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This review addresses the current understanding of the role of autoimmune neuroinfl ammation in the patho-
genesis of vascular, neurodegenerative, and other diseases of the nervous system. The mechanisms of re-
sponses of resident CNS cells (glial cells, astrocytes) and peripheral immune system cells are presented. 
The therapeutic potentials of phosphodiesterase inhibitors, which have antiaggregant properties and can 
suppress autoimmune infl ammation, are discussed. The phosphodiesterase inhibitor dipyridamole is regard-
ed as a potential drug for this purpose.
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 Most practicing physicians currently regard cerebro-
vascular disease as a state or process due exclusively to im-
pairments to cerebral perfusion inducing an ischemic cas-
cade of metabolic abnormalities ending with more or less 
severe damage to brain tissue. Neurodegenerative diseases 
are assessed from the point of view of the accumulation of 
toxic substances and impairment of the circulation of blood 
in the brain (microinfarcts), while the consequences of CNS 
trauma are seen as a more or less static state which in some 
cases progresses as a result of concomitant vascular disease.
 Neuroinfl ammation is currently regarded as a major 
factor in the pathogenesis of many CNS diseases, this being 
a universal response to tissue damage. Compiling existing 
defi nitions, neuroinfl ammation can be defi ned as a process 
in which the intrinsic immune system of the brain is acti-
vated as a result of ischemia, trauma, infection, toxins, the 
neurodegenerative process, stress, or aging. This infl amma-
tion is mediated by the secretion of cytokines, chemokines, 
reactive oxygen species, and second messengers produced 
by the glia of the CNS (microglial cells and astrocytes) and 
endothelial and peripheral immune cells. The intensity of 
neuroinfl ammation depends on the concrete situation and 
the features and duration of action of the initiating stim-
ulus or damage [1]. Neuroinfl ammation is a characteristic 
feature of virtually every neurological/neurodegenerative 

disease, the common thread connecting traumatic, neurode-
generative, and mental disorders [2].
 The term “neuroinfl ammation” was initially perceived 
as something negative and maladapted, as most investiga-
tions focused on the pathological aspects of neuroinfl am-
mation. However, some stages in neuroinfl ammation are 
positive [3]. In many cases, including CNS damage, there 
is a balance between infl ammatory and internal regulatory 
processes which help to restore functions. Like many neu-
ropathological processes, neuroinfl ammation provides an 
example of the principle of duality, with an excitatory state 
and inhibition of cell activity. Depending on the situation, 
the same cells can show both proinfl ammatory and anti-in-
fl ammatory activity (see Table 1). The mechanisms of these 
different types of responding remain far from understood, 
though they remain under intense study [1].
 Cerebral small vessel disease (CSVD) is at the focus 
of detailed study as one of the main causes of vascular 
dementia in the elderly. CSVD is a vascular brain disease 
characterized by features including recurrent strokes with 
persistent impairment to the blood–rain barrier (BBB) and 
a chronic infl ammatory reaction [23]. The increase in BBB 
permeability allows potentially toxic and immunogenic 
substances to enter the brain freely [24]. Furthermore, brain 
cell antigens are detected in the peripheral blood of patients 
with lacunar strokes, while patients with leukoaraiosis have 
T cells sensitized to brain antigens.
 Endothelial dysfunction and increased BBB permea-
bility may promote the development of microhemorrhag-
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studies have observed a number of mechanisms whereby hy-
peractivation of glial cells induces pathological neuroinfl am-
mation, which in turn infl uences the pathology of τ protein 
and accelerates neurodegenerative processes. Chronically 
activated glial cells induce enzymes phosphorylating τ pro-
tein, from which neurofi brillary tangles are formed, with 
subsequent neuron death [35–38]. In addition, glial cells can 
promote the spread of pathology [39]. When neurons die, the 
hyperphosphorylated τ protein within them activates the in-
fl ammatory cycle via a positive feedback mechanism (a vi-
cious circle) [40, 41].
 Parkinson’s disease is associated with an increase in 
the permeability of the BBB. This leads to penetration of an-
tigens into the midbrain, activation of microglia, and death 
of dopaminergic neurons [42]. The systemic infl ammatory 
response in Parkinson’s disease is apparent as activation of 
peripheral lymphocytes and increased serum cytokine lev-
els, including IL-2, IL-6, and TNF-α [42].
 Normal aging is linked with increases not only in the 
number of symptomatic and asymptomatic strokes, but also 
in the level of expression of systemic infl ammatory factors 
[43] such as proinfl ammatory cytokines [44–46]. In the 
brain, this age-associated infl ammation is apparent initially 
as chronic activation of perivascular and parenchymatous 
macrophages/microglia expressing proinfl ammatory cyto-
kines, accompanied by increased numbers of astrocytes 
[47]. Chronic activation of proinfl ammatory markers in ag-
ing may promote increased vulnerability to neuropsychiat-
ric disorders [48].
 Chinese researchers who compared CSVD and multi-
ple sclerosis (MS) found some interesting correlations [23]. 

es and enlargement of perivascular spaces. Enlargement 
of perivascular spaces is itself a marker for BBB dysfunc-
tion and neuroinfl ammation [25, 26], which has been con-
fi rmed by high levels of neopterin and low levels of von 
Willebrand factors in plasma (both are regarded as mark-
ers of endothelial dysfunction). Neopterin is a product of 
activated macrophages/monocytes and refl ects the level of 
oxidative stress [27] and von Willebrand factor is a marker 
of damage to endothelial cells and also a regulator of BBB 
permeability [28].
 Two important markers for endothelial dysfunction – 
E-selectin and vascular endothelial growth factor (VEGF) – 
are associated exclusively with microhemorrhages. Soluble 
E-selectin is released from damaged endothelial cells and 
is regarded as one of the most specifi c markers of endothe-
lial damage [29]. The result of increased BBB permeabili-
ty is that erythrocytes may penetrate into the parenchyma, 
i.e., microhemorrhages [30]. This is further supported by 
the association between microhemorrhages and the VEGF 
concentration induced by leakage of blood from vessels in 
Alzheimer’s disease [31] and stroke [32].
 β-Amyloid plaques in the cerebral cortex in Alzhei-
mer’s disease activate the microglia and induce immune 
responses and cytokine overproduction [33], corresponding 
to damage to the cerebral parenchyma and vessels due to 
autoimmune infl ammation [34].
 Pathological τ protein aggregates and activation of cere-
bral immune system cells (astrocytes and microglia) are char-
acteristic features of tauopathy [35, 36]. Neuroinfl am mation 
accompanying different τ protein pathologies was initially de-
scribed in Alzheimer’s disease by Maccioni et al. [37]. Recent 

TABLE 1. Positive and Negative Aspects of Infl ammation in Ischemic Stroke

Cell type Negative effects Positive effects

Microglia/macro-
phages [4–9]

Secretion of proinfl ammatory cytokines (including TNF-α and 
IL-1), reactive oxygen and nitrogen species, and proteases 
(such as MMP). Phagocytosis of viable and functioning neu-
rons by microglia/macrophages, inducing cerebral atrophy

Decreased intensity of infl ammation (release of IL-10 and 
TGF-β, synthesis of arginase and phagocytic activity). Late 
recovery processes are maintained by production of growth 
factors (insulin-like growth factor 1, neuronal neurotrophic 
factor and glial cell neurotrophic factor, facilitation of neuro-
nogenesis and plasticity, removal of necrotic material

Astrocytes [10–14]

Secretion of infl ammation mediators (for example, TNF-α, 
interleukin-1, and MMP). Formation of edema, suppression of 
axon regeneration, and impairment of the BBB, formation of 
glial scars, and glutamate release

Uptake of extracellular glutamate, synthesis and release of 
neurotrophic factors. Formation of glial scars, recovery of the 
BBB, and neurovascular remodeling

Neutrophils [15–17]

Obstruction of microvessels, formation of reactive oxygen 
species, and synthesis of MMP, which promote damage to the 
BBB and aggravate infl ammation. Stimulation of lipid peroxi-
dation, release of proteolytic enzymes, damage to endothelial 
cell membranes. Increases in BBB permeability, poststroke 
edema, and the no-reperfusion phenomenon

N2 phenotype: ability to decrease infl ammation

Dendritic cells [18] Increases activity of MHC II and costimulated molecules 
which elicit lymphocyte activation Not studied

T-lymphocytes 
[19–22]

Facilitate platelet and leukocyte adhesion to vascular endothe-
lium, leading to thrombus formation and activation of infl am-
matory processes

Interaction of T cells with platelets can have hemostatic ac-
tions preventing hemorrhagic transformation after severe isch-
emic stroke

IL – interleukin; MHC II – class II histocompatibility complex proteins; TGF-β – transforming growth factor β; TNF-α – tumor necrosis factor α.
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tion, and there are currently several registered drugs which 
have properties of nitric oxide donors and PDE inhibitors 
[51]. A total of 11 PDE isoforms have now been identifi ed; 
dipyridamole inhibits PDE-5, -6, -7, -8, -10, and -11, having 
multimodal actions on different organs and tissues [52, 53].
 Studies of dipyridamole using human microglial cell 
cultures and in the brains of mice with a model of MS and 
acute encephalomyelitis have shown that dipyridamo-
le weakens increases in the levels of certain cytokines and 
chemokines from human microglia, while stimulation of 
Toll-like receptors normalizes the characteristics of activated 
microglia in cell cultures. In mice, dipyridamole decreased 
the clinical severity of acute experimental encephalomyelitis 
and decreased the activity of microglia and other cytological 
indicators of acute encephalomyelitis. This led to the conclu-
sion that dipyridamole is an inhibitor of microglial activation 
and may play a positive role in MS and other neurological 
diseases, suppressing excess microglial activity [54].
 Increasing cAMP and cGMP levels in platelets, dipyr-
idamole reversibly inhibits their aggregation and can en-
hance the protective effects of endothelial nitric oxide (NO), 
which increases cGMP, stimulating soluble guanyl cyclase. 
Endothelial NO is an important regulator of vascular tone, 
blood fl ow, and tissue perfusion. Experimental NO defi cit 
induces increases in systemic blood pressure and increases 
in the dimensions of myocardial and cerebral infarcts in 
ischemia. Other NO/cGMP-dependent effects which can be 
enhanced by dipyridamole include suppression of vascular 
smooth muscle proliferation and endothelium-lymphocyte 
interactions. Dipyridamole increases adenosine and prosta-
cyclin concentrations, which decreases vascular tone and 
suppresses infl ammation, and has antioxidant properties, 
which can stabilize platelets and vascular membranes and 
overcome low density lipoprotein oxidation [55, 56].
 Increasing data provide evidence that apart from anti-
aggregant properties, dipyridamole may also have pleiotro-
pic actions on nervous tissue cells and vessels. Experiments 
on the protection of endothelial cells in the human brain 
in infl ammatory and metabolic impairments showed that 
dipyridamole signifi cantly decreases levels of infl ammato-
ry markers and cell death after stroke and can protect the 
cerebral endothelium from damage in infl ammation and/or 
metabolic impairments [57]. Studies have demonstrated the 
anti-infl ammatory, antioxidant, and antiproliferative actions 
of dipyridamole. These pleiotropic effects of dipyridamole 
can promote improvements in treatment results when used 
with aspirin to prevent recurrent stroke. Treatment with 
low-dose dipyridamole demonstrated effi cacy in preventing 
experimental vascular endothelial and renal impairments in-
duced by diabetes mellitus, due to enhancement of endothe-
lial NO signaling and decreases in renovascular oxidative 
stress [58, 59].
 Adenosine is a powerful immunoregulatory nucleoside 
produced during infl ammatory states to limit tissue damage. 
HIV infection is associated with persistent elevation of the 

