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Abstract

Traditional methods of collecting, sorting, and identifying benthic macroinvertebrate sam-

ples are useful for stream biomonitoring and ecological studies, however, these methods

are time consuming, expensive, and require taxonomic expertise. Estimating larval densities

through collection of post-emergent exuvia can be a practical and time efficient alternative.

We evaluated the use of multiple pass depletion techniques of the post-emergent exuvia of

Pteronarcys californica to estimate larval densities at ten sites in three Colorado rivers. Exu-

via density was highly correlated with both final-instar larval density (R2 = 0.90) and total lar-

val density (R2 = 0.88) and the multiple pass removal technique performed well. Exuvia

surveys found P. californica at three low density sites where benthic sampling failed to

detect it. At moderate and high density sites the exuvia surveys always produced lower den-

sity estimates than benthic surveys. Multiple pass depletion estimates of exuvia proved to

be an accurate and efficient technique at estimating larval densities and provided an effec-

tive alternative for traditional benthic sampling when objectives are detecting and monitoring

P. californica, especially at low density sites.

Introduction

Evaluating the condition of freshwater ecosystems through benthic macroinvertebrate com-

munities is a common approach for stream health assessment and biomonitoring [1–3]. These

methods characterize and compare aquatic invertebrate communities among sites using

regionally developed standards. Benthic studies, while useful, are labor and time intensive,

expensive, sensitive to sampling techniques, and require taxonomic expertise. The costs can be

justified by the valuable data used by government agencies, researchers, and water managers to

monitor water quality and to describe and understand the function of river ecosystems. But, if

sampling objectives are more specific and budgets are limited, whole community benthic sam-

pling may not be necessary or the most appropriate technique.
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One ecologically important aquatic invertebrate commonly used as a bioindicator is the

Giant Salmonfly (Pteronarcys californica Newport). It is useful for biomonitoring because of

its sensitivity to habitat alteration, widespread distribution in western North America [4, 5],

multi-year larval life stage, large body size, easy identification, low larval dispersal, and well

defined larval habitat preferences [6–9]. Pteronarcys californica is among the largest and lon-

gest lived stonefly in western North America [10–12]. In Colorado, larvae typically inhabit

unpolluted, medium to large, permanent streams with unconsolidated cobble and large gravel

substrates between 1,500 and 2,500 m in elevation [13, 14]. Adults emerge from late May to

early July and recruitment begins in April after a 9–10 month egg diapause [15] followed by a

three to four year aquatic larval stage [16, 17]. Mature larvae (larvae expected to hatch that

year) migrate toward the stream bank to stage a highly synchronous adult emergence. Salmon-

flies typically emerge at night crawling out of the water onto riparian substrates to become

winged terrestrial adults where they leave post-emergent exuvia (hereafter, exuvia).

Pteronarcys californica plays an important ecological role, both in biomass and abundance,

in stream and riparian food webs. As shredders, larvae process coarse organic matter like vas-

cular plants and algae [9, 18] making the nutrients available to other feeding groups as detritus

or body biomass [19]. Salmonflies can comprise a large portion of the benthic biomass because

of their large body size and high densities in suitable habitat [20, 21], making them an impor-

tant component of stream food webs for crayfish, other invertebrates, and trout [22, 21]. Ter-

restrial adults are part of a critical link for aquatic-riparian nutrient and energy exchange [23]

as prey for frogs, birds, bats, and spiders [15, 24]. Despite its ecological importance, range-

wide declines of P. californica have been documented in the Logan and Provo Rivers in Utah

[25, 26], at least four rivers in Montana [27], and in the Gunnison and Colorado Rivers in Col-

orado [4, 28] likely due to the effects of large main stem impoundments like changes in flow

and temperature regimes, decreased water quality, and flow depletions.

Density of benthic macroinvertebrates is traditionally estimated by systematically collecting

samples from a fixed area of the stream bed. Alternative methods have been recently developed

to indirectly survey communities by identifying and enumerating exuvia. These methods can

reduce time and labor of traditional techniques while providing reliable population density

estimates, community structure, and life history information. Ruse [29] inferred the commu-

nity structure of chironomids from larval and pupal exuvia and Foster and Soluk [30] esti-

mated densities of the endangered Hine’s emerald dragonfly (Somatochlora hineana) more

accurately by sampling larval exuvia than by collecting adults. Raebel et al. [31] stated the

importance of exuvia collections to avoid bias in adult Odonata surveys. DuBois [32] enhanced

these studies by using a depletion population estimator to approximate exuvia densities and

detection probabilities of Anisoptera. Richards et al. [33] correlated P. californica exuvia densi-

ties and live (wet) larval body weights with substrate embeddedness to demonstrate differences

in life history, distribution, and abundance above and below a main stem impoundment.

Their work provided a foundation in the development of our novel technique to estimate larval

densities through multiple pass removal sampling of exuvia.

Multiple pass removal sampling is a commonly used technique in wildlife and fisheries to

estimate population size of closed populations. Assumptions of the model used to analyze

these data are closure (no deaths, births, emigration, or immigration) and constant capture

probability [34, 35] that must be met to avoid bias [36, 37]. If more than two depletion events

are completed then assumptions about capture probabilities can be relaxed and capture rates

for different passes can be estimated [35]. When populations can be considered geographically

and demographically closed (due to isolation or short sampling time period) then population

estimation can be accomplished rather simply if good unbiased estimates of detection proba-

bility are possible [35].
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The objective of this study was to compare traditional benthic invertebrate sampling with

multiple pass removal techniques to evaluate if closed population estimation models can be

used to estimate the density P. californica larvae. We evaluated this by correlating density esti-

mates of shed exuvia from multiple pass removal models from the riparian area with densities

of larvae from benthic samples.

Materials and methods

Ethics statement

No vertebrate organisms were involved in this study that were covered by an institutional ani-

mal care and use committee. No state or federally endangered species was involved in the

study. The ten study sites included six sites on public land; site 1 on Town of Granby Kaibab

Park, site 4 on Colorado Parks and Wildlife Hot Sulphur Springs State Wildlife Area, and sites

5, 8, 9, and 10 were on Bureau of Land Management property. No specific permissions were

required for these locations and research activities but all of the managing entities were coordi-

nated with during the study. Sites 2, 3, 6, and 7 were on private land and permission was

obtained for all locations and activities of the study.

Study area

We collected salmonfly larvae and exuvia density estimates at 10 sites on three rivers in west-

ern Colorado, USA. Eight study sites were on the Colorado River, one on a main tributary; the

Fraser River, and one site was on the Gunnison River (Fig 1). These rivers are 5th and 6th order

streams with pool-riffle morphology in the headwaters of the Colorado River basin in the

Rocky Mountains. The distance between site one on the Fraser River and site nine on the Col-

orado River is approximately 71 stream kilometers and sites range in elevation from 2,426 m

to 2,119 m. Average wetted widths of the Colorado Rivers ranged from 21.6 m to 42.3 m. Aver-

age wetted width on the Fraser River site was 15.3 m. The Gunnison River site is at an elevation

of 1,608 m and an average wetted width of 33.5 m. Average annual discharge of the Fraser and

Colorado Rivers increases downstream from 4.2 m3/s at site one to 29.2 m3/s at site nine and

the Gunnison River site averages 46.7 m3/s. All sites were located at riffle areas with gravel,

cobble, and boulder substrates.

Benthic sampling

Three benthic subsamples were taken at each site between 15–18 April 2010 from the Colorado

and Fraser Rivers and 10 May 2010 from the Gunnison River, approximately one month prior

to the typical adult emergence of P. californica. All sites were located in riffle areas dominated

by cobble substrates interspersed with boulders and gravel. A modified Surber sampler with a

0.25 m2 sampling frame (55.0 cm x 45.5 cm) and 150 μm mesh net was used. Cobbles larger

than 10 cm in diameter were individually scrubbed with a brush, invertebrates washed into the

net, and then the cobbles removed from the sampling frame. Remaining substrate within the

frame was disturbed to a depth of 10 cm to dislodge invertebrates into the net. Contents were

preserved with 80% ethanol in 2 L plastic jars.

In the lab, all P. californica larvae were sorted, sexed [21, 38], and measured for total length

(TL) from the anterior tip of head to the posterior tip of the epiproct to the nearest millimeter

under a dissecting microscope with a calibrated ocular micrometer. Length frequency histo-

grams for male and female larvae were separately constructed based on TL to separate annual

year classes. Body size measurements can be used to separate cohorts of this merovoltine spe-

cies due to the long lifespan, fast growth, and large size [16, 38, 39]. We based our approach on
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separating annual cohorts on Townsend and Pritchard [16] except we constructed length fre-

quency histograms from total length measurements rather than head-capsule width and wing-

pad length. The largest size cohort of both males and females was considered to be mature lar-

vae, the final instar larvae expected to emerge in that year. Densities of mature larvae and den-

sities of all larvae were calculated and used in separate analyses for correlation with exuvia

densities.

Exuvia sampling

Sampling began with the onset of P. californica adult emergence on the Colorado River at site

nine on 2 June 2010 and proceeded upstream to end at site one on the Fraser River on 21 June

2010; sampling at site 10 on the Gunnison River lasted from 16–23 June 2010. Each site was

sampled beginning on the day when the first exuvia was found or winged adults were observed

and continued daily until exuvia were no longer found. Data collection was performed by

searching for exuvia within a maximum width of 10 m of the bank along two 30.5 m transects

on one side of the river. Exuvia sampling sites were on the stream banks directly adjacent to

benthic sampling sites. Searching at each individual site extended from the water’s edge lat-

erally until no more exuvia were found, the search distance varying by site, generally depend-

ing on the complexity of the shoreline and thickness of riparian vegetation. The average width

searched was measured at each site. Collections at a site were conducted by two to four people

completing two or three removal passes with identical effort and personnel on each pass. Spec-

imens were taken only when attached to dry riparian and emergent substrates; none were

Fig 1. Benthic and exuvia collection sites of Pteronarcys californica in 2010 from the Colorado and Fraser Rivers. Gunnison

River site shown only on inset map.

https://doi.org/10.1371/journal.pone.0227088.g001
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taken from the water to avoid counting ones that possibly drifted into the site. Exuvia were

enumerated using hand held counters, stored in sealable bags, and removed from the search

area.

Data analysis

Area of benthic habitat was estimated by multiplying the sampling section length (always 30.5

m) by the average wetted channel width derived from 10 evenly spaced cross-channel tran-

sects. To evaluate the appropriateness of this sampling technique and the assumptions of the

removal model, three pass removal data were compared to two pass data for nineteen sampling

events when sufficient numbers of exuvia were found. Multiple pass removal data analyzed

with the Huggins Closed Capture model in Program MARK [40, 41]. The Huggins Closed

Capture Model can be used to analyze removal data by fixing the recapture probability to zero

[35]. This model gives identical estimates to simpler two pass removal models like the Zippin

model [34] but can analyze more data types with more sophisticated methods. The simple two

pass models can easily be calculated on a spreadsheet while the Huggins model in Program

MARK allows for more complex analysis such as modeling capture probabilities that vary by

pass or being influenced by individual covariates [35]. While the two pass removal sampling

takes less time in the field to complete and is simple to analyze, estimates could be biased if the

assumption of constant capture probability between the two passes is violated [37].

To evaluate if the simpler constant capture probability model was sufficient with these data,

Program MARK was used to compare two models for all occasions where three pass removals

were completed. One model used a single constant capture probability (identical to Zippin

estimate) and the second varied capture probability by pass, allowing a different capture prob-

ability for the first pass than the second and the third passes. Declining capture probability

with subsequent passes is a common source of bias of removal models in fisheries data [36, 37]

and comparing the two models, the population estimates, and capture probabilities allowed us

to evaluate the assumption of constant capture probability of the simpler two pass model. The

two models were compared using the information theoretic approach [42]. The small sample

size version of Akaike’s Information Criterion (AICc) was calculated for each model and

model weights were compared to judge the top model. To evaluate if exuvia densities accu-

rately estimated larval densