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Biological systems are orchestrated by heterogeneous regulatory programs that control complex
processes and adapt to a dynamic environment. Recent advances in high-throughput experimental
methods provide genome-wide perspectives on such regulatory programs. A considerable amount of
data on the behavior of model systems in a variety of conditions is rapidly accumulating. Still, the
dominant paradigm is to analyze new genome-wide experiments separately from any other extant
data, for example, by clustering the new data alone. Here we introduce a new methodology for
analyzing the results of a new functional genomic study vis-à-vis a large compendium of previously
published results from heterogeneous experimental techniques. We demonstrate our methodology
on Saccharomyces cerevisiae, using a compendium of some 2000 experiments from 60 different
publications. Most importantly, we show how the integrated analysis reveals unexpected
connections among biological processes, and differentiates between novel and known effects in
the analyzed experiments. Such characterization is impossible when new data sets are studied in
isolation. Our results exemplify the power of the integrative approach in the analysis of genomic
scale data sets and call for a paradigm shift in their study.
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Introduction

Over the last several years, a variety of methods have been
used to monitor biological processes on a genomic scale. In a
typical study, the researchers define a target cellular response
(e.g., a signaling pathway, response to certain environment or
disease), select a set of conditions (genetic perturbations,
environmental stimulations, a new drug, etc.) and perform
high-throughput experiments in these settings. A rapidly
increasing pool of techniques allows measurements of gene
expression (DeRisi et al, 1997), transcription factor binding
(Ren et al, 2000; Iyer et al, 2001), selection from a mutant
collection (Birrell et al, 2002), two-hybrid analysis (Schwi-
kowski et al, 2000), synthetic lethality (Tong et al, 2004) and
more. The typical computational analysis, following Eisen et al
(1998), clusters the data obtained and then tries to character-
ize each cluster’s gene set using known gene functions and
promoter analysis. Usually, a laborious expert scrutiny of
specific genes and their behavior is needed in order to reach
meaningful biological conclusions. This methodology has
proven very effective in identifying primary trends in the
experimental results. Following the publication of many
dozens of high-throughput studies, a very rich resource is
now available, containing thousands of different molecular
snapshots of wild-type and mutant cells under different

conditions. The current analysis paradigm does not directly
take full advantage of this vast resource. In analogy, the
current method for analyzing microarray profiles is similar
to trying to find structural motifs in a small number of new
cDNA clones without using homology searches in appropriate
sequence databases.

In this work, we introduce a new methodology that takes
advantage of a large data compendium in the analysis of novel
high-throughput experiments. Previously, we have shown
how data from different sources can be integrated using the
SAMBA biclustering algorithm (Tanay et al, 2004b). Here we
develop a method to characterize the response of biological
pathways to various stimuli at the system level, capturing not
only the dominant primary responses but also finer and less-
easily tractable processes. Previous approaches to integrated
analysis of functional genomics data focused on predicting
single gene functions (Kemmeren et al, 2002; Wu et al, 2002;
Troyanskaya et al, 2003), studied the global organization of
molecular networks and transcriptional programs (Ihmels
et al, 2002; Beer and Tavazoie, 2004; Segal et al, 2004; Tanay
et al, 2004b) or combined several experimental approaches to
construct and test networks for specific systems (Ideker et al,
2001; Prinz et al, 2004). The approach introduced here is
aimed at the analysis of a data set from one new study in the
context of a large compendium of data from many diverse and
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heterogeneous prior studies. We combine the broad perspec-
tive of global analysis, with a focused and easy-to-use
dissection of a single experimental data set, very much like
standard clustering-based analysis. Our approach thus allows
for rapid interpretation of novel data sets in terms of the
activity of known and novel biological modules.

To illustrate the use of the new methodology, we reanalyzed
publicly available data on the yeast Saccharomyces cerevisiae.
We assembled a comprehensive collection of data from 60
different studies and close to 2000 different experiments.
We show that using this compendium and our algorithms,
it is possible to greatly extend the understanding of com-
plex regulatory mechanisms, beyond what can be done using
single studies. Our tools, data compendium and comprehen-
sive results are available through a new web interface
(www.cs.tau.ac.il/~rshamir/simba/).

Results

An integrated compendium of yeast functional
data

We have built a compendium of yeast functional data in-
cluding profiles from 52 gene expression studies, five trans-
cription factor location studies, three synthetic lethality studies
and data on protein interactions from the GRID database
(http://biodata.mshri.on.ca/yeast_grid/servlet/SearchPage).
The complete list of references for all data sources is available
on Supplementary website (www.cs.tau.ac.il/~rshamir/simba/).
Our algorithmic framework (Tanay et al, 2004b) transforms all
sources of information into generalized conditions and
analyzes them together (Materials and methods). We applied
biclustering to the combined data set and derived a set of
B1200 statistically significant modules. A module consists of a
set of genes and a set of conditions, such that the genes have
significant and correlated values over the set of conditions. For
example, a bicluster may be defined by a set of genes that are
(1) coexpressed in several conditions (2) are targeted by the
same specific transcription factors and (3) their protein
products are likely to interact with a certain protein. To
understand the biology behind specific modules, we auto-
matically associated them with known processes and regula-
tory mechanisms. We assigned modules to biological
processes using functional enrichment tests based on the
SGD GO annotation (Materials and methods). We searched for
known and novel enriched cis-elements in the promoters of the
genes in each module and manually annotated the discovered
motifs (Materials and methods). When discussing modules,
we use the module number, the primary biological process
associated with it (when available) and the module’s number
of genes and properties, for example, module #524 (RNA
processing, 76� 211). A single biological process may be
represented by several modules of varying sizes and specifi-
cities, but our algorithm guarantees that no two modules are
similar.

Synergism between different sources of data

We first asked how much synergism exists among the
experimental data from different studies. The distribution of

module dimensions (Figure 1B and Supplementary Figure 1)
indicates that the comprehensive compendium gives rise
to highly specific modules, with 10–50 genes supported by
20–100 conditions. The distribution of the number of studies
contributing properties to each module (Figure 1C) demon-
strates a high level of synergism in the multistudy data
compiled. A total of 86% of the modules used data from more
than one study and 68% used data from three studies or more,
showing that indeed, information was extracted from multiple
data sets and is not biased by one predominant source. A
global representation of the compendium and its dissection
into modules is obtained by clustering the mean module
expression across all experimental conditions. Since the same
gene may be part of several modules, such clustering allows
the ‘unfolding’ of the function of pleiotropic genes and differs
substantially from a standard gene-by-condition clustering.
The resulting representation (Figure 1D) shows how two
opposite environmental stress responses (ESRs; Gasch et al,
2000) dominate the entire compendium. This response to
stress is so strong and widespread that other, condition-
specific regulatory programs are hard to detect without the
combination of multiple studies and the application of
sensitive algorithms. As we shall see below, separating the
general stress response into specific modules and comparing
their activities in different conditions provides further insights
into the complex regulation of this biological process.

The cytokinesis transcriptional module

Defined by data from many different experiments, modules
can characterize highly specific biological phenomena. Mod-
ule #126 (Figure 2A and Supplementary website) consists of 11
genes related to cytokinesis and daughter-specific expression.
Of these genes, DSE1-4, SCW11, CTS1, EGT2, AMN1 and BUD9
are known to be localized to the daughter cell during late
mitosis, and are associated with cell wall separation and exit
from mitosis (Colman-Lerner et al, 2001). SUN4 is also known
to be involved in cell septation (Velours et al, 2002) and PRY3
encodes a cell wall-specific protein of unknown function. The
association of these genes into a single module was based on
gene expression data from 261 conditions taken from 30
different studies, and the transcription factor location profiles
of the cell cycle regulators Ace2, Swi5 and Fkh2. Indeed, Ace2
and Swi5 are known to have positive and negative effects,
respectively, on the transcription of some of the genes in this
module (Doolin et al, 2001). Fkh2 is known to regulate genes
required for the G2/M transition and has been implicated
(together with Ndd1 and Mcm1) in the regulation of the SWI5
and ACE2 genes (Simon et al, 2001), but its direct association
to cytokinesis genes, to the best of our knowledge, was not
noted before. This possible role for Fkh2 is supported by
evidence for its involvement in the regulation of pseudohyphal
growth (Zhu et al, 2000) and by its synthetic lethality with
CLA4 (Goehring et al, 2003), a gene involved in polarization
and budding, which functions in a cascade regulating exit from
mitosis (Hofken and Schiebel, 2002). The association of Fkh2
with cytokinesis genes may reflect the need to inhibit the
function of these genes until mitosis is completed or during
transition to pseudohyphal growth.
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The wealth of functional information used to construct the
module enabled us to explore the behavior of this important
transcriptional program across many different experimental
conditions. In particular, we analyzed the behavior of the
module genes in experiments perturbing different transcrip-
tional coactivators and corepressors (Sudarsanam et al, 2000;
Angus-Hill et al, 2001; Geisberg et al, 2001) to try and refine our
understanding of the mechanisms of transcriptional regulation

used in timing the mitotic events. The module exhibits a
statistically significant response in several such experiments
(Figure 2B). Strong induction is observed upon perturbation
of the SWI/SNF chromatin remodeling complex (t-test,
Po0.0001 in minimal media, Po0.001 in rich media, for both
mutants). Strong repression was observed in an experiment
that inactivated the RSC factor Rsc3 (Po0.0004), but no effect
was detected when the RSC factor Rsc30 was inactivated
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Figure 1 Integrating yeast functional data. (A) Bicluster analysis. Our SAMBA biclustering algorithm analyzes an integrated data set to discover an extensive collection
of modules. Each module consists of a set of genes and is supported by a set of functional properties. We analyze novel data sets by testing their effect on the modules
derived from the entire compendium. (B) Modules’ dimensions. The distribution of the number of genes and properties in each module indicates that modules are
characterized by specific sets of genes (10–50) and a large number of different experiments (20–100). (C) Synergism among studies. The graph shows the distribution of
the number of studies contributing to each module. A total of 86% of the modules use data from more than one study. (D) The module–condition view. To obtain a global
view of the behavior of our modules across all conditions, we clustered the module mean values across all conditions. Rows represent modules and columns represent
conditions, with numbered colored bars indicating the study reporting each condition (the full references of the studies are available on the website). We show low means
in green and high means in red. The global view reveals that the massive repression and induction of genes in stressful conditions dominates the compendium. Using our
integrative analysis, we can dissect this response into components and study their specific regulation. The numbers on the right refer to modules addressed in this study.
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(Po0.89). In addition, a strain knocked out for NC2 activity
(BUR6 deletion) exhibited strong increase in the expression
of this module (Po0.0002). Interestingly, the behavior of
module #126 in the SWI/SNF, RSC and NC2 experiments is
unique among all the modules (Supplementary Table 1),
suggesting that the particular combination of cofactors
uncovered may define the particular regulatory behavior of

this module. Taken together, our analysis suggests that the
module is controlled by an extended regulatory program
that includes the well-known Ace2/Swi5 and Fkh2 trans-
cription factors and a unique combination of coactivators
and corepressors (Figure 2C). The cytokinesis module
thus exemplifies the power of our methodology to unravel
the complex regulation network of a group of coordi-
nated genes.

Regulation of the galactose system

We next turned to the analysis of a single high-throughput data
set versus the entire compendium. The yeast galactose
utilization pathway is among the best-characterized biological
systems. In a systematic set of experiments, Ideker et al
(2001) measured the transcriptional response of yeast
strains knocked out for a set of enzymes and regulators
involved in galactose metabolism. The data were then
clustered and analyzed in light of the known Gal4–Gal80–
Gal3 regulatory circuit. We used the galactose data set as a test
case for our methodology. Instead of clustering yeast genes
given their expression in the galactose data set only, we
screened our complete set of modules, which are based
on almost 2000 experiments, for modules that are responsive
in at least one of the conditions analyzed by Ideker et al.
Since the data defining our modules are relevant to many
different aspects of the yeast regulatory network, we were
able to interpret galactose-related conditions from a broad
perspective. We depict the effect of galactose-related
conditions on several central modules in Figure 3A (interactive
visualization of all modules is available on the website). As
expected, the strongest effects are well known and were
easily observed using clustering of the galactose data set alone.
For example, module #389 (Galactose metabolism, 20�160),
the classical Gal4 regulon, consists mainly of enzymes
required for the utilization of galactose (GAL1,2,7,10) and is
strongly repressed when galactose is lacking from the medium
or when knockouts in the GAL pathway compromise its
yield. The response of other modules, however, is less
predictable and reveals novel regulatory relations between
different processes.

A first surprising effect revealed by our analysis is the
repression of module #524 (RNA processing, 76� 211) in
gal4 strains, in both galactose-containing (paired t-test,
gal4þ galactose/wtþ galactose, Po10�21) and galactose-free
media (gal4�galactose/wt�galactose, Po10�22). The repres-
sion of this module in mutants lacking structural enzymes is
much weaker, and so is the response of the wild-type strain to
lack of galactose (gal4þ galactose/wt�galactose, Po10�10).
Moreover, in three strains knocked out for Gal80 (the Gal4
inhibitor), grown in medium lacking galactose, we observe
induction of module #524 (gal80/wt, Po10�17; gal80gal2/wt,
Po10�25; gal80gal4/wt, Po10�20). This result includes the
double mutant gal4gal80, implying that the effect is Gal4-
independent. The induction of module #524 is particularly
interesting given the slow growth and transcriptional repres-
sion of module #232 (Ribosomal proteins, 145� 269) in the
gal80 strains. Across the entire compendium, the expression of
modules #524 and #232 is tightly coupled, as both are strongly
repressed under general stress conditions (Gasch et al, 2000).
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Figure 2 Using a massive functional compendium—the cytokinesis module.
(A) Module #126 is defined by data from 30 different studies and contains a
highly coherent set of 11 genes, all but two of which are known to be involved in
late mitosis and in cell septation. (B) Regulation by coactivators and
corepressors. We plot the average module expression (red) and the background
genome-wide mean and standard deviation for a random set containing 11 genes
(green) under conditions in which the Swi/Snf complex are not expressed in
minimal and rich media (Sudarsanam et al, 2000), in conditions blocking
components of the RSC complex (Angus-Hill et al, 2001) and in a strain lacking
Bur6, a component of the NC2 cofactor (Geisberg et al, 2001). There is
significant induction in all Swi/Snf conditions and in the NC2 experiment,
indicating a possible negative role for these cofactors in regulating the module.
There is also a significant repression in the rsc3 strain (but not in the rsc30
strain), indicating that RSC may have a positive role in the regulation of the
module. (C) Extended regulatory model for the cytokinesis module. See text for
details.
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The correlation between the mean expressions of the two
modules across 1500 gene expression conditions is indeed
very high (Pearson¼0.73; Supplementary Figure 2). The
marked difference between the expression of the two modules

in the gal80 and gal4 experiments (Figure 3B) represents a
regulatory discrepancy whose mechanistic causes are still
unclear. Module #524 is regulated by the two highly enriched
cis-elements PAC (GCGATGAG) and RRPE (GAAAATTTT)
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Figure 3 Revisiting the galactose system. (A) Response of selected modules to disruptions in the GAL system. We plot the mean and standard deviation of the
expression of several key modules that our algorithm associated with conditions from the galactose data set (Ideker et al, 2001). For each module, we plot the behavior
in four galactose-related mutants and two double mutants grown with (red) and without (green) galactose. Module #389 (Galactose metabolism) is strongly repressed
when galactose is lacking or when the GAL pathway yield is compromised. Modules #232 (Ribosomal proteins) and #524 (RNA processing) are repressed when growth
is slower. Interestingly, module #524 is particularly repressed when gal4 is knocked out, and is induced when gal80 is knocked out and galactose is not available (right-
most bars). Modules #536 (Respiration) and #1215 (Gluconeogenesis) are induced when galactose is not available or not processed. Here again, the gal80 mutants
exhibit altered behavior (module #536 is repressed). Modules #503 (Purines), #686 (Amino-acid biosynthesis) and #967 (Methionine metabolism) are repressed when
growth is slower. (B) Disrupted coupling of two stress-related modules. The plot shows the mean expression of modules #232 (Ribosomal proteins) and #524 (RNA
processing) in the galactose pathway experiments, together with the linear regression line of the dependency between the mean expression levels of the two modules
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regulation of the modules. (C) Hap4-independent repression of module #536 in gal80 strains. We plot the mean expression of module #536 (Respiration) and the
expression of the gene coding for its direct regulator Hap4 in selected conditions. When galactose is not available, module #536 is induced via increased expression of
HAP4. Similar effect is observed in several other conditions, for example in the gal4 strain. In gal80 strains, we observe repression (or lack of induction) of the module,
although the HAP4 gene is expressed at high levels.
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(Hughes et al, 2000), but it is still not known which factors
bind these sites. Module #232 is regulated by Rap1 and
possibly by additional factors (Marion et al, 2004). Some
interaction between these factors, their coactivators/repres-
sors and the Gal4/Gal80 circuit may account for the mutants
altered response.

Mutations in genes of the galactose pathway and changes
in the carbon source have an extensive effect on the yeast
metabolism as a whole. The transcriptional regulation
of nonfermentative metabolism involves a complex network
of transcriptional regulators, coactivators and corepressors
(Schuller, 2003). Many of the modules that were associated
with the galactose data set are linked to different metabolic
activities. Using data from different studies, we can dissect the
general metabolic response into basic building blocks, thereby
shedding light on the regulatory interactions that gave rise
to it (Figure 3). Overall, we observe two types of behavior.
Modules #1215 (Gluconeogenesis, 54� 86) and #536 (Respira-
tion, 44�156) are generally induced in conditions in which
the yield of the galactose pathway is compromised. Modules
#503 (Purine metabolism, 13�198), #686 (Amino-acid bio-
synthesis, 18�150) and #967 (Methionine metabolism,
15�156) are repressed under these conditions. This general
trend fits well with our understanding of the yeast regulatory
program. Yeast cells respond to the lack of galactose-based
energy by increasing the activity of the respiratory pathway
and adapt to slower growth by reducing biomass production.
Given these general, well-documented trends, the behavior of
the gal80 strains again remains unexplained. Module #536
(Respiration), for example, is repressed in gal80, gal2gal80 and
gal4gal80 strains in the absence of galactose (Figure 3C),
although there is no yield from the galactose pathway under
these conditions. The repression cannot be explained by
constitutive expression of GAL genes, given that expression is
reduced also in the gal4gal80 double mutant. Module #536 is
regulated by the Hap2–5 complex, and HAP4 is itself part of the
module (Schuller, 2003). There is a strong correlation between
Hap4 expression and expression of module #536 across the
entire compendium (Pearson¼0.65; Supplementary Figure 3).
Nevertheless, in the three conditions in which GAL80 is
inactivated, Hap4 is strongly induced while its module exhibits
significant repression, suggesting the involvement of other
factors in the repression of the respiratory genes. Other
modules show different deviant responses to the gal80
knockout. For example, a Met4/31 module (#967) is induced
in the gal80 strain, in contrast to its general repression in
other conditions with reduced energy flux. Given the involve-
ment of Gal80 in the repression of SAGA recruitment to Gal4-
binding sites (Carrozza et al, 2002) and the similar acetylation
patterns found in the Gal4-, Hap4- and Met4-activation sites
(Deckert and Struhl, 2001), we hypothesize that in media
without galactose addition, Gal80 is capable of affecting
the recruitment of coactivators or corepressors for factors
other than Gal4. Overall, our results provide an explanation
of the slow growth phenotype of the gal80 strain, suggesting
that deletion of this central regulator has far reaching
implications, most notably breaking of the coupling
between Ribosomal proteins and RNA processing modules,
and the blocking of Hap4-dependent activation of the
Respiration module.

Response to hyperosmotic stress

In response to hyperosmotic stress, yeast cells activate a
combination of signaling pathways and transcriptional pro-
grams (Hohmann, 2002). We applied our analysis framework
to a set of 129 expression profiles obtained in experiments that
tested the response of S. cerevisiae to varying levels of osmotic
stress in strains knocked out for Hog1, Ssk1 and Ste11, three
important proteins in the HOG pathway (O’Rourke and
Herskowitz, 2004). The response to high levels of osmotic
stress is widespread and involves at least one-fifth of the
yeast genome. We found that this massive response can be
dissected into finer transcriptional programs that govern
specific modules (Figure 4A). For example, modules #232
(Ribosomal proteins, 145� 269) and #524 (RNA processing,
76� 211) are strongly repressed in 0.5 M KCl. In the wild type,
repression peaks at 20 min and is alleviated in a HOG1-
dependent manner after 40 min. This joint effect was noted
before, based on standard clustering analysis. Using the
compendium, we uncover a refined regulatory program. In
module #524, the hog1 and ssk1 strains exhibit reduced
repression in the presence of 0.5 M KCl (paired t-test; hog1/wt,
Po10�20; ssk1/wt, Po10�14; Supplementary Figure 4A),
but no reduction is observed for ste11 (ste11/wt, Po0.14).
Derepression by a hog1/ssk1 knockout is also noticeable
in a medium containing 0.125 M KCl, (hog1/wt, Po10�28;
ssk1/wt, Po10�20; Supplementary Figure 4B), and the effect is
almost identical for the two knockouts (hog1/ssk1, Po0.002).
Our analysis thus suggests that in medium/low osmotic
shock, an Ssk1/Hog1-transmitted signal represses the RNA
processing module activity, whereas during high osmotic
shock, a Hog1-independent pathway is repressing the
module additively to the Ssk1/Hog1-mediated effect
(Figure 4B and C).

Similar decomposition of the general stress response
into components is possible for the set of stress-induced
genes. Two of the transcriptional modules that are activated in
general stress conditions (and specifically in the 0.5 M KCl
experiments) are module #536 (Respiration, regulated by
Hap4) and module #1215 (Gluconeogenesis). Interestingly,
while the response of both modules is remarkably similar in
the early phases of the osmoregulation program (0–40 min),
only the Respiration module shows a strong secondary
induction after 60 min (Figure 4B). Examination of the
expression of the HAP4 gene, which is generally coupled to
the module’s expression level (Supplementary Figure 3), also
reveals an increase after 60 min (Figure 4D), supporting the
hypothesis that module #536 undergoes two consecutive
inductions, one via some common mechanism (which also
affects module #1215) and a second that occurs later and is
facilitated by the increased levels in Hap4 expression. This
second wave of regulation is the adaptive response of yeast
cells that have recovered from the osmotic shock, in
preparation for further growth.

Analysis of the behavior of module #985 (Ergosterol
biosynthesis, 18� 69) provides another example for the power
of the integrative approach. A clear Hog1-dependent repres-
sion is observed. This result is in sharp contrast to the general
ESR pattern, in which only derepression is Hog1 dependent.
Previous work has shown that ergosterol-related genes
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respond strongly to osmotic shock (Hohmann, 2002). Our
analysis suggests that their repression directly depends on
Hog1 through an unknown signaling pathway that does not
involve Ssk1 or Ste11.

Discussion

After almost a decade of microarray-based experiments, a
revision of the paradigm for their computational analysis is
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Figure 4 Revisiting the response to hyperosmotic stress. (A) Outline of the hyperosmotic stress signaling pathway. Two Hog-dependent (Ssk1, Ste11) and one Hog-
independent (Msn2/4) pathways mediate the hyperosmotic stress signal. (B) Response of selected modules to osmotic stress. We plot the average expression of
several modules that our algorithm associated with osmotic stress conditions, in several strains knocked out for key players in the HOG pathway. The graphs show
modules’ mean expression time courses after treatment with 0.5 M KCl. In general, modules #232 (Ribosomal proteins) and #524 (RNA processing), #686 (Amino-acid
biosynthesis), #503 (Purines) and #985 (Ergosterol biosynthesis) are repressed as part of the ESR, with peak response observed at 20 min and re-establishment of
normal transcription after 40–60 min. Modules #536 (Respiration) and #1215 (Gluconeogenesis) are induced with similar kinetics. Specific modules show particular
deviation from these two general trends. (C) Multiple signals additively regulate module #524. We plot the mean expression of module #524 and its standard deviations
in four strains (wt, hog1, ste11, ssk1) under two levels of hyperosmotic shock (0.5 and 0.125 M KCl). There is marked difference between the ssk1 and hog1 strains
and the wt, ste11 strains, suggesting the existence of two regulatory mechanisms. An osmotic stress-specific, Ssk1/Hog1-mediated signal represses the module in both
low and high levels of osmotic shock. In high osmotic shock, a second, Hog1-independent signal (which is probably related to the general ESR) is active in parallel to the
Hog1 signal and contributes additively to the repression of the module. (D) A two-phase regulatory program for module #536. We show the time courses of the mean
expression of module #536 (Respiration) and its main regulator Hap4, when treated with 0.5 M KCl in the wt strain. The module exhibits weak and poorly correlated
induction, which is Hap4 independent, during the primary phase of the osmoregulation program (0–40 min). A second phase is observed at 60–180 min, where a tightly
correlated induction is facilitated by increase in HAP4 expression.

Integrative analysis of genome-wide experiments
A Tanay et al

& 2005 EMBO and Nature Publishing Group Molecular Systems Biology 2005 7



appropriate. In this work, we have introduced a new method
for the simultaneous analysis of new high-throughput data sets
given a large compendium of diverse functional data. We have
shown that the integrative approach greatly extends our
understanding of the regulation of biological processes and
allows the decomposition of seemingly global responses into
characterized regulatory programs of specific biological
modules. The methodology we envision (Figure 5) relies on
a growing compendium of public data sets and on our robust
algorithms for revealing biological correlations present within
these data. Given the data of a new study, its integration with
the large body of prior data allows us to recast the new
experiments in terms of (a) the behavior of already character-
ized modules and (b) new modules that are discovered
for the first time upon the addition of the new data. Using
this approach, backed by appropriate community effort for
modules nomenclature (e.g., based on Gene Ontologies), the
results of high-throughput experiments will be easier to assess
and share, as it will be clear what in the new experiments
is new and what confirms previously published evidence.
We are constructing an interactive web interface that will
provide the infrastructure for this suggested methodology
(www.cs.tau.ac.il/~rshamir/simba).

In this paper, we have focused on the analysis of yeast data.
Functional genomics resources are available for many other
model systems, and are rapidly accumulating in repositories

such as GEO (www.ncbi.nlm.nih.gov) and ArrayExpress
(www.ebi.ac.uk). Recently, a set of literature-based and
preprocessed gene sets were used to analyze a large cancer-
related data compendium. The integration of data was shown
to be synergistic, even across different cancer types (Segal
et al, 2004). Our methodology allows integrated analysis
together with the discovery of new modules, making it an
effective approach for the routine analysis of new high-
throughput data. Finally, recent studies have shown that
transcriptional modules are sometimes highly conserved
among species (Stuart et al, 2003; Bergmann et al, 2004;
Tanay et al, 2004a). Having established deeper understanding
of this conservation, it will be desirable to seek further
integration of functional data across different species.

Materials and methods

Data preparation

We used data from 60 publications encompassing 1767 conditions. The
complete list of publications and experiments is available on
Supplementary website. Data were downloaded from papers’ web
supplements. For Affymetrix array experiments, we divided each
condition’s profile by a common reference condition (typically the zero
time point of the experiment; see Supplementary website for more
details). For other experiments, we used the normalization reported in
the original papers.
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Figure 5 A new paradigm for analyzing functional genomic experiments. According to the current prevalent paradigm (top part), novel data are analyzed in isolation,
typically using clustering and expert manual analysis of specific clusters. We suggest a new approach (lower part) in which the community maintains the current publicly
available data sets and the set of biological modules revealed by them. Modules may cover all aspects of biological processes and their regulation, as revealed, for
example, by our biclustering algorithm. Using this resource, novel data sets can be represented in terms of the behavior of known and novel modules, providing an
objective and transparent method for understanding, communicating and reusing high-throughput data.
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In the SAMBA framework, each experiment defines one or several
properties. For example, a gene expression experiment can be
transformed into four properties, representing strong upregulation,
weak upregulation, weak downregulation and strong downregulation
in the tested condition. We assign genes with properties by applying
translation functions that map experimental values to probabilities of
having a property. For example, a gene with high gene expression
readout in a condition X will be assigned with the property ‘strong
upregulation in condition X’ with high probability. The notion of
property is very flexible and can accommodate diverse sources of data.
For example, protein interaction data can be transformed into
properties of the form ‘interacting with protein X’ and phenotypes
can be transformed to properties of the form ‘mutant is slowly growing
on medium Y’. See Tanay et al (2004a, b) for more details. We
optimized the performance of SAMBA by testing the effect of changes
in the parameters of translation functions, and selected parameters
that were robust to addition of new data and are thus expected to
provide good results as the compendium size increases. Note that for
generating protein interaction properties, we used properties for
proteins with at least 15 targets and discarded all others as they bias the
statistical model. SAMBA detected statistically significant biclusters
including half (133 out of 265) of the protein interaction properties.
The other properties were either too distinct to be correlated with other
properties or were too noisy for the statistical stringency of the model.
All the parameters defining the translation functions we used are
available on our website.

SAMBA biclustering

We applied the SAMBA 2.0 program to the entire compendium with
standard parameters. The program searches the combined data set and
outputs a set of modules, each of which is a set of genes that are
correlated in a set of properties. Each gene may be part of several
modules, allowing us to reveal multiple functions for it. Similarly, each
property may belong to several modules, allowing us to associate it
with different biological processes. The modules generated were then
subjected to additional analysis. We associated biclusters with
functional annotation terms using SGD GO associations and functional
enrichment tests as previously described (Tanay et al, 2004b). We
searched for enriched cis-elements in all bicluster gene sets using
promoters including 600 bp upstream of each ORF, as described (Tanay
and Shamir, 2004). Visualizations of modules and the effects of specific
experiments on them are available on our prototype website
(www.cs.tau.ac.il/~samba/). More information on the algorithms
and their parameters is available on Supplementary website.

Module profiling

Given a target data set and the compendium, we derive the set of
responding modules as those that contain at least one property from
the target data set. SAMBA adds a property to a module, its genes
having significant and correlated levels over the property; therefore,
using this approach, we extract only modules that significantly
respond in the analyzed experiments. We can then study the behavior
of the responding modules in the entire analyzed data set.

Testing the significance of changes in modules’
mean expression

To evaluate changes in the mean expression of a module between two
conditions, we used a standard two-tailed paired t-test. To test the
significance of an induction or repression of a module in a single
condition, we performed two-tailed two-sample unpaired t-tests
comparing the module’s genes and the entire genome. To compute
compendium trends of module #524 and #232, we used standard best
linear fit and computed the standard deviation of the bias of samples
from the linear curve. We also computed statistics using nonpara-
metric tests with similar results. The above hypothesis testing
procedures were used after employing SAMBA, as additional tests of
claims on the regulation of specific modules.

URLs

More details on our results, including details of the expression
compendium, algorithmic details and interactive module visualiza-
tions, can be found on our Supplementary website (www.cs.tau.ac.il/
~rshamir/simba/).
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