studies, a seminal laser capture study demonstrated the importance of spatial
organisation within the TB granuloma [68]. A central proinflammatory environment was identified
within the central caseous core, surrounded by a peripheral anti-inflammatory zone, with the
arachidonic acid pathway having a key regulatory role. These findings parallel earlier reports of
the importance of spatial organisation within the granuloma [69]. Similarly, multiplexed ion
beam imaging by time-of-flight (MIBI-TOF) identifiedmicroenvironments within the TB granuloma,
consistent with areas of immunosuppression [70]. A key question is whether this immunosup-
pression is part of the evasion strategy of the pathogen or, alternatively, the tolerance of the
host to a persistent antigenic stimulus [44,45]. In plasma proteomic studies using SOMAscan
methodology,MMP1 again emerged as one of themost divergently regulated proteins in teenagers
who then progressed to TB [71], consistent with previous work identifying a critical role for MMP1
from a hypothesis-driven approach [72,73].

Taken together, three themes are emerging from these recent omics studies: (i) the necessary
balance between pro- and anti-inflammatory pathways in controlling TB without causing immu-
nopathology; (ii) the importance of cellular composition and crosstalk, 3D organisation, and
microenvironments within TB granulomas; and (iii) the consistently observed role for MMP1 in
TB immunopathology. A limitation to consider is that most cases studied represent failed control,
because clinical disease occurred; thus, dissecting out determinants of protection versus
pathology is challenging.

The recurring theme of the extracellular matrix
As outlined in the preceding text, unbiased studies from different groups and methodological
approaches have recurrently identified MMP1 as one of the top few genes upregulated in TB.
This raises the question of why MMP1 is so predominant. Within the granuloma, the goal of
Mtb cannot purely be survival, because, ultimately, the host will die, and the pathogen will not
transmit (Figure 1). Therefore, Mtb needs to cause cavities to transmit maximally [14]. However,
the mechanism by which this happens remains poorly understood (Box 1). Strikingly, Mtb bacilli
are frequently impossible to find by standard AFB staining techniques within human granulomas
[74] and, yet,Mtb-driven inflammatory gene signatures are present through the granuloma. How
Mtb causes widespread inflammation and reprogramming of granulomas in the apparent
absence of high bacterial numbers is unknown. Several potential mechanisms could explain
this; self-propagating intercellular proinflammatory cytokine networks, swarm behaviour by
immune cells [75], microvesicles leading to transfer of Mtb antigens or mRNAs to uninfected
cells [76], a progressive build-up of Mtb antigens [33], or Mtb that is not stained by standard
approaches [77].

An additional factor that may contribute to excessive inflammation is that of trained innate
immunity. Mtb evidently causes epigenetic modification [78,79] and innate immune training
Trends in Molecular Medicine, February 2022, Vol. 28, No. 2 149
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Box 1. Tuberculosis and the matrix

The human lung is highly intricate, relying on the extracellular matrix to support a meshwork of alveoli to generate a total
surface area the size of a tennis court [89]. Matrix destruction is fatal, because gas exchange then fails. Therefore, the basal
environment of the lung is highly tolerogenic and skewed toward matrix protection. To effectively transmit, Mtb must
overcome this matrix homeostasis to cause lung cavitation.

In individuals who progress to active disease, the immune equilibrium is lost, and excessive inflammation develops. Diverse
unbiased approaches suggest that MMP1 is a final effector of collagen cleavage in this process. MMP1 is secreted as a
pro-enzyme requiring proteolytic activation [90]. Numerous ex vivo and in vitro studies demonstrate that Mtb induces
secretion of pro-MMP1 by host cells. In addition,Mtb secretes serine proteases [91,92], suggesting a potential proteolytic
cascade whereby Mtb both directly induces and activates MMP1 within its microenvironment, propagating matrix
breakdown. Intriguingly, one of the antigens in the novel M72/AS01E TB vaccine, the first candidate to improve on
BCG in human trials, is an Mtb serine protease [4]. Therefore, it is possible that antiprotease antibodies generated by
M72/AS01E vaccination help prevent TB reactivation by limiting MMP1 activation and initial matrix breakdown. This is pure
speculation, but if proven, then matrix-protective vaccination strategies may be a novel way to prevent TB reactivation.

To date, investigating antiprotease strategies has been challenging, because standard TB mouse models do not develop
the typical caseating lesions of human disease [93] and lack a functional orthologue of humanMMP1 [94]. The C3HeB/FeJ
or Kramnik mouse is a notable exception, developing cavitary lesions. However, these mice are immunodeficient and
develop high bacterial loads [95]; thus, matrix destruction may occur via distinct mechanisms. Transgenic expression of
human MMP1 in immunocompetent mice results in collagen destruction and caseation in granulomas without altering
Mtb growth [96], supporting a central role for MMP1 in initiating the cavitary process.

Multiple MMP inhibitors are available. However, MMP inhibitor therapy alone is harmful in preclinical models [97,98],
whereas is beneficial when administered alongside antibiotics [99]. A Phase IIB trial of doxycycline as adjunctive therapy
in patients with pulmonary TB showed that doxycycline suppressed MMP1 and reduced cavity size without affecting
mycobacterial load [100]. Notably, 2 weeks of doxycycline caused changes that persisted at 8 weeks, suggesting that
early events in TB treatment have long-lasting impact (Figure I), supporting the concept of host-directed therapies to
improve outcome [101].

TrendsTrends inin MolecularMolecular MedicineMedicine

Figure I. Persistent effects of
early therapeutic intervention
in tuberculosis (TB). Lung
inflammation continues for the
first few weeks after the start of
efficacious TB antibiotic therapy,
which results in ongoing damage. A
short-term intervention of doxycycline
for 2 weeks still had significant effects
on gene expression and protein
concentrations of tissue-damaging
matrix metalloproteinases (MMPs)
at 8 weeks, demonstrating that, if
the immune response is diverted
toward health early in treatment,
this trajectory is maintained. This
reduction in inflammation reduces
the overall lung immunopathology
during treatment. Figure created with
BioRender (http://biorender.com).
Abbreviation: Abx, antibiotics.
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Clinician’s corner
The increase in TB incidence with both
immunosuppressive anti-TNF-α and
immunoactivating anti-PD-1 treatment
highlights that an insufficient or exces-
sive immune response to Mtb can be
harmful to patients and further empha-
sises the complexity of the host–path-
ogen interaction. Clinicians need to be
alert to reactivation of latent infections
during cancer immunotherapy,
which may mimic disease progres-
sion.

Several recent investigations using
emerging unbiased methodologies have
identified exaggerated inflammation and
extracellular matrix destruction as critical
pathological processes in human TB,
including disproportionate upregulation
of the collagenase MMP1.

New approaches to reduce immune-
mediated tissue destruction in TB are
being advanced using host-directed
therapies, such as statins, metformin,
imatinib, and doxycycline. Nonspecifi-
cally inhibiting lung matrix breakdown
in patients with TB with doxycycline
can suppress tissue-damaging colla-
genases and accelerate cavity resolu-
tion without affecting bacterial load.

Matrix-preserving strategies may not
only reduce long-term lung damage,
but also enhance immunological con-
trol of infection, just as cavity collapse
through plombage, artificial pneumo-
thorax, and thoracoplasty were suc-
cessful during the pre-antibiotic era.

These recent studies demonstrate the
power of combining network-based
omics analysis of diseased human tissue
and relevant control tissue with advanced
3D cell culture modelling to understand
disease mechanisms and identify new
therapeutic approaches. This tissue
sequencing → bioinformatics → cellular
modelling → clinical intervention pipeline
can be used to investigate diverse
human diseases and accelerate transla-
tion to new therapeutic interventions.
[80], and one of the mechanisms of protection through the BCG vaccine is thought to be via
nonspecific protective training [81]. The recent demonstration that MMP1 is rapidly and highly
upregulated upon purified protein derivative (PPD) stimulation in the skin of individuals with TB [54],
remote to the site of lung infection, is consistent with circulating innate immune cells programmed
to drive an excessive proinflammatory response. Interestingly, the seven-gene signature within TB
granulomas includes a potential innate immune training component (Figure 3) [53], because OLR1
150 Trends in Molecular Medicine, February 2022, Vol. 28, No. 2
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Outstanding questions
What determines whether an
individual TB granuloma will progress
or regress?

Why are T cells necessary for not only
protection from disease, but also cavi-
tation and transmission?

Is it possible to determine a binary divide
between protective and pathological
pathways in TB or can multiple immu-
nological profiles lead to the same
outcome?

Why does the immune response to TB
differ between the base and apex of
lung lobes?

Why is excessive MMP1 expression
emerging from multiple diverse
approaches?

How do so few detectable Mtb bacilli
cause such extensive inflammation
and MMP1 expression within a
granuloma?

What are the mycobacterial factors that
contribute to immunopathology that
results in excessive inflammation and
matrix destruction? What regulates Mtb
virulence factor activation and how does
it engage the immune system to drive
a specific host response that favours
pathogen survival and concurrently
cause matrix destruction?

What are the downstream effects of
lung collagen destruction and the
subsequent release of neoepitopes
and matrikines?

What is the role of trained immunity in
propagating inflammation?

Why do clinical features and gene
expression profiles overlap between
TB and autoimmune diseases?

How can the wealth of published
and emerging data, including bulk
granuloma, single-cell and spatial
transcriptomics, proteomics, and
metabolomics, be integrated to
comprehensively understand the TB
disease process and identify what
determines outcome?

How can mechanistic insights from
model systems, such as zebrafish,
can regulate epigenetic modifications [82]. Of specific relevance to TB,OLR1 upregulation in athero-
sclerosis is associated with the formation of foamy macrophages [83], a cell type also induced in TB
granulomas. However, the trained immune phenotype induced by TB infection that can lead to
dysregulated inflammation has not been fully characterised. In addition, nonhaematopoietic cells,
such as fibroblasts, may have significant roles in TB progression, because they are central players
in matrix turnover. For example, OSM has emerged as one central hub from unbiased analysis
[54,61] and can upregulate fibroblast MMP1 secretion [62].

Finally, it has previously been proposed that an autoimmune component contributes to TB pro-
gression, with immune cells responding to host stress antigens or matrix neoepitopes generated
by matrix breakdown [84]. This phenomenon would explain many of the unusual clinical charac-
teristics of human TB, such as uveitis and erythema nodosum, which overlap with autoimmune
diseases. Genomic analyses support this concept, such as the similarities between TB and auto-
immune disease signatures in peripheral blood [85]. Similarly, immunological network analysis in
patients with HIV also supports an autoimmune process exacerbating pathology in TB via TH17
polarisation [57]. However, the possibility that host antigens contribute to pathogenesis in TB
remains conjectural.

Tissue-dependent considerations in studying the immune response
Most research on host immunity toMtb has focused on circulating immune cells [52]. However, it
is becoming increasingly apparent that events within tissue may greatly differ from those in the
periphery, just as they do between different TB lesions within the same lung [10,68,69,86]. For
example, comparison of lung versus circulating T cells showed different immunological profiles
at the site of disease relative to the periphery [55,87]. The fact that TB reactivates at the lung api-
ces, not the base where it initially implants, suggests that, even within the same organ, there are
broad immunological differences, which may be related to differential immune surveillance [13].
Alternatively, localisation could relate to differences in mechanotransduction across the lung, be-
cause there is an increased likelihood of collagen cleavage under tension [88]. Given that different
lesions can progress and regress, one cannot assume that studying a single lesion is sufficient,
presenting a significant experimental challenge. Once one adds the spatial immune organisation
of the granuloma into this equation, comprehensive understanding of the host–pathogen interac-
tion becomes complex. We propose that cross-correlation between human disease and model
systems that incorporate the ECM, by studying the immune response in 3D within relevant tissue
and accompanying biomimetic models in which outcomes differ stochastically, will be critical if
this complexity is to be understood.

Concluding remarks
The lack of understanding of what determines protection versus pathology in TB is hindering
progress (see Outstanding questions). The debate goes back to the previously mentioned
hard-fought disputes between Koch and Virchow [35], and the greater granularity provided by
the molecular era has further highlighted the complexity of this host–pathogen interaction. Both
disputants could select recent data regarding IL-17 in human TB to support their argument
that the host response is either protective or pathogenic [54,55] and, similarly, evidence from tis-
sue microenvironments could support each position [63,68,70]. Ultimately, the historic concept
of ‘good’ and ‘bad’ immune responses in TB is unlikely to be sufficient. New paradigms predicting
determinants of outcome are needed, taking into consideration the multiplicity of inputs, spatial
organisation, diverse outcomes, and even the potential for multiple routes to the same outcome.
The wealth of data from omics technologies can only be successfully interpreted if analysis is
framed within the clinical characteristics of human disease (Box 2). Emerging themes from recent
unbiased analyses highlight the need for a balanced immune response forMtb control and point
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Box 2. Opportunities and challenges of omics data analysis for identification of novel therapies

Advances in omics technologies over the past three decades have opened unprecedented opportunities for the investigation
of complex biological events in human tissues. For the first time, analytical techniques can dissect not only expression levels
of selected genes/proteins, but also, and often simultaneously, allow for the delineation of SNPs, the whole transcriptome,
proteome, epigenome, and metabolome, of cell populations or single cells, and determine their spatial arrangement in tis-
sues. While integrated analysis across these layers could provide a complete delineation of biological processes involved,
current studies often focus these state-of-the-art approaches on a single information layer, such as transcriptomics or pro-
teomics, and aim to demonstrate usefulness for identification of therapeutic targets.

Application of network analysis has proven extremely successful in this task. Based on mathematical graph theory, it al-
lows interrogation of biological data in a hypothesis-free way and independently of the existing curated databases.
Weighted and unweighted gene co-expression analysis [102,103] and mutual information and partial deconvolution
of information analysis [104] allow delineation of underlying structure in experimental data and identification of candidate
regulators for gene/protein modules. Importantly, by assigning eigenvector values to co-expressed modules of biological
features, such as transcripts, genes, or proteins, it allows integration and co-analysis of clinical features and data from other
high-throughput platforms.

For example, a recent study comparing TB and sarcoidosis, a non-infectious granulomatous disease, and modelling TB
infection in a 3D biomimetic model, provides proof-of-concept of how gene co-expression analyses can be used for the
identification of novel therapeutic targets in TB [53]. Similarly, by applying unbiased co-expression network analysis to
clinical trial data, immunological processes were identified that were regulated by treatment with doxycycline, revealing
selective modulation of innate immunity [100]. As an alternative approach, a module analysis approach was used to
demonstrate a central role of the IL-17 response in exacerbating TB pathology [54]. In these analyses, extrapolation to
events in the lung interstitium is now needed.

While significant progress is being made in the development of approaches to high-dimensional data analysis, including
advanced mathematical modelling for single-cell and spatial data, and application of Bayes theory and machine learning/
artificial intelligence methodologies, the key challenge yet to be overcome is bridging a mechanistic understanding of the
biological process with data analysis. As advances are made in deriving causal network architecture from omics data, and
in developing methods for analysis of dynamic signal flow through the network, this approach is likely to become the new
frontier for predictive data analysis, allowing multilayer predictive modelling of therapeutic perturbations.

Trends in Molecular Medicine

mouse, and NHPs, be most
effectively bridged with human
clinical investigation?

With many new therapeutic targets
emerging, how can these be
prioritised, especially given that
combination therapy of multiple
host-directed therapies may be
most efficacious and clinical trials
are lengthy and expensive? What is
the best predictive model for target
selection?
to aberrant ECM turnover and excessive MMP1 activity as being critical effectors leading to dis-
ease progression (see Clinician’s corner). Ultimately, embracing the complexity of human TB is
essential to understand the central unresolved question: what determines outcome in an
individual TB lesion?
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