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Evidence from our group supports that diphenyl ditelluride (PhTe)
2
neurotoxicity depends on modulation of signaling pathways

initiated at the plasma membrane. The (PhTe)
2
-evoked signal is transduced downstream of voltage-dependent Ca2+ channels

(VDCC), N-methyl-D-aspartate receptors (NMDA), or metabotropic glutamate receptors activation via different kinase pathways
(protein kinase A, phospholipase C/protein kinase C, mitogen-activated protein kinases (MAPKs), and Akt signaling pathway).
Among the most relevant cues of misregulated signaling mechanisms evoked by (PhTe)

2
is the cytoskeleton of neural cells. The

in vivo and in vitro exposure to (PhTe)
2
induce hyperphosphorylation/hypophosphorylation of neuronal and glial intermediate

filament (IF) proteins (neurofilaments and glial fibrillary acidic protein, resp.) in different brain structures of young rats.
Phosphorylation of IFs at specific sites modulates their association/disassociation and interferes with important physiological
roles, such as axonal transport. Disrupted cytoskeleton is a crucial marker of neurodegeneration and is associated with reactive
astrogliosis and apoptotic cell death. This review focuses the current knowledge and important results on the mechanisms of
(PhTe)

2
neurotoxicity with special emphasis on the cytoskeletal proteins and their differential regulation by kinases/phosphatases

and Ca2+-mediated mechanisms in developmental rat brain.We propose that the disrupted cytoskeletal homeostasis could support
brain damage provoked by this neurotoxicant.

1. Introduction

Tellurium (Te) is an element sharing the same group of
sulfur and selenium in the periodic table; that is, it is
the heaviest of the stable chalcogens (group 16) and is
classified as a metalloid. In contrast to oxygen, sulfur, and
selenium, tellurium has no essential physiological role in cell
biology [1]. However, due to its chemical versatility, Te has
been extensively used in chemistry, particularly, in organic
synthesis (for comprehensive reviews about the importance
of tellurium in organic synthesis, see [2–6]). In addition
to its use in organic synthesis, tellurium is widely used
in the vulcanization of rubber and in metal-oxidizing solu-
tions to tarnish metals, such as silver. More recently, tel-
lurium (as CdTe, HgTe, and PbTe) has also been used in
the composition of quantum dots (QD) in thermoelectric

materials, in digital versatile disk-random access memory
(DVD-RAM), and in DVD-recordable disks (DVD-RW) [7–
9]. The presence of tellurium in different types of electronic
materials and nanomaterials is an important health issue.
These materials usually contain a variety of toxic elements
and there is a paucity of research about the environmental and
occupational toxicity of those materials [10–13]. Most impor-
tantly, the fate of electronicmaterial constituents is unknown,
but tellurium can be released in the environment either as
elemental tellurium or as more reactive cation forms. The
toxicity of elemental tellurium and its ionic forms have also
been little explored in the literature [14, 15]. After its release
in the environment, tellurium can be biomethylated to more
volatile intermediates and, consequently, can be mobilized
from soil or from aquatic bodies to the atmosphere [10, 16].
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In short, the presence of tellurium in the environment is
expected to increase in the next years or decades.

Here in this review, we will give emphasis to diphenyl
ditelluride, the simplest of the diaryl ditellurides, which is
used as an intermediate in organic synthesis [17].This organic
compound of tellurium, diphenyl ditelluride or (PhTe)

2
, has

been described to possess very contrasting and interesting
biological activities [18–23], including antioxidant properties
stronger than its selenium analog, the diphenyl diselenide
or (PhSe)

2
[23]. However, the toxicological properties of this

compound seem to be more striking than its potential phar-
macological properties (for review, see [17]). Despite this, we
must emphasize that the question of tellurium toxicity may
be related to the stability of the carbon–tellurium bond (C–
Te bond) [24–29]. For instance, we have observed that diethyl
2-phenyl-2 tellurophenyl vinylphosphonate (DPTVP) was
nontoxic to mice when tested at doses much higher than that
of (PhTe)

2
[26], which indicated that perhaps some organic

chemical forms of tellurium can be safe for therapeutic use.
Indeed, there are some indications in the literature that
tellurium could be of potential pharmacological importance
(see, for instance, [30–39]). Unfortunately, the rational study
of tellurium toxicity is incipient and there is no systematic
study of organoselenium and organotellurium toxicity. The
approach to this important question has been limited to few
laboratories and most of the studies are empirical in nature
[17, 29, 37, 38, 40–46]. Thus, the progress in the field of
organochalcogen compounds as potential pharmacological
agents will require new more refined approaches other than
simple empirical testing of new compounds (see, for instance,
[45]). In order to offer elements to support rational protocols
to study the toxicity and pharmacology of organochalcogens,
particularly tellurides, we have been investigating the in vitro
and in vivo neurotoxicity of the simplest and the prototypal of
the diaryl ditelluride molecules, that is, (PhTe)

2
in rats, using

the intermediate filaments as the targets of organotellurium
toxicity (Figure 1).

Most importantly, evidence from our group in the last
years has shown that, beyond the gross neurotoxic actions
described in the CNS of rodents [17], in vivo exposure
to (PhTe)

2
and ex vivo quantification of telluride effects

on neural cells of rats indicated serious disruption of the
homeostasis of cytoskeletal proteins in a spatiotemporalman-
ner. Neurofilaments (NFs), microtubule-associated proteins
(MAPs), and Tau make up the dynamic cytoskeletal archi-
tecture of neurons. Phosphorylation/dephosphorylation of
these cytoskeletal proteins is a dynamic process regulated by
many kinases/phosphatases which, in turn, are downstream
of multiple signaling cascades. Aberrantly phosphorylated
cytoskeletal proteins are associated with disrupted cytoskele-
ton, characteristic of neuronal damage in several human neu-
rodegenerative diseases. Consequently, in this review, we will
focus on recent insights into the neurotoxic actions of (PhTe)

2

on the cytoskeleton. Particularly, we will consider experi-
mental evidence of the signal transduction pathways involved
in the misregulation of the phosphorylating system associ-
ated with intermediate filament (IF) proteins in neural cells.
We will focus on studies performed in vivo and in semi-intact
brain preparations, such as acute brain slices in view of the
preservation of an integrated communication network.

2. An Overview of Tellurium Toxicity

The toxicity of tellurium has been little explored in the
literature. Indeed, the exposure of humans to tellurium has
been rare [1, 14, 17] and this perhaps explains the paucity
in the studies of tellurium toxicity. However, as indicated
above, the use of tellurium in organic synthesis, the debate
that organic forms of tellurium could have pharmacological
and therapeutic properties [30–34], and its use in electronic
materials indicate that more studies about the molecular
mechanisms of its toxicity are needed, particularly, in view of
its potential neurotoxicity in mammals [1, 17, 43, 47–49].

The identification of tellurium molecular and cellular
targets is highly desirable from toxicological, physiological,
and biochemical point of view. In the case of mammals, the
target organ or system seems to vary depending on the type
and the developmental stage of tellurium exposure. Reports
of acute human intoxication are rare and there are only
2 cases of heavy intoxication of adults (see below) and in
those cases, the administration of a solution containing the
inorganic Te(IV) targeted multiple tissues [50]. However, at
that time, nomolecular endpoint of toxicitywas assessed [50].
Tellurium in its elemental form can be either reduced to Te−2
or oxidized to Te+4 or Te+6 [51]. The anionic reduced form
of tellurium is very unstable and the cationic forms are
much more stable than that of Te−2. Indeed, Te(IV) and
Te(VI) can interact with thiol groups and this interaction is
involved in the toxicity of inorganic tellurite and tellurate
(Figure 2). Tellurium in organic molecules can also undergo
redox chemistry after interacting and oxidizing thiol groups.
Thus, in view of its big size, tellurium behaves more as redox
active metal than a nonmetal. This explains the ability of
its cationic forms to oxidize thiolates and possibly seleno-
lates [52–57]. In a similar way to selenite (Se(IV)), tellurite
can inhibit thiol containing enzymes and this can be the
molecular basis of tellurium toxicity (Figure 2). In the case
of elemental tellurium, inhibition of squalene monooxidase,
which has thiol groups in its active site, is an important
step in telluriumneurotoxicity [17]. Since elemental tellurium
is expected to have “weak chemical reactivity,” its toxic
effects after interacting with living cells must require its
oxidation to cationic forms (Te(IV) and Te(VI)). Recently, we
have demonstrated that some important selenoenzymes (for
instance, glutathione peroxidase and thioredoxin reductase)
can be targeted after exposure to diphenyl ditelluride [57]
(Figure 3). Indeed, some organic forms of telluriumhave been
indicated as potential anticancer agents via inhibition of the
selenoenzyme thioredoxin reductase [58–61]. The literature
has also indicated that telluriumcan replace selenium in some
selenium proteins or amino acids [62, 63]. However, the
extent or the existence of such substitution after in vivo
exposure to tellurium has not been explored in detail.

3. Neurotoxicity of Inorganic
Tellurium in Rodents

Elemental tellurium ingestion is toxic to rats and short-
term exposure to high levels of Te0 has been associated with
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Figure 1: Schematic representation of disrupted intermediate filament (IF) phosphorylation. The hyper- or hypophosphorylation of IFs can
change the architecture of the cytoskeleton and lead to cell damage.
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Figure 2: Oxidation of thiol groups from targets proteins by diphenyl ditelluride [(PhTe)
2
] (a) or by cationic forms of tellurium (Te4+ and

Te6+) (b). The oxidation of thiol groups can be catalytic, because the reduced form of ditelluride (tellurol) can be easily oxidized back to
(PhTe)

2
by molecular oxygen.

transitory segmental demyelination of different types of fibers
[65] and the inhibition of cholesterol synthesis, at the level
of squalene epoxidase, in Schwann cells is an important
metabolic process in Te-induced demyelination [49, 66]. One
key and primary ultrastructural observation in tellurium

induced neuropathy is the presence of cytoplasmic lipid
droplets in myelinating Schwann cells [48]. The chemical
form of tellurium involved in squalene monooxygenase
inhibition is unknown but tellurite (Te(IV), dimethyltel-
luriumdichloride, and dimethyltelluride can inhibit the brain
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Figure 3: Hypothetical oxidation of thiol and selenol groups from thioredoxin reductase (TrxR) dimers by inorganic (Te4+ and Te6+) and
organic (diphenyl ditelluride [(PhTe)

2
] and ditelluroxide). Different tellurium forms can target both the two vicinal thiol or thiol-selenol

groups in different points of the functional asymmetric dimer of the enzyme.

enzyme from rats [47, 67]. The mechanism of squalene
monooxygenase enzyme inhibition by methyltelluride and
tellurite is related to the oxidation of vicinal thiols in the
enzyme (Figure 2). Other studies have also indicated the oxi-
dation of endogenous thiol groups by organotellurium com-
pounds [68, 69]. In effect, in a similar way to inorganic tel-
lurium compounds, thiol-containing proteins seem to be pre-
ferential targets of organotellurium intoxication [17, 54–56,
69–74] (Figure 2(b)).

Developing brain is particularly sensitive to exogenous
chemical agents [75–77]. Accordingly, the gestational expo-
sure of rats to tellurium is associatedwith hydrocephalus [78–
81], but not in rabbits [81]. However, the relation of hydro-
cephalus with cholesterol synthesis inhibition is not well
defined. It is interesting to note that exposure of adult mice
to (PhTe)

2
was associated with the appearance of spherical,

spongeous-like holes in the brain [17, 82]. In contrast to inor-
ganic tellurium exposure [83], they were not characterized by
the presence of lipofuscin [82].

One prototypal and interesting tellurium compound that
has been studied in the literature is the inorganic tellurium
molecule called AS-101 [34–39, 84]. This compound has
interesting immunomodulatory properties and it was even
proposed to be used in the treatment of AIDS [82] via
inhibition of reverse transcriptase and immunomodulating
properties [34]. The topical application of AS-101 has been
demonstrated to stimulate the growth of hair and its use in the
treatment of baldness was suggested in the past [39]. Despite
these interesting observations, the therapeutic use of AS-101
is still a promise. The reasons for this are certainly related
to the toxicity of this compound. In effect, the intoxication
with AS-101 caused a myriad of signs of intoxication in rats,
including reduction in food consumption and body weight,
the presence of hind limb paresis, hematological changes,
and histopathological alteration in several organs [85].
It is interesting to point out that we have observed that
exposure ofmice to high doses of (PhTe)

2
was associatedwith

hind limb paresis (unpublished observations). Furthermore,
the typical garlic odor was reported after exposure to the
inorganic AS-101 [85] and organic (PhTe)

2
. In short, the

toxicity of tellurium in either the inorganic or organic form
has been little explored. At the molecular level, the redox
transition from elemental or anionic tellurium to Te(IV),
followed by interactions with endogenous thiol groups of
low molecular weight molecules or with critical proteins, can
explain the toxicity of tellurium. However, we have limited
knowledge about the preferential protein targets of tellurium.
Indeed, proteins having vicinal groups such as squalene
monoepoxide and ALA-D [17, 84] can be important targets
of tellurium intoxication. But the identification of primary
target(s) of tellurium is still elusive. Here, we will show that
(PhTe)

2
disrupts the signaling pathways associatedwith phos-

phorylation and dephosphorylation of cytoskeletal elements
in the central nervous systemof rats, which can also be related
to modulation of the redox state of some critical proteins by
the tellurium atoms found in (PhTe)

2
.

4. Cases of Human Exposure to Tellurium

In two adults exposed accidentally to high quantities of
sodium tellurite, the most characteristic observations were
the presence of a garlic odor in the breath and cyanose, which
were associated with methaemoglobin in the blood. These
patients were exposed to about 2 g of sodium tellurite after
retrograde pyelography examination, where sodium iodide
was inadvertently replaced by sodium telluride.The presence
of alkyltelluride (methyltelluride) was reported in one of
the two patients that were lethally intoxicated with tellurite.
Furthermore, the blood and/or the organs of the patients also
exhaled a garlic odor. The color of organs was modified by
the intoxication, reflecting possibly the deposition of elemen-
tal tellurium. Histological examination of different tissues
demonstrated fatty degeneration and edema, whichwasmore
marked in liver than in brain, lungs, kidneys, spleen, and
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heart [86]. A third patient, who survived the minor intoxica-
tion with the same solution that killed the two other patients,
received only small amount of sodium tellurite, because, on
injecting the supposed “sodium iodide” solution, the catheter
was blocked and withdrawn. He developed the typical garlic
odor, but no additional symptoms of tellurium intoxication.

It is interesting to point out that acute or subacute expo-
sure of mice to high doses of (PhTe)

2
caused changes in the

color of different organs and also the presence of garlic odor
exhales from the body and organs of heavily intoxicated mice
(unpublished observations). The garlic odor indicates that
(PhTe)

2
can release Te atom, which is metabolized to methy-

lated forms of Te.
Less severe and nonfatal exposure to tellurium was

reported in 2 children who ingested metal-oxidizing solu-
tions containing tellurium.These solutions are normally used
to clean silver objects [87] and were accidentally ingested by
the children. Clinical signals of intoxication included vomit-
ing, black discoloration of the oral mucosa, and garlic odor
to the breath, which in one of the young children persisted
for several months after the intoxication. The presence of
garlic odor, though not a definitive clinical signal of tellurium
exposure, should be considered as an important clinical
feature by the health agents and may assist clinicians in the
diagnosis of rare telluriumpoisoning [87]. Twopostgraduates
investigating the potential therapeutic or industrial use of
tellurium esters were exposed to tellurium hexafluoride gas
in the laboratory [88].The symptoms of intoxication included
telluriummetallic taste in themouth and presence of the typ-
ical garlic odor garlic in the breath, sweat, and urine. One of
them became anorexic. Furthermore, they exhibited bluish-
black patches in the webs of the fingers and, to a lesser degree,
in the skin [88].

From a clinical point of view, it is important to emphasize
that exposure of humans to levels of tellurium that did not
produce overt signs of toxicity, for instance, after occupa-
tional exposure, was associated with garlic odor [89]. Fur-
thermore, urinary levels of tellurium higher than 1𝜇mol/mol
creatine were associated with a higher likelihood of garlic
odour reporting [89]. Thus, garlic odor, though not a con-
clusive cue, can help the physician in identifying intoxication
or nonclinical exposure to tellurium.

5. An Overview on the Neurotoxicity of
Diphenyl Ditelluride

Diphenyl ditelluride is the simplest of the aromatic, dior-
ganoyl ditelluride compounds. It has been used in organic
synthesis for a long time and in the last 15 years its toxicity
and, particularly, neurotoxicity have been extensively studied.
Indeed, developmental exposure to (PhTe)

2
is teratogenic

[17, 19, 90] and has been associatedwith long-term behavioral
and neurochemical changes in rats [20–22, 91]. However,
the majority of those studies have investigated the phenom-
ena involved in the toxicity of (PhTe)

2
, but the molecular

mechanism(s) involved in (PhTe)
2
effects has (have) not been

studied in detail. The general toxicity of (PhTe)
2
seems to be

related to oxidation of thiol-containing proteins as depicted

in Figure 2(a) (for a comprehensive review, see [17,
69]). In this review, we will present the recent findings
from our laboratory indicating that signaling mechanisms
involved in regulating intermediate filament phosphoryla-
tion/dephosphorylation are important targets of (PhTe)

2
.

Our results also indicate that (PhTe)
2
intoxication can be

used to mimic some molecular changes found in important
brain pathologies. Consequently, (PhTe)

2
can be used as a

tool to study pharmacological agents that could counteract
the toxic effect of ditelluride on brain phosphorylating/
dephosphorylating system, for instance, organoselenium
compounds with neuroprotective effects [17, 92, 93].

6. Physiology and Pathophysiology of
the Cytoskeleton

The cytoskeleton, consisting of microtubules, intermediate
filaments (IFs), and actin filaments, is indispensable for any
eukaryotic cell. Cytoskeleton networks form complex intra-
cellular structures that vary during the cell cycle and between
different cell types according to their physiological role. IF
proteins constitute the third main cytoskeletal system of ver-
tebrate cells, expressed in a tissue- and development-specific
manner.

According to the degree of sequence identity, IF proteins
have been grouped into six sequence homology classes
(SHC): acidic keratins (SHC I); basic keratins (SHC II);
desmin; vimentin; and other mesenchymal IF proteins such
as glial fibrillary acidic protein (GFAP) (SHC III); neuro-
filament (NF) proteins (SHC IV); lamins (SHC V); and an
orphan groupharboring the lens specific IF proteins phakinin
and filensin [94, 95]. All of the IF proteins are considered to
provide structural and mechanical support to the cell and are
also involved in multiple cellular functions, including trans-
port, protein and organelle targeting, migration, signaling,
apoptosis, and protection from stress [96].

Neurofilaments are the neuron specific IFs. They consist
of three subunits divided according to their molecular mass:
NF heavy chain (NF-H: 190 kDa), NF middle chain (NF-M:
115 kDa), and NF light chain (NF-L: 68 kDa). In common
with other members of the IF family, NF-H, NF-M, andNF-L
each comprise a central alpha helical coil-coiled rod domain
flanked by a variant amino-terminal globular head domain
and a hypervariable carboxyl-terminal tail domain which
differ in length among the subunits [97–99].The tail domains
of NF-M and NF-H are longer than the other IF proteins and
extensively phosphorylated, forming lateral projections along
the NF axis, responsible for NF spacing [100–102]. Thus, one
of the functions of NFs in neurons is to control the axonal
caliber and consequently nerve conductivity since the speed
of conductivity of a nerve impulse is directly proportional to
the caliber of the axon [103]. Also, myelination determines
conduction velocity in larger axons and this is too associated
with an increase in side-arm phosphorylation in NF-M and
NF-H [104–108].

Neurofilaments are transported from the cell body where
they are synthesized, to be delivered along the axon by a
mechanism called axonal transport [109, 110]. The motors
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implicated in the anterograde transport are known to be
kinesins, while the retrograde transport is mediated in
associationwith dyneins, the samemotor proteins involved in
the fast axonal transport alongmicrotubules [111]. It is known
that carboxyl-terminal phosphorylation of NF-H progres-
sively restricts association of NFs with kinesin and stimulates
its interaction with dynein [112]. This event could represent
one of the mechanisms by which aberrant carboxyl-terminal
phosphorylation would slow NF axonal transport.

Astrocytes are important cytoarchitectural elements of
the CNS; however, during the past few years, molecular and
functional characterization of astroglial cells indicate that
they have a much broader function than only supporting
the neurons in the brain, as they have specialized functions
in inducing and regulating the blood brain barrier (BBB),
glutamate uptake, synaptic transmission, plasticity [113], and
metabolic homeostasis of the brain [114, 115]. Glial fibrillary
acidic protein (GFAP) is the main IF protein expressed in
mature astrocytes, where it is thought to help maintaining
mechanical strength as well as the shape of cells. However,
recent evidence has shown that GFAP plays a role in a
variety of additional astrocyte functions, such as cell motility/
migration, cell proliferation, glutamate homeostasis, neurite
outgrowth, and injury/protection [113].

Because of their multiple roles in the cells, cytoskeletal
protein components are among the main targets modified
in response to extracellular signals that ultimately determine
cell morphology and physiological role [116]. Consequently,
it is not surprising that IFs are likely to be targeted in several
genetically determined protein misfolding/aggregation dis-
eases [117–119] as well as by a variety of pathogens [120] and
toxins [92, 93].

Abnormally accumulated NFs are a pathological hall-
mark ofmany humanneurodegenerative disorders, including
amyotrophic lateral sclerosis [121], Alzheimer’s disease [122,
123], Parkinson’s disease [124, 125], Charcot-Marie-Tooth
[126], giant axonal neuropathy [127], neuronal intermediate
filament inclusion disease [128, 129], and diabetic neuropathy
[130, 131].Multiple factors can potentially induce the accumu-
lation of NF, including dysregulation of NF gene expression,
NF mutations, defective axonal transport, abnormal post-
translational modifications, and proteolysis [132]. Beyond
their association with neural damage in inherited or age-
dependent neurodegenerative diseases, the disruption of NF
homeostasis has been reported in response to toxic agents,
such as beta, beta-iminodipropionitrile (IDPN) [133–135],
aluminium chloride [136], and methylmercury [92].

Astrocytes are also involved in a wide range of CNS
pathologies, including trauma, ischaemia, and neurodegen-
eration. In such situations, the cells change both their mor-
phology and expression of many genes leading to activation
of astroglia, or astrogliosis [113, 137, 138]. Astrogliosis is
characterized by the increase of IFs with accompanying
cellular hypertrophy and an abnormal apparent increase in
the number of astrocytes. Upregulation of IF proteins, in
particular GFAP, but also vimentin and nestin, two IF pro-
teins that are abundantly expressed in immature astrocytes,
is regarded as the hallmark of astrogliosis [137, 139]. However,
themost remarkable evidence of the relevance of GFAP in the

physiological roles of astrocytes in maintaining normal brain
function is Alexander disease, the devastating leukodys-
trophy resulting from dominantly acting mutations in the
coding region of GFAP [140]. These mutations have been
associated with the presence of Rosenthal fibers, referring to
intracellular protein aggregates containing GFAP and stress
proteins in astrocytes [141].

7. Roles of Phosphorylation in
the Intermediate Filament Homeostasis

IF proteins are known to be phosphorylated on their head
and tail domains and the dynamics of their phosphory-
lation/dephosphorylation plays a major role in regulating
the structural organization and function of IFs in a cell-
and tissue-specificmanner [142–146]. Amino-terminal phos-
phorylation plays a major role in regulating the assem-
bly/disassembly equilibrium of type III IFs as well as of NF-
L and NF-M subunits of NFs [147]. In vivo and ex vivo
studies from our group and others demonstrated that the
phosphate groups on the amino-terminal head domain on
GFAP, vimentin, and NF-L are added by second messenger-
dependent protein kinases, such as cAMP-dependent protein
kinase (PKA), Ca2+/calmodulin-dependent protein kinase
II (PKCaMII), and protein kinase C(PKC) [147–152]. Phos-
phorylation of Ser-8, Thr-7, Ser-13, and Ser-38 in the N-
terminal region (head domain) of GFAP [153–155] causes
disassembly of the IFs and, conversely, the action of protein
phosphatases leading to dephosphorylation restores its ability
to polymerize [155]. Moreover, in the C-terminal region (tail
domain), phosphorylation of Ser-389 affects the interactions
between GFAP and other IF proteins [156]. GFAP phos-
phorylation is possibly a key factor in astrocytes, since cells
use phosphorylation/dephosphorylation levels to regulate the
dynamic of the polymerization/depolymerization of these
proteins promoting cell survival and physiological roles.

The assembly of NFs into a heteropolymer is dependent
on the head domains of NF-L and NF-M and more specif-
ically on the phosphorylation level of these domains. The
major sites of in vivo phosphorylation on NF-L and NF-M
subunits were identified to be Ser-55 (PKA) [149] and Ser-
23 (PKA, PKC) [157, 158]. In vitro results point to Ser-57
(PKCaMII) [149, 159], Ser-12, Ser-27, Ser-33, and Ser-51 (PKC)
[160] as the main amino-terminal phosphorylation sites on
NF subunits.

NFs are synthesized in the cell body, but they are
extensively phosphorylated after they are transported into the
axon [109, 110]. Phosphorylation sites in the tail domain of
NF-M and NF-H are found in a glutamic acid rich region
with Ser residues. These Ser residues can be phosphorylated
by casein kinases I and II on the basis of their consensus
sequences [161, 162]. However, NF-M and NF-H are exten-
sively phosphorylated in phosphorylation sites located in Lys-
Ser-Pro (KSP) repeat regions of the tail domain of these
subunits. Phosphorylation of the KSP repeats rends NF-H
themost extensively phosphorylatedmolecule in the nervous
system [163].The KSP repeats are phosphorylated by proline-
directed kinases such as Cdk5 [164], the mitogen-activated
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protein kinases (MAPK) such as Erk1/2, JNK, and p38MAPK
[165–168], and glycogen synthase kinase 3 (GSK3) [167–169].

The phosphorylation of NFs occurs in close proximity to
myelin sheaths [168]. Thus, myelination may be the signal
needed to induce phosphorylation of NFs in axons and it is
also possible that a signal from Schwann cells or oligoden-
drocytes might be related with Cdk5 and MAPK activation.
The carboxyl-terminal tail regions of NF-M and NF-H
protrude laterally from the filament backbone to form “side-
arms” when phosphorylated. Phosphorylation of these sites
regulates the interactions of NFs with each other and with
other cytoskeletal structures, mediating the formation of a
cytoskeletal lattice that supports the mature axon [143, 145].

Moreover, carboxyl-terminal phosphorylation of NF-M
andNF-H subunits has long been considered to regulate their
axonal transport rate and in doing so to provide stability
to mature axons [147]. The NFs are transported in the
slow axonal transport component [170, 171], which results
from binding to the fast motor proteins kinesin and dynein
intermitted with prolonged pauses [172–174].

Evidence accumulated from studies of our group in the
last years point to a critical role of the endogenous phospho-
rylation of IF proteins in response to a variety of signals in
both physiological and pathological conditions [116, 148, 149,
152, 175–177], highlighting the cytoskeleton as a preferential
target of the signal transduction pathways. Importantly, a
large body of experimental evidence shows a link between
misregulation of cell signaling mechanisms, disruption of IF
phosphorylation, and cell damage in response to different
stress signals. While the exact signaling pathways regulat-
ing NF phosphorylation remain elusive, there is increas-
ing evidence that known signal transduction cascades are
involved. These actions can be initiated by the activation of
N-methyl-D-aspartate- (NMDA-), voltage-dependent Ca2+
channels type L (L-VDCC), or G protein-coupled receptors,
and the signal is transduced downstream of Ca2+ mobi-
lization or monomeric GTPase activation through different
kinase/phosphatase pathways, regulating the dynamics of the
cytoskeleton [148, 149, 152, 176, 177].

8. Assessing the Molecular Basis of
Diphenyl Ditelluride Toxicity on
the Cytoskeleton of Neural Cells

The brain is one of the major targets of (PhTe)
2
toxic actions

[17] (see above in Section 5). To assess the effects of (PhTe)
2

on the cytoskeleton of neural cells and to shed light onto
the signaling cascades targeted by the neurotoxicant, we used
pharmacological and immunological approaches in which
specific enzyme inhibitors, channel blockers, or glutamate
antagonists as well as monoclonal antibodies directed to
signaling cascades or specific phosphorylation sites let us
conclude that (PhTe)

2
interferes with the cell signal transduc-

tion misregulating the phosphorylation/dephosphorylation
of IFs and disrupting the homeostasis of the cytoskeleton
of astrocytes and neurons. Compelling evidence points to a
remarkable role of Ca2+ mediating these actions secondary
to NMDA and L-VDCC activation. In vivo studies have

demonstrated that disruption of the cytoskeleton takes part in
the deleterious effects of (PhTe)

2
on neural cells culminating

with astrogliosis and neuronal death [177, 178]. Also, acute
brain slices were useful to further elucidate the molecular
basis of the (PhTe)

2
neurotoxicity. In this context, in vivo

and ex vivo studies have been important tools to shed light
into the molecular mechanisms of the neurotoxicant on the
cytoskeleton of neural cells [64, 178–183]. More details about
the cascade of molecular events triggered by (PhTe)

2
will be

presented below.

9. Central Roles of Ca2+ and Glutamate
Receptors Mediating the Actions of
Diphenyl Ditelluride on the Cytoskeleton

Most of the actions of (PhTe)
2
disrupting the homeostasis of

the cytoskeleton in neural cells are mediated by high Ca2+
levels. Changes in the cytoplasmic free Ca2+ concentration
constitute one of the main pathways by which information
is transferred from extracellular signals received by animal
cells to intracellular sites [184–186]. Otherwise, an augmented
Ca2+ influx through the NMDA receptor or VDCC can be
responsible for the activation of lethal metabolic pathways.
Different toxins and stress conditions [187–190] have been
implicated in the regulation of intracellular Ca2+-dependent
processes in cells, and different cell types exhibit a diverse
range of transient responses to the same stimulus.

Exposure of tissue slices to (PhTe)
2
triggers the activation

of ionotropic andmetabotropic glutamate receptors as well as
VDCC and the endoplasmic reticulum Ca2+ channels. These
receptors and channels activate several cellular responses by
distinct signaling pathways in a spatiotemporally regulated
manner. Metabolism of cyclic nucleotides and membrane
phospholipids and activation of different protein kinases and
phosphatases, particularly MAPKs, PKC, CaMKII, and pro-
tein phosphatase 1 (PP1) aswell as endogenous enzymatic reg-
ulators, are the key biochemical steps and pathways we have
evidenced. Alterations in these key brainmechanisms disrupt
the homeostasis of the cytoskeleton and this could explain
the neural damage observed following in vivo exposure
to (PhTe)

2
[179].

Intracellular Ca2+ is one of the crucial signals that modu-
late the action of (PhTe)

2
in rat brain. This is in line with pre-

vious evidence pointing dysregulation of Ca2+ homeostasis
as an important event in driving different neuropathologies,
such as in the expression of the malignant phenotypes
[191] and in neurodegenerative conditions [192]. Interestingly,
(PhTe)

2
provoked different responses in the cerebral cortex

and hippocampus [182], reinforcing that different types of
cells can respond in a different way to the same extracellular
signalmolecule. Taking into account the compelling evidence
of its ability in disrupting signaling mechanisms, ditelluride
can be used as a tool to induce molecular changes similar
to those found in different pathologies of the brain. Conse-
quently, the study of its neurotoxicity can be instrumental to
understandnot only the basis of tellurium toxicity but also the
role of pathways involved in the neuropathology of different
types of brain diseases associated with aging.
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Acute brain slices exposed to (PhTe)
2
showed PP1-

mediated hypophosphorylation of GFAP and NF subunits in
cerebral cortex of 9- and 15-day-old rats but not in hippocam-
pus at this developmental period [182].Hypophosphorylation
was dependent on ionotropic glutamate receptors, L-VDCC,
and ryanodine channels. Interestingly, activation of PP1 was
modulated by dopamine and cyclic AMP-regulated neuronal
phosphoprotein 32 (DARPP-32), an important endogenous
Ca2+-mediated inhibitor of PP1 activity. Depending on the
site of phosphorylation, DARPP-32 is able to produce oppos-
ing biochemical effects, that is, inhibition of PP1 activity or
inhibition of protein kinase A (PKA) activity. Phosphoryla-
tion of DARPP-32 at Thr34 by PKA constitutes an important
mechanism to activate DARPP-32, blocking PP1. Conversely,
when pThr34 DARPP-32 is dephosphorylated by protein
phosphatase 2B (PP2B), it is itself inhibited, promoting
the release of PP1 activity. Moreover, phosphorylation of
Thr75DARPP-32 by Cdk-5 inhibits PKA, reinforcing the
release of PP1 activity [193] (Figure 4). (PhTe)

2
induced

decreased phosphorylation level of DARPP-32 at Thr34 and
increased phosphorylation levels of DARPP-32 at Thr75.
These findings are compatible with inactivation of PKA,
releasing PP1 to dephosphorylate the IFs. It is interesting
to note that the complexity of the neurotoxic effect evoked
by (PhTe)

2
in Cdk5 is involved in NF hypophosphorylation,

rather than hyperphosphorylation, as previously described
[194]. Decreased cAMP and PKA catalytic subunit support
that (PhTe)

2
disrupted the cytoskeletal associated phospho-

rylating/dephosphorylating system of neurons and astrocytes
through PKA-mediated inactivation of DARPP-32, promot-
ing PP1 release and hypophosphorylation of IF proteins
of those neural cells (Figure 4). Buffering the intracellular
Ca2+ by the Ca2+ chelator Bapta-AM showed that it is
upstream of cAMP and PKA modulation [182]. During
artificial or agonist-induced Ca2+ oscillations, Willoughby
and Cooper [195] detected fast, periodic changes in type
8 adenylyl cyclase (AC8) with subsequent PKA-mediated
phosphodiesterase 4 (PDE4) activity in human embryonic
kidney (HEK293) cells. As corollary, it can be concluded
that the dynamic complexity of Ca2+ signaling includes the
ability of Ca2+ to regulate other second messengers, such as
cAMP. In this context, our results corroborate the role of
Ca2+ as an upstream effector of (PhTe)

2
-evoked signal on

the cytoskeleton, since hypophosphorylation was abolished
in the presence of NMDA antagonists (MK-801 and DL-
AP5), L-VDCC (verapamil and nifedipine), and endoplasmic
reticulum (dantrolene) Ca2+ channels [182] (Figure 4).

IF hypophosphorylation is in line with previous evidence
showing that protein phosphatases are highly concentrated in
the mammalian brain [196–198] and pointing the cytoskele-
ton as a preferential target of the action of phosphatases
in both physiological and pathological conditions [199–201].
Moreover, hypophosphorylation of IF proteins could also be
associatedwith brain damage, since the increasedNFpacking
density correlates with decreased phosphorylation of KSP
repeats in the carboxyl-terminal domains ofNF-MandNF-H
[202].

It is evident that the neurotoxic mechanism of (PhTe)
2

in the cerebral cortex involves the state of phosphorylation
of DARPP-32, a modulator of the cAMP pathway previ-
ously described to be highly expressed in striatal projection
neurons [203]. It is interesting to note that we have pre-
viously described (PhTe)

2
-induced hyperphosphorylation in

the cerebral cortex of 17-day-old rats ex vivo rather than
hypophosphorylation, as observed in the hippocampus [93].
These paradoxical divergent findings provide an interest-
ing insight into the differential susceptibility of cortical
IF cytoskeleton to the exposure to this neurotoxicant and
could reflect the existence of different vulnerabilities of the
cytoskeleton of cortical cells during development based on
the temporal maturationmediated by amultitude of develop-
mental processes and signaling pathways [75, 204]. However,
the exact explanation for the differential effects of (PhTe)

2

on the cytoskeletal protein phosphorylation as a function
of postnatal age remains to be clarified. Probably, they are
associated with the pathological role of the developmentally
regulated glutamate receptors in neural cells within the brain
which is dependent on the maturation patterns of glutamate
receptor expression [205, 206]. Although the developmen-
tally regulated ontogenetic expression of the glutamate recep-
tors is poorly known, it has been shown that the expression
patterns of glutamate receptor subunit genes change during
the ontogeny of the brain [207–209]. Distinct regional and
temporal patterns of expression of types and subtypes of
the glutamate ionotropic receptors during ontogeny [205,
206] may possibly explain the different signaling pathways
targeting the cytoskeleton of cortical neural cells during
development.

In contrast with cerebral cortex, ex vivo exposure to
(PhTe)

2
(100 𝜇M) induced hyperphosphorylation of astrocyte

and neuron IFs in acute hippocampal slices of 21-day-old rats.
Hyperphosphorylation is partially dependent on L-VDCC,
NMDA, and endoplasmic reticulum Ca2+ channels. The role
of Ca2+ as an upstream signal of this effect was demonstrated
by specific NMDA antagonists and Ca2+ channel blockers as
well as extra- and intracellular Ca2+ buffering, which totally
prevented IF hyperphosphorylation [181] (Figure 5).

The signal evoked by (PhTe)
2
is also transduced through

metabotropic glutamate receptors on the plasma mem-
brane leading to the activation of phospholipase C (PLC)
which catalyses the hydrolysis of phosphatidylinositol 4,5-
bisphosphate (PIP2) to produce the intracellular messengers
inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG).
IP3 is highlymobile in the cytoplasm and diffuses into the cell
interior where it binds to specific receptors on the endoplas-
mic reticulum.The binding of IP3 changes the conformation
of IP3 receptors such that an integral channel is opened.
Ca2+ stored at high concentrations in the endoplasmic
reticulum is released to the cytoplasm. Therefore, high Ca2+
levels andDAGdirectly activate PKCaMII andPCK, resulting
in the hyperphosphorylation of Ser-57 in the carboxyl-
terminal tail domain of NF-L. Also, the activation of Erk1/2
and p38MAPK resulted in hyperphosphorylation of KSP
repeats of the medium molecular weight NF subunit (NF-
M). It is noteworthy that PKCaMII and PKC inhibitors
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Figure 4: Schematic representation of the proposed mechanism of action of (PhTe)
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on the IF-associated phosphorylating system of cerebral

cortex neural cells of young rats in vitro. (PhTe)
2
acts in NMDA and VDCC channels, increasing intracellular Ca+2 levels. The second

messenger directly inhibits AC and PKA activities, decreases the phosphorylation level of DARPP-32 (Thr-34), and releases PP1 activity.
Taken together, these actions change the phosphorylation status of IF proteins in vitro. NMDA, N-methyl-D-aspartate receptor; VDCC,
voltage-dependent calcium channel; PKA, cAMP-dependent protein kinase; DARPP-32, dopamine- and cAMP-regulated phosphoprotein,
Mr 32 kDa; PP1, phosphoprotein phosphatase 1; PP2b, calcineurin; AC, adenylate cyclase. Orange-red circles represent Ca+2.
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Figure 5: Schematic representation of the proposed mechanism of action of (PhTe)
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on the IF-associated phosphorylating system of

hippocampus neural cells of young rats in vitro. (PhTe)
2
acts throughmGluR,NMDA, andVDCCchannel, increasing intracellular Ca+2 levels.

The second messenger directly activates PKCaMII and PKC and indirectly activates ERK1/2 and p38MAPK. Taken together, these actions
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receptor; VDCC, voltage-dependent calcium channel; PKC, protein kinase C; PKA, ERK, extracellular-signal-regulated kinase, PKaMII,
Ca+2/calmodulin-dependent protein kinase II. Orange-red circles represent Ca+2.
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(KN-93 and staurosporine, resp.) prevented (PhTe)
2
-induced

Erk1/2MAPK and p38MAPK activation as well as hyper-
phosphorylation of KSP repeats on NF-M, suggesting that
PKCaMII and PKC could be upstream of this activation [181].
Interestingly, this effect implies a significant cross-talk among
signaling pathways elicited by (PhTe)

2
, connecting the gluta-

mate metabotropic cascade with activation of Ca2+ channels.
The final molecular result is the extensive phosphorylation of
amino- and carboxyl-terminal sites on IF proteins [181]. This
is in line with the proposal that hyperactivation/deregulation
of these kinase cascades may induce aberrant phosphoryla-
tion of the cytoskeletal proteins in neurons leading to neural
dysfunctions seen in neurodegenerative diseases [210].

10. Diphenyl Ditelluride Disrupts
the Cytoskeleton and Provokes
Neurodegeneration in Acutely Injected
Young Rats

The brain has a prolonged period of postnatal maturation,
and myelination is not complete until adolescence [211],
which in the rat brain is up to postnatal day 50 [212]. The
initial appearance and progressive phosphorylation of NF-M
and NF-H in the axons are region-specific and appear to be
correlated to synaptogenesis and myelination, as the mature
axonal cytoskeleton begins to be established [213, 214].There-
fore, it is expected that the deleterious effects of tellurium
are preferentially expressed during development, since the
intense plasticity underlying the developmental events [215,
216] is dependent on efficient remodeling of the cytoskeleton
which, in turn, is dependent on the physiological phosphory-
lation of the cytoskeletal proteins. Improper developmental
plasticity likely impedes the normal information processing
in the brain. In line with this, in vivo exposure to (PhTe)

2
,

in which the neurotoxicant reaches the brain via systemic
circulation, provokes aberrant phosphorylation of IF proteins
from neural cells by MAPK (Erk, JNK, and p38MAPK) and
PKA activities, as demonstrated in the striatum [179] and
cerebellum of young rats [64].

According to the ex vivo evidence, the phosphorylating
system associated with the cytoskeleton from different brain
regions of developing rats also shows different susceptibilities
to in vivo (PhTe)

2
exposure.This can be evidenced in cerebral

cortex and hippocampus of 15-day-old rats acutely injected
with a toxic dose of (PhTe)

2
(0.3 𝜇mol/kg body weight) [20,

180]. Cortical hyperphosphorylation of neuronal and glial
IF proteins was an early and persistent event up to 6 days
after injection, accompanied by increased levels of GFAP
and NF-L. Upregulation of gene expression as well as GFAP
and vimentin hyperphosphorylation could be a response to
injury and take part in the program of reactive astrogliosis as
demonstrated in striatum and cerebellum of (PhTe)

2
-injected

rats [64, 179]. Otherwise, in the hippocampus the aberrant
phosphorylation was a later response presented only by the
astrocyte IFs, without detectable alteration of their levels
into the cell, suggesting a milder response [180]. Taking into
account the cytoskeletal response evoked by (PhTe)

2
, hip-

pocampal astrocytes and neurons showed lower vulnerability

than their cortical counterparts. These findings could be
related to the differential pathophysiological responses of cor-
tical and hippocampal neurons and astrocytes to the insult.
Apparently, hippocampus of rodents is more resistant than
cerebral cortex to other neurotoxic insults. This is supported
by findings from [217] who described neuropathological
changes and tau hyperphosphorylation in the cerebral cortex
of adult mice exposed to methyl mercury, but not in the
hippocampus.

Under a deleterious process, astrocytes become reactive
releasing a wide array of mediators, including pro- and anti-
inflammatory cytokines, neurotrophic factors chemokines,
complement factors, and reactive oxygen species (ROS), all of
which potentiallymediate neuroprotective and/or neurotoxic
effects [218–220]. In line with this, a strong evidence supports
an important role of astrocytes in a more severe cortical than
hippocampal damage following the in vivo (PhTe)

2
insult.

The phosphorylation level of IF proteins from acute
cortical slices from 18- and 21-day-old rats exposed to (PhTe)

2

was not altered, while IFs of acute cortical slices from
younger pups (9 and 15 days old) were hypophosphorylated.
In addition, hippocampal IFswere not responsive to the insult
until weaning [182]. In a sense, ex vivo and in vivo findings are
in agreement, showing that cortical cells are more susceptible
to the toxicant than their hippocampal counterparts. On
the other hand, these results highlight the relevance of the
interplay between glial and neuronal cells to adapt the cellular
metabolic response to the insult. The loss of physiologi-
cal brain connections in brain slices could underlie this
response.These findings are in line with the role of astrocytes
in determining the vulnerability of neurons to deleterious
stimuli [175, 221, 222].

Aberrant phosphorylation of GFAP is associated with
injury andpathological conditions. Similarly, abnormal phos-
phorylation of NFs is associated with neurodegeneration
[148, 149, 223, 224]. In neurons, hyperphosphorylated NFs
can inhibit their proteolytic breakdown by calpain, a Ca2+-
activated protease [101, 225]. Abnormally phosphorylated
NFs accumulate in the perikarya and the phospho-NF aggre-
gates can thus become cytotoxic by the enduring impairment
of axonal transport of NFs [226, 227]. In line with this,
kinesin and dynein motor proteins were found to accumu-
late in NF spheroids in spinal motor neurons and spinal
sensory ganglion neurons of chicks injected with beta-
iminodipropionitrile (IDPN) [228], which could impede the
transport of components required for axonal maintenance, as
demonstrated in a transgenic mouse model of amyotrophic
lateral sclerosis [229].The increased time the NF spent in the
cell body is thought to result in further aberrant phosphory-
lation [230] and may prevent them from entering the axon,
resulting in a deleterious feedback loop [147].

Consistent with a critical role of disrupted cytoskeleton
in brain damage, MAPK and PKA activation as well as
astrogliosis take part in the early responses to the insult
with (PhTe)

2
in rat cerebellum [179] and striatum [64]. How-

ever, the most striking difference between cerebellum and
striatum response to (PhTe)

2
is that in cerebellum astrogliosis

preceded the apoptotic neuronal death, while in striatum
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astrogliosis was a later response concomitant with neuronal
damage without net neuronal loss, emphasizing the higher
vulnerability of the cerebellum to this neurotoxic effect. The
different windows of susceptibility leading to activation of
MAPK pathway targeting the cytoskeleton in the cerebellum
compared with those in the striatum could once more
underlie the differential response of these structures to the
injury.

Neurodegeneration in (PhTe)
2

rats was also related
with inhibited Akt, activated caspase 3, and decreased
[3H]glutamate uptake, emphasizing a critical role of altered
Ca2+ levels in this process, since IP3 and ryanodine receptors
may be important sensors of disturbed intracellular Ca2+
homeostasis [231]. On the basis of our findings, we propose
that (PhTe)

2
produced alterations in Ca2+ homeostasis and

glutamatergic neurotransmissionwhich lead to excitotoxicity
and neurodegeneration in the developing rat brain.

Taking into account the great deal of evidence of NF
hyperphosphorylation evoked in cerebral cortex, cerebellum,
and striatum of (PhTe)

2
-injected rats, it is feasible that this

neurotoxicant is not able to provoke demyelination in the
CNS, in contrast with peripheral demyelination described
in rats [20, 21, 232]. In this context, the specific molecules
in myelinating cells that regulate signaling cascades, which
in turn modulate the expression and phosphorylation of
cytoskeleton elements, have not been fully identified. How-
ever, compelling evidence points to a role for myelin-
associated proteins modulating expression and phosphory-
lation of NFs and consequently the axonal caliber [168, 202,
233]. A schematic representation of the in vivo actions of
(PhTe)

2
in the brain of young rats is depicted in Figure 6.

11. Gestational and Lactational Toxicity of
Diphenyl Ditelluride

There are experimental points of evidence that (PhTe)
2
causes

gestational and lactational toxicity [19, 90]. Considering the
lipophilic character of this compound, we can suppose that
it could cross the placental barrier during pregnancy and be
excreted in milk after birth, like other hydrophobic toxicants,
such as polychlorinated biphenyls [234]. Thus, the character-
istics of solubility of (PhTe)

2
together with the high vulner-

ability during a period of intense brain development define
the high vulnerability of perinatal rat brain as important
targets of intoxication with Te.

The immature brain is a much more dynamically active
tissue than the mature brain. Its high degree of plasticity and
a broad range of potential developmental directions underlie
developmental toxicity studies, indicating that maternal tox-
icity during the pregnancy and/or lactation has been shown
to produce adverse effects in offspring [235]. Although the
consequences of gestational and lactational exposure to any
toxin on brain function are not well understood, exposure
to neurotoxic chemicals is of particular concern when it
occurs during early development. Fetal and neonatal brain
development is characterized by developmental time win-
dows during which certain brain regions or neuron types are
specifically sensitive to environmental influences [236] and
neurotoxicants [237].

Evidence that the toxic effects of maternal exposure to
(PhTe)

2
could be detected in their offspring has been previ-

ously reported. High doses of (PhTe)
2
(0.12mg/kg of body

weight) can be teratogenic to rat and mice fetuses, causing
malformations in fore- and hind-limbs, absent or short tail,
subcutaneous blood clots, exophthalmia, hydrocephalus, and
presence of exposed brain. However, the mice are less sus-
ceptible to toxic effects induced by (PhTe)

2
than the rats, sug-

gesting a different developmental toxicity induced by (PhTe)
2

among species [19, 90].
Stangherlin et al. [22] demonstrated that subchronic

exposure to (PhTe)
2
(0.03mg/kg of body weight), via mater-

nal milk, caused oxidative stress in brain structures of young
rats.The exposure to (PhTe)

2
increased lipid peroxidation and

inhibited 𝛿-aminolevulinate dehydratase (𝛿-ALA-D), cata-
lase, and superoxide dismutase (SOD) activities in hippocam-
pus and striatum of young rats. Moreover, dam exposure
to the same concentration of (PhTe)

2
induced changes in

the levels of nonenzymatic defenses in cerebral cortex and
striatum of the lactating rats. Supporting the relevance of
maternalmilk as an important via of toxicitywith the (PhTe)

2
,

exposure of dams to low levels of (PhTe)
2
during the first

14 days of lactation causes neurobehavioral changes of their
offspring, which emphasizes the potential neurotoxicity of
organic tellurium compounds [21]. Disrupted cytoskeleton
could underlie these behavioral impairments since (PhTe)

2

(0.01mg/kg of body weight) evoked aberrantly phosphory-
lated astrocyte and neuron IFs observed on PND 15 and 21 in
striatum and cerebellum of rats. On the other hand, exposure
to (PhTe)

2
viamaternalmilk provoked hyperphosphorylation

of IF protein in the hippocampus only on PND 21 and 30
(unpublished results), evidencing a latter effect in this brain
structure. This is in line with ex vivo and in vivo studies
reporting disrupted phosphorylation level of hippocampal
IFs in 21-day-old rats [178, 183]. These findings could be
related with the differential pathophysiological responses of
the different structures to the insult according to their critical
proliferative period [212].

The effect of (PhTe)
2
was spatiotemporally regulated, and

the posttraductional mechanisms regulating the cytoskeleton
from striatum and cerebellum in younger pups are more
susceptible to the action of the neurotoxicant than in older
ones. In fact, suckling rats can be considered extremely sus-
ceptible to (PhTe)

2
-induced neurotoxicity, since the dose of

(PhTe)
2
given to dams was extremely low. As a corollary, the

offspring of (PhTe)
2
-treated dams is expected to be exposed

to telluride levels much lower than those given to their
mothers.

Further evidence of the great susceptibility of pups to
the toxic effects of (PhTe)

2
via maternal milk comes from

the previously reported inhibition of glutamate uptake and
Na+/K+ATPase activity in the brain of pups from exposed
dams [22]. Moreover, MAPK and PKA pathways are acti-
vated in neural cells of striatum and cerebellum of the
offspring [183]. This could be related to the disruption of
the cytoskeleton observed in these pups. Interestingly, the
kinase activities as well as the phosphorylating level of the IF
proteins are increased in PND 15 and 21 and returned to
control levels in older pups. This could be explained by
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2
onneural cells of young rats. (a) Schematic representation of the proposedmechanismof

(PhTe)
2
-induced disruption of the IF-associated phosphorylating system in brain of young rats in vivo. (PhTe)

2
activates cell surface receptors

eliciting signaling cascades through intracellular secondmessengers, which activate the cyclic AMP- andCa2+/calmodulin-dependent protein
kinases (PKA and PKCaMII, resp.). Also, MAP kinases (Erk1/2; JNK, and p38MAPK) are activated, targeting specific sites on IF subunits.
PKA and PKCaMII phosphorylate serine sites, such as Ser55 on NF-L, and MAPKs are directed to KSP repeats on the C-terminal domain
on NF-M and NF-H.The hyperphosphorylated N-terminal domain misregulates the association/disassociation equilibrium of the filaments,
while C-terminal hyperphosphorylation disrupts the interaction of the filaments with other cytoskeletal elements and with motor proteins.
In box, chemical structure of phosphorylated amino acids. (b) The cerebellar damage induced by the in vivo exposure to (PhTe)

2
. Increased

GFAP staining, one of the main features of reactive astrogliosis, is concomitant with decreased NeuN positive cells, indicative of reduced
neuronal cells. Adapted from Heimfarth et al., 2013 [64].

adaptative mechanisms overriding the prolonged exposure
to the toxicant; however, this point remains to be clarified.
Also, we could presume that altered glutamate uptake and
Na+/K+ATPase activity as well as disrupted cytoskeleton
could be involved in the neurobehavioral changes of the
offspring.

Taking into account the whole evidence that, following
maternal exposure, (PhTe)

2
reaches the brain of their off-

spring via systemic circulation, we are tempted to propose
that results from the animal model could mimic the risk of
a potential (PhTe)

2
exposure of pregnant or lactating women

to their babies. However, little information about human
intoxication with (PhTe)

2
during pregnancy and lactation is

available in the literature and further efforts will be necessary
to understand the pathology of this compound.

12. Concluding Remarks

The major questions concerning the (PhTe)
2
toxicity that

remain posed relate to the mechanisms that underlie their
actions in the CNS. To address this question, we have focused
our efforts on the actions of this neurotoxicant targeting
the endogenous phosphorylating system associated with the
cytoskeleton of neural cells of young rats. It is always expected
that the deleterious effects of a toxin are preferentially
expressed during development, since the intense plasticity
underlying the developmental events [215, 216] is depen-
dent on efficient remodeling of the cytoskeleton which, in
turn, is dependent on the physiological phosphorylation of
the cytoskeletal proteins. Improper developmental plasticity
likely impedes information processing in the brain.
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Compelling evidence from our group supports that
IF proteins could be crucial in mediating spatiotemporal
responses to (PhTe)

2
in neural cells of rats. Central to its

function is its dynamic phosphorylation and defects in the
capacity to maintain the homeostasis of IF phosphorylation
would probably have detrimental effects on cell function.
These actions are complex, and integrated processes carefully
and precisely orchestrated by the cell through membrane
receptors and channels are able to activate diverse signal
transduction pathways misregulating the homeostasis of the
cytoskeleton. It is remarkable that Ca2+-mediated mecha-
nisms were shown to play a central role in these membrane-
initiated mechanisms. It is presumed that aberrantly phos-
phorylated/dephosphorylated IF proteins may interfere with
neural cell structure and function which is associated with
neurodegeneration in young animals. Further studies on
membrane receptors and their downstream events might
provide us with new insights into the molecular basis of the
mechanisms triggered by the toxicant in brain. Although cell
signaling transduction of (PhTe)

2
does not have necessarily

the same mechanisms in different brain regions, the Ca2+-
initiated events highlight a role for this neurotoxicant as a
disruptor of the cytoskeleton.

Taking into account the relevance of the signalingmecha-
nisms targeting the cytoskeleton during early postnatal brain
development, we presume that the spatiotemporal misregu-
lation of the homeostasis of the cytoskeleton we evidenced
can probably contribute to the deleterious action of (PhTe)

2

on the developing brain, a fact that might explain at least
in part the neurotoxicity of this compound; however, these
consequences need further investigation. One aspect that
needs further investigation is the effect of inorganic tellurium
on IF phosphorylation.This is particularly relevant in view of
the increased industrial use of tellurium in electronic devices.

We think that our studies in injected rats or in acute
brain slices have made important contributions to our
understanding of (PhTe)

2
-mediated injury. These studies

provide the opportunity to examine cellular, molecular, and
morphological changes after exposure to the neurotoxicant.
However, extrapolation of conclusions from animal data to
human beings must be done with caution. Of particular
experimental importance, the study of (PhTe)

2
neurotoxicity

can be instrumental to understand not only the basis of
tellurium toxicity but also the role of pathways involved in the
neuropathology of different types of brain diseases associated
with neurodegeneration and aging.
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