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Abstract
In population pharmacokinetic (PK) models, interindividual variability is ex-
plained by implementation of covariates in the model. The widely used forward 
stepwise selection method is sensitive to bias, which may lead to an incorrect 
inclusion of covariates. Alternatives, such as the full fixed effects model, reduce 
this bias but are dependent on the chosen implementation of each covariate. As 
the correct functional forms are unknown, this may still lead to an inaccurate se-
lection of covariates. Machine learning (ML) techniques can potentially be used 
to learn the optimal functional forms for implementing covariates directly from 
data. A recent study suggested that using ML resulted in an improved selection 
of influential covariates. However, how do we select the appropriate functional 
form for including these covariates? In this work, we use SHapley Additive exPla-
nations (SHAP) to infer the relationship between covariates and PK parameters 
from ML models. As a case- study, we use data from 119 patients with hemophilia 
A receiving clotting factor VIII concentrate peri- operatively. We fit both a ran-
dom forest and a XGBoost model to predict empirical Bayes estimated clearance 
and central volume from a base nonlinear mixed effects model. Next, we show 
that SHAP reveals covariate relationships which match previous findings. In ad-
dition, we can reveal subtle effects arising from combinations of covariates dif-
ficult to obtain using other methods of covariate analysis. We conclude that the 
proposed method can be used to extend ML- based covariate selection, and holds 
potential as a complete full model alternative to classical covariate analyses.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Covariate selection in pharmacokinetic (PK) modeling is a complex process and 
is sensitive to bias. Machine- learning (ML) techniques might help to simplify and 
potentially improve this process, but are difficult to interpret as is.
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INTRODUCTION

In population pharmacokinetic (PK) modeling, identifica-
tion of the relationship between PK parameters and co-
variates is important for the explanation of interindividual 
variation (IIV). The classic stepwise method is among the 
most popular methods but is not without flaws. In step-
wise methods, covariate selection is determined by a sig-
nificant change in the objective function value following 
inclusion or exclusion of each covariate. Due to the or-
dered nature of this process, the method may suffer from 
bias and multiplicity issues.1– 3

The full fixed effects model (FFEM), which is based on 
a full model fit, was introduced to reduce selection bias.4 
In this method, all covariates of interest are tested simul-
taneously and included if they result in a clinically rele-
vant change of the typical PK parameters. Although an 
improvement over the stepwise method, the FFEM is not 
able to solve all prior issues. In both methods, an assump-
tion must be made about the functional form describing 
the relationship between the covariate and the PK param-
eters. This encourages data dredging because various func-
tional forms can be tested until one satisfies the criteria for 
inclusion. Furthermore, true covariates may be excluded 
when suboptimal functional forms are used. In summary, 
we identify a need for a covariate selection method which 
performs both a full model fit, while simultaneously esti-
mating the optimal functional form of each covariate.

A recent study describes the use of machine learning 
(ML) for performing covariate selection for PK models.5 
Here, the authors discuss how combining ML algorithms 
with covariate importance scores can be used to obtain a 
similar or better selection of covariates compared to step-
wise methods. Other studies further discuss using such an 

approach on real- life data to obtain a set of predictive co-
variates.6,7 ML algorithms might be suitable for this task as 
they can learn covariate relationships directly from data. 
These methods might thus reduce the issue of selecting 
suboptimal functional forms when testing covariates for 
inclusion. Many ML software packages provide measures 
of covariate importance. For tree- based methods (e.g., 
random forests8 or gradient boosting trees9), examples 
include counting the number of uses of each covariate, 
or more sophisticated measures, such as Gini or permu-
tation importance. Although often found to be relatively 
accurate, there are situations where these measures may 
be biased.10 In addition, they only provide a single score 
of importance without information about the relationship 
between each covariate and model output. After obtaining 
a set of important covariates, how do we now select the 
functional form to implement these covariates without 
again resorting to stepwise methods?

SHapley Additive exPlanations (SHAP) is a promising 
model explanation technique due to its strong theoreti-
cal base.11 In addition to a more robust benchmark per-
formance compared to other approaches,12 SHAP allows 
for identification of the influence of specific covariates 
and their effect on each individual prediction. The use of 
SHAP might improve upon importance scores by also al-
lowing for the analysis of the relationship between covari-
ates and model output. Its use for covariate selection has, 
however, not yet been explored.

In this study, we will focus on tree- based ML algorithms, 
as there exists an exact method for the computation of 
SHAP values for these types of models.12 Specifically, we 
will use the random forest and XGBoost algorithms.13 Both 
methods create an ensemble model of decision trees. A de-
cision tree is an algorithm that groups observations into bins 

WHAT QUESTION DID THIS STUDY ADDRESS?
Can we use ML models to infer the optimal functional form to represent the 
relationship between covariates and PK parameters using SHapley Additive 
exPlanations?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
This study presents an extension to covariate selection procedures using ML 
methods. The resulting framework allows for the detection of intricate effects of 
covariates, which far exceed the capabilities of classical (linear) covariate analy-
ses. In addition, it is more flexible with respect to covariate importance scores 
generally used in ML- based covariate selection.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
By learning the optimal functional form of covariates based on data the com-
plexity of covariate selection and implementation is reduced. This accelerates 
PK model development and might help improve the accuracy of PK parameter 
estimates.
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(appropriately called leaves), which share a similar value for 
the response variable. Each tree is composed of multiple lay-
ers, where the observation is split into two leaves based on 
the value of one of the covariates. In a random forest, the 
model prediction is averaged over multiple independently 
fit trees. Each tree is fit using a subset of the data adding 
stochasticity to the learning process aiming to reduce over-
fitting. In gradient boosting trees (e.g., XGBoost), the trees 
are built sequentially, so that additional decision trees are 
added if they improve the prediction of the previous model 
ensemble. Each tree is thus fit to improve the mistakes of the 
previous tree. The objective function also contains a regular-
ization term which penalizes the addition of complex mod-
els. In contrast to the classic random forest implementation, 
XGBoost supports missing values.13

Our goal is to evaluate the value of combining ML and 
SHAP for enriching ML- based covariate analysis in the 
context of PK models. To this end, we will fit a random 
forest and XGBoost model to predict empirical Bayes esti-
mates of PK parameters and perform a SHAP analysis on 
the most accurate model. As a case study, we use a retro-
spective dataset of patients with hemophilia A receiving 
clotting factor VIII (FVIII) while undergoing surgery.14 
We explore the output of the SHAP analysis and present 
how it can be used for understanding the relationship be-
tween covariates and PK parameters.

METHODS

Dataset

We used retrospective data of 119 individuals with hemo-
philia A undergoing surgery in five different hemophilia 
treatment centers in the Netherlands.14 Patients received 
clotting factor FVIII concentrate (via bolus or continuous 
doses) to reach target FVIII levels as set by the Dutch National 
Hemophilia Consensus. This guideline recommends the fol-
lowing FVIII peak levels during the peri- operative window: 
0.80– 1.00 IUml−1 at 0– 24 h, 0.50– 0.80 IUml−1 at 24– 120 h, 
and 0.30– 0.50 IUml−1 beyond 120 h post- surgery. A total of 
3350 FVIII levels were measured during 197 surgical proce-
dures. All FVIII levels were measured using the one- stage 
clotting assay. Timing and dosage of measurements was 
determined at the discretion of the treating physician. For 
most patients, this resulted in more frequent measurements 
early in the peri- operative window, and occasional measure-
ments post- surgery to validate if the patient still met target 
levels. The following 13 covariates were chosen for analysis: 
treatment center (1– 5), pre- assessed surgical risk (low vs. 
high15), use of �- domain deleted recombinant FVIII (BDD- 
FVIII, moroctocog alfa/Refacto AF), hemophilia severity 
(moderate vs. severe), FVIII baseline levels, blood group (O 

vs. non- O), blood loss during surgery, occurrence of a bleed-
ing complication, body weight, body mass index (BMI), age 
in years, and von Willebrand factor antigen (VWF:Ag) and 
activity (VWF:act) levels. Five covariates contained missing 
values. Missing values were either imputed by mean (for 
continuous variables) or addition of a separate category (for 
categorical variables).

Prediction of PK parameters using 
machine learning

Empirical Bayes estimates of the PK parameters were ob-
tained by fitting a base two- compartment model to the data 
using NONMEM (ICON Development Solutions, Ellicott 
City, MD16). Random effects were only estimated for the 
clearance and central volume parameters in order to im-
prove model stability. A combined additive and propor-
tional error model was used. We fixed the residual error 
estimates to �1 = 0.08 (additive error) and �2 = 0.17 (pro-
portional error) to improve model stability and shrink-
age while matching earlier findings.17,18 Random forest 
(Python scikit- learn package, version 0.23.2) and XGBoost 
(Python xgboost package, version 1.4.2) models were fit 
to predict the empirical Bayes estimated clearance and 
central volume distribution parameters independently. 
We fit the XGBoost models to both the original (contain-
ing missing values) and imputed data set. We performed a 
10- fold cross- validation for the estimation of test set error 
and for SHAP value calculation. Default model hyperpa-
rameters were used (see Material S1 for details). Model 
accuracy was represented as the average mean absolute 
error (MAE) ± one SD of PK parameter predictions on 
the 10 test sets. We also calculated the root mean squared 
error (RMSE) of predicted FVIII levels by solving a two- 
compartment model using the test set predicted PK param-
eters. The empirical Bayes estimated inter- compartmental 
clearance and peripheral volume parameters were directly 
used for all patients. FVIII level predictions were performed 
in the Julia programming language (Julia Computing, Inc., 
version 1.6.0) using the DifferentialEquations package 
(version 6.17.1).19 The RMSE was presented as the mean 
and SD of the RMSE calculated for each individual patient.

SHAP analysis

A SHAP analysis (Python shap package, version 0.36.0) 
was performed to explain model output. This method de-
composes a model f (x) into a simpler additive model:

f (x) = �0 +

M
∑

i=1

�xi
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Here, the SHAP value �xi of covariate i ∈M represents 
its direct effect on the model prediction, whereas �0 rep-
resents the typical prediction. By cumulating the SHAP 
values for each individual, we can visualize their rela-
tionships with each of the covariates. For each of the 10 
cross- validations, we calculated SHAP values on the cor-
responding test set. The SHAP values were pooled and a 
smoothened representation of the effect was obtained by 
means of locally estimated scatterplot smoothing (LOESS; 
Python statsmodels package, version 0.12.2). SHAP val-
ues for missing continuous covariates were removed from 
visualizations.

Model code

All model code, including implementation instructions, 
will be made available at https://github.com/Janss ena/
pkSHAP at the time of publication.

RESULTS

Patient characteristics and model accuracy

An overview of the patient characteristics, missing data, 
and the base model parameter estimates is shown in 
Table 1. RMSE of FVIII level predictions by the base non-
linear mixed effects (NLME) model was 0.23 IUml−1 ± 0.27 
(SD). Accuracy of the ML models is depicted in Table 2. 
The MAE of PK parameter predictions by both ML algo-
rithms fit to the imputed data set was similar. The XGBoost 
model fit to the original dataset resulted in higher MAE of 
both clearance (43.8 vs. 40.4 ml/h), as well as central vol-
ume predictions (893 vs. 807 ml) compared to the random 
forest model. In addition, the RMSE of the resulting FVIII 
level predictions was higher for the XGBoost model (0.36 
vs. 0.32 IUml−1). The MAE of PK parameter predictions 
was indicative of the presence of residual IIV unexplained 
by the current set of covariates.

SHAP analysis

We present an overview of the SHAP values for the ran-
dom forest models in Figure 1. This visualization can, for 
example, be used for the identification of influential co-
variates, as indicated by the horizontal span of SHAP val-
ues. Alternatively, we can use feature importance scores 
or the mean absolute SHAP value to rank the covariates 
based on influence. We have provided a comparison of 
these two scores in Figure S1. Both scores seem to lead to 
relatively similar results.

For both PK parameters, patient weight was the most 
influential covariate. For clearance (Figure  1a), treat-
ment center, blood group, age, and VWF:Ag appeared to 
be relatively influential. For central volume (Figure 1b), 
BMI and use of BDD- rFVIII concentrate seem to be the 
most important covariates aside from patient weight. 

T A B L E  1  Patient characteristics

No. of procedures 
(%) or median 
[minimum- 
maximum]

No. of 
missing 
data (%)

Covariates

Weight, kg 75.0 [5– 111] 0 (0)

Age, years 39.8 [0.24– 77.7] 0 (0)

BMI 24.1 [13.6– 32.8] 21 (10.7)

Treatment center 0 (0)

One 40 (20.3)

Two 45 (22.8)

Three 76 (38.6)

Four 16 (8.1)

Five 20 (10.2)

Blood group 26 (13.2)

Non- O 82 (41.6)

O 80 (40.6)

FVIII concentrate 3 (1.5)

BDD- rFVIII 28 (14.2)

Non BDD- rFVIII 166 (84.3)

High pre- assessed 
surgical risk

97 (49.2) 0 (0)

Has severe hemophilia 147 (74.6) 0 (0)

Blood loss, ml 0 [0– 6700] 0 (0)

Had bleeding 
complication

30 (15.2) 0 (0)

FVIII baseline level, 
IUml−1

0.0 [0.0– 0.05] 0 (0)

VWF:Ag, % 120 [25– 250] 79 (40.1)

VWF:Act, % 130 [24– 270] 99 (50.3)

NLME model parameters

CL, ml/h 163 [29.5– 387]

V1, ml 3030 [260– 9710]

Q, ml/h 56.9

V2, ml 1270

�CL (%CV) 65.2

�V1 (%CV) 83.5

Abbreviations: %CV, percent coefficient of variation; BDD- rFVIII,  
�- domain deleted recombinant clotting factor FVIII; BMI, body mass index; 
CL, clearance; NLME, nonlinear mixed effects; Q, intercompartmental 
clearance; V1, central volume; V2, peripheral volume; VWF:Act, von 
Willebrand factor activity; VWF:Ag, von Willebrand factor antigen.

https://github.com/Janssena/pkSHAP
https://github.com/Janssena/pkSHAP
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The remaining covariates seem to be less influential for 
explaining the prediction. We can also take a look at the 
SHAP values for a single individual (Figure 2). Here, we 
can see the exact change in clearance and central vol-
ume resulting from the inclusion of each covariate.

Our main motivation for performing the SHAP anal-
ysis was the ability to visualize the relationship between 
the calculated SHAP values and each covariate of interest. 
In Figure 3, we present the resulting relationships for six 
covariates from the clearance model and three covariates 
from the central volume model. We observed a positive re-
lationship between body weight and clearance, which flat-
tened for weights above 65 kg (Figure 3a). For age, we saw 
a negative relationship with clearance, similar to earlier 
findings.16 We noticed that individuals with VWF:Ag levels 
below 100% had higher clearance than those with higher 

levels (Figure  3c). In addition, we observed that patients 
with blood group O displayed an increased clearance com-
pared to non- O individuals (Figure 3d). Both these findings 
were in line with physiological concepts of hemostasis. 
Next, we saw that the model predicts a decrease in clear-
ance for individuals in center one, possibly as result of a 
confounder (Figure 3e). Finally, individuals who received a 
BDD- rFVIII concentrate displayed slightly increased clear-
ance compared to those who did not (Figure 3f).

For central volume, we also noted a positive relation-
ship with body weight, which flattened slightly with in-
creasing body weight (Figure 3g). We saw a sharp decrease 
in the SHAP values for central volume for individuals with 
a BMI 25 (ie, those classified as overweight; Figure 3h). 
Finally, we saw an increase in the SHAP values for indi-
viduals who received BDD- rFVIII concentrate (Figure 3i).

Random forest XGBoost XGBoost impute

MAE of CL predictions, 
ml/h

40.4 ± 10.5 SD  
(R2 = 0.56)

43.8 ± 10.8 SD  
(R2 = 0.48)

42.4 ± 11.0 SD  
(R2 = 0.50)

MAE of V1 predictions, 
ml

807 ± 320 SD  
(R2 = 0.49)

893 ± 356 SD  
(R2 = 0.37)

817 ± 308 SD  
(R2 = 0.47)

RMSE of concentration 
predictions, IUml−1

0.32 ± 0.20 SD 0.36 ± 0.26 SD 0.33 ± 0.22 SD

Abbreviations: CL, clearance; MAE, mean absolute error; PK, pharmacokinetic; RMSE, root mean 
squared error; SD, standard deviation; V1, central volume.

F I G U R E  1  Overview of SHAP values for random forest model. SHAP values of the clearance (a) and central volume (b) are shown 
as calculated for the random forest model. The covariate value is indicated by color. The horizontal span of the SHAP values indicate the 
change in the parameters value. The larger the span, the larger the changes in PK parameter and thus the more important the covariate. 
Covariates are ranked from most (top) to least (bottom) influential by means of their mean absolute SHAP value. BDD- rFVIII, �- domain 
deleted recombinant clotting factor FVIII; BMI, body mass index; PK, pharmacokinetic; SHAP, SHapley Additive exPlanations; VWF, von 
Willebrand factor.

(a) (b)

T A B L E  2  Accuracy of PK parameter 
and concentration predictions
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We could further push the analysis by examining the 
combined effects of multiple covariates (Figure 4). Because 
body weight, BMI, and age were correlated, the true effect 
of either covariate might have been obscured by the oth-
ers. We combined their respective SHAP values to deter-
mine if there was a unique effect of including the separate 
covariates. After this intervention, there were only small 
differences between the SHAP values of weight alone ver-
sus those of weight and BMI combined for clearance. The 
same was true for the combined SHAP values of weight 
and age for central volume. However, combining the SHAP 
values of weight and age for clearance showed that part of 
its variance could be well explained by age for individuals 
with a body weight above 65 kg (Figure  4a). Combining 
the SHAP values of weight and BMI for central volume re-
sulted in a more pronounced flattening of SHAP values for 
individuals with a body weight above 65 kg, although con-
siderable variance remained (comparing Figures  3g and 

4b). Earlier, we identified a difference in the SHAP val-
ues of clearance for patients receiving treatment in center 
one. The SHAP analysis suggests that individuals without 
blood group O had SHAP values closer to zero compared 
to individuals with blood group O (Figure  4c). No such 
effect is seen for the other centers. For the SHAP values 
of blood group for clearance, we see a similar result. Here, 
individuals with lower body weight (65 kg) seem to have 
SHAP values closer to zero than those with higher body 
weight (Figure 4d).

A classical approach to obtain intuition on what func-
tional forms to use would be to plot the empirical Bayes 
estimates of the PK parameters against each of the co-
variates. This visualization in shown in Figure S2. Here, 
we see that for highly correlated covariates (ie, weight), 
it is possible to derive some intuition on the functional 
form to use, but for most covariates their effect is diffi-
cult to discern. This is because we are unable to visualize 

F I G U R E  2  SHAP values for a 
typical patient. SHAP values are shown 
for the clearance (a) and central volume 
(b) predictions by the random forest. 
Data is shown for a 70 kg, 63 year old 
individual with blood group non- O. 
SHAP value for each covariate is shown 
in the corresponding bar. Vertical dashed 
line indicates expected SHAP value. 
The SHAP values sum up to the final 
model prediction. BDD- FVIII, �- domain 
deleted clotting factor FVIII; BMI, body 
mass index; SHAP, SHapley Additive 
exPlanations; VWF, von Willebrand 
factor.

(a)

(b)
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the contribution of each covariate in isolation. Because 
unexplained residual variance is also present in the PK 
parameters, choosing a function to use can be more dif-
ficult due to large variation. This can mean that we have 
to iteratively select functions to implement covariates, 
reproduce the visualizations, and re- evaluate, thus again 
resorting to a stepwise approach. With SHAP, we can 
decide on appropriate functions based on a single full 
model fit.

Although not shown, the functional forms of the covari-
ates as described by the SHAP values of the two XGBoost 
models were very similar to those from the random forest. 
This suggested that the choice between a random forest 
and XGBoost had only minor effects on the subsequent 
SHAP analysis.

DISCUSSION

In this study, we aimed to enrich ML- based covariate se-
lection methods using SHAP in order to infer the optimal 
function form to use when including covariates in PK 
models. We fit both a random forest and XGBoost model 
to predict empirical Bayes estimated PK parameters origi-
nating from a base NLME model. The random forest 
resulted in slightly more accurate PK parameter predic-
tions compared to the XGBoost models. Next, influential 
covariates can, for example, be selected using importance 
scores.5 Finally, after performing a SHAP analysis, we are 
able to examine the relationship between each covariate 
and the PK parameters in greater detail. The SHAP analy-
sis also allowed us to explore more complex interaction 

F I G U R E  3  Relationship between covariates and PK parameters based on SHAP values. Here we visualize the relationship between 
PK parameter and covariate by plotting SHAP value against covariate value. Points represents the SHAP values, while lines indicate the 
LOESS fitted smooth representation of the relationship. For the categorical covariates the SHAP value density is also shown by means of a 
violin plot. We have shown the results for the most important covariates for clearance (a– f) and central volume (g– i). BMI, body mass index; 
LOESS, locally estimated scatterplot smoothing; PK, pharmacokinetic; SHAP, SHapley Additive exPlanations; VWF, von Willebrand factor.
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effects of covariates resulting from the sequential binning 
in tree- based methods. Because SHAP values depict the 
absolute change in output value, the user can intuitively 
determine clinical relevance. These features display the 
benefit of SHAP values compared to using importance 
measures in isolation, where often only a single score of 
importance is obtained.

The SHAP analysis identified covariates that have pre-
viously been associated with the PK of FVIII concentrates. 
In addition, the suggested relationships of the covariates 
are similar to their implementation in previous PK mod-
els.16,20,21 First, we found that patient weight was the most 
important covariate to explain IIV for both clearance and 
central volume. The concept of allometric scaling is often 
applied to the relationship between weight and FVIII 
clearance. This is mirrored in the flattening of the SHAP 
values as weight increases (Figure  3a,g). As the central 
volume compartment represents the blood plasma, a re-
lationship resembling a linear interaction with weight 
might be expected. An obvious exception exists for over-
weight individuals, which is represented by the SHAP 
values in the sharp decline in SHAP values seen for indi-
viduals with a BMI greater than 25 (Figure 3h). Measures 
of fat- free mass have been suggested to better predict 

central volume, which could remove the need to model 
the effect of BMI.22

Next, we saw a negative interaction between age and 
clearance. This effect has been demonstrated before,16 
and there might be multiple possible explanations for this 
effect. One such explanation is the finding that several 
blood coagulation factors, including VWF, increase with 
age.23,24 It is well known that VWF binds to FVIII to pro-
tect it from degradation in the blood circulation. Similar 
to this effect, SHAP values for patients with blood group O 
depicted increased FVIII clearance, an effect likely linked 
to lower VWF:Ag levels seen in patients with blood group 
O.25 Looking at the interaction between blood group and 
weight (Figure  4d), we see that individuals below 65 kg 
(ie, usually younger individuals) with blood group non- O 
have relatively higher clearance than heavier individuals. 
This might also be linked to the previously observed in-
crease in VWF:Ag levels with age.23,24 It is possible that 
weight was used by the random forest as a proxy for age. 
Higher VWF:Ag levels were also directly associated with 
a decrease in FVIII clearance by the model (Figure  3c). 
However, considering the large fraction of missing data 
(40.1%), a low number of patients at the extremes of VWF 
levels, and the fact that the measurements were outdated 

F I G U R E  4  Interaction between SHAP values of the covariates. SHAP values of interactions between covariates are shown for the 
clearance (a, c, and d) and central volume (b) models. Points represents the SHAP values, while lines indicate the LOESS fitted smooth 
representation of the relationship. The value of the interacting covariate is indicated by color. For the categorical covariates the SHAP value 
density is also shown by means of a violin plot. BMI, body mass index; LOESS, locally estimated scatterplot smoothing; SHAP, SHapley 
Additive exPlanations.

(a) (b)

(c) (d)
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(ie, not measured during the surgical procedure) there 
remains uncertainty about the observed relationship be-
tween VWF:Ag and clearance. Interpreting the effects of 
covariates with large fractions of missing data should be 
handled with care.

The SHAP values indicate that individuals from cen-
ter one had lower clearance compared to other centers. 
One possible explanation is the use of different assay re-
agents in this center. The results, however, also indicate 
that this effect is correlated with the patient blood group 
(Figure 4c). There could thus be some other factor influ-
encing this effect. Because we worked with retrospective 
data, it is difficult to underpin the origin of this effect.

Finally, we notice an increase in clearance and central 
volume associated with patients who received BDD- rFVIII 
concentrate. It is well known that use of BDD- rFVIII leads 
to a underestimation of FVIII activity levels when using the 
one- stage assay versus the chromogenic assay.26,27 By chang-
ing the phospholipid source in the one- stage assay, similar 
FVIII activity levels compared to the chromogenic assay 
are measured. This suggests that this effect is not due to in-
creased clearance or distribution volume of BDD- rFVIII.27 
It is possible that this effect leaked into the PK parameter es-
timates (instead of being part of the estimated error) by the 
base NLME model. Most of its effect was on increasing the 
central volume estimate. This can be expected as it would 
lead to a decrease in predicted FVIII levels.

From the previous discussions, we see the possibility 
of identifying many subtle effects captured by the ran-
dom forest model using SHAP. However, the method also 
has limitations. First, the quality of the empirical Bayes 
estimated PK parameters is an important factor affecting 
the accuracy of the ML model and quality of the SHAP 
analysis. In our case, this required fixing the residual error 
parameters and only including random effects on clear-
ance and central volume. It might not be clear in advance 
what measures need to be taken to obtain reliable results. 
Inspecting the distribution of the resulting PK parame-
ters and comparing these to prior results can be a way to 
decide on an effective strategy in obtain good quality PK 
parameter estimates.

Next, we used LOESS to obtain an average represen-
tation of the relationship between the covariates and PK 
parameters. Although this may be helpful for the identifi-
cation of effects, it might also bias the user to find relation-
ships that do not exist. The method might falsely represent 
the true effect when SHAP values have high variance or 
when data are sparse.

Another possible issue lies in the inclusion of covari-
ates that displayed substantial fractions of missing values. 
For example, roughly 40% of VWF:Ag levels were missing. 
Although its relationship with clearance suggested by the 
SHAP values matches previous biological understanding, 

we might not want to include the covariate based on the 
current analysis alone. Previous studies have, however, in-
cluded this covariate using a function matching the SHAP 
values.20,21

A more general issue with the application of SHAP val-
ues in the context of PK models is that it results in an ad-
ditive breakdown of the model. Often, covariate effects in 
PK models are instead implemented as a product of func-
tions. This makes it difficult to compare the outcomes of 
SHAP analyses with classic methods of covariate analysis, 
such as forest plots obtained from an FFEM. In addition, 
by using products, we can prevent the PK parameters from 
becoming negative. However, because the relationships of 
the covariates suggested by the SHAP values match those 
used in previous PK studies, we assume that the functional 
forms might hold (up to a difference in parameters).12,14,15 
Such an assumption will have to be validated.

Finally, although SHAP might be able to explain the 
covariate relationships in the ML model, this does not 
mean that the results are biologically interpretable. ML 
algorithms remain black box models, simply deconstruct-
ing the model in components does not guarantee that the 
results are humanly interpretable. For example, we found 
an effect of center one on clearance, which was correlated 
with patient blood group. With the current data we are un-
able to provide an explanation of this effect. Consequently, 
not every effect found by the SHAP analysis should neces-
sarily be included in PK models.

In summary, we show that combining ML and SHAP 
allows for an in- depth review of the relationships between 
covariates and PK parameters. We have mainly focused 
on using SHAP values for visualizing covariate relation-
ships in ML models. SHAP values can also be used to 
perform covariate selection. Its benefit over importance 
scores will have to be evaluated. Covariate selection is a 
difficult issue, and our method is one of the first to allow 
one to infer the optimal function form to include covari-
ates based on ML algorithms. The method can prove use-
ful for covariate analysis and hypothesis generation.
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