They identifi ed many similar features in the two processes: 
1) clinical features (chronic course, exacerbated disability, 
impaired cognitive functions and gait, neuropsychologi-
cal disorders, and sleep disorders; 2) the MRI picture(T2/
FLAIR, focal and diffuse hyperintensity in the white matter, 
transient or constant T1 hypointensity, accumulation of con-
trast in foci in the acute stage and the absence of accumula-
tion in the late stage, dilation of perivascular spaces in the 
centrum semiovale, a decrease in the quantity of gray mat-
ter, and dilation of the cerebral ventricles); 3) pathological 
gait (loss of myelin-associated glycoprotein and proteolipid 
protein in CSVD and selective loss of phospholipids in MS, 
axon degeneration, increased BBB permeability and fi brin 
leakage, perivascular collagenosis and infl ammation, activa-
tion of the microglia and astrocytes, and lymphocyte infi ltra-
tion of the perivascular spaces). The infl ammatory mecha-
nisms of both diseases have more similarities than differenc-
es, and the key clinical aspect is the availability of 13 FDA-
approved disease-modifying drugs for MS while research on 
immunomodulation in CSVD is only just developing.
 Dipyridamole was introduced into clinical practice in 
1959 as a coronary lytic and antiaggregant [49]. Dipyri damole 
is a member of the phosphodiesterase (PDE) inhibitor family, 
which have not only antiplatelet, but also anti-infl ammatory 
and immunomodulatory effects. Comparison of dipyridamo-
le with aspirin showed that dipyridamole but not aspirin de-
creases nuclear factor kappa (an initiator of infl ammation) ac-
tivity and blocks the synthesis of monocyte chemoattractant 
protein (MCP-1) at the transcriptional level. Dipyridamole 
delays the peak in interleukin-8 synthesis and suppresses the 
expression of matrix metalloprotease-9 (MMP-9) in mono-
cytes. Dipyridamole does not block the transcription or dis-
tribution of MMP-9 mRNA into polysomes, indicating that 
they regulate MMP-9 protein at the postinitiation stage of 
translation. These results demonstrate that dipyridamole has 
anti-infl ammatory properties which may widen its effi cacy in 
the secondary prophylaxis of stroke [50].
 PDE inhibitors increase levels of the second messen-
gers cyclic adenosine monophosphate (cAMP)and cyclic 
guanosine monophosphate (cGMP) in many body tissues, 
providing the ability to suppress infl ammatory and autoim-
mune processes, inducing or promoting the occurrence of 
many diseases and states. In the last two decades, selective 
PDE inhibitors have demonstrated potential in the treat-
ment of infl ammation of the lungs and intestine, prostate 
adenoma, systemic atherosclerosis, psoriasis, and psoriatic 
arthropathy. In addition, PDE inhibitors have been stud-
ied for the treatment of other infl ammatory states such as 
rheumatoid arthritis, systemic lupus erythematosus, atopic 
dermatitis, MS, and Alzheimer’s disease. Study results sug-
gest additional methods for the treatment of patients with 
infl ammatory and autoimmune diseases. Leading specialists 
in research into CSVD take the view that the prevention and 
treatment of CSVD should improve the state of the BBB, 
the cerebral vascular endothelium, and microvascular func-
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levels of systemic infl ammation and immune activation, 
which have been suggested to be responsible for the in-
creased risk of chronic non-HIV diseases. Patients receiving 
antiretrovirus therapy were randomized at a ratio of 1:1 to 12 
weeks of taking dipyridamole (100 mg four times daily) or 
placebo. Dipyridamole signifi cantly increased the extracellu-
lar adenosine level and signifi cantly reduced T-cell activation 
among patients with HIV-1 infection. Dipyridamole, inhibit-
ing cellular adenosine uptake and increasing the extracellular 
adenosine concentration, can suppress chronic infl ammation 
associated with human immunodefi ciency virus type 1 [60].
 Infection due to coronavirus-2 (SARS-CoV-2) can in-
duce acute respiratory syndrome, respiratory distress syn-
drome, hypercoagulation, hypertension, and multiorgan 
failure. Analysis by Chinese authors of a randomly selected 
cohort of 124 COVID-19 patients showed that hypercoag-
ulation, as indicated by an elevated D-dimer concentration, 
was associated with disease severity. The authors’ studies 
of FDA-approved drugs led to selection of dipyridamole, 
which suppressed SARS-CoV-2 replication in vitro. In ex-
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idamole was associated with signifi cant reductions in the 
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(87.5%) achieved clinical recovery and were discharged 
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by other investigators, confi rming the potential effi cacy of 
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 In the context of this theme, we would like to recall 
that the immunomodulatory properties of dipyridamole have 
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registered indications of the drug: “dipyridamole is an inter-
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a participant in any severe pathological process in the ner-
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that the arsenal of neurologists and experts in other special-
ties has for some time included dipyridamole – a drug with 
pleiotropic actions on the circulation and neuroinfl amma-
tion, producing not only improvements in tissue perfusion, 
but also modulating the autoimmune process, which is by 
no means a secondary component of neuropathology.
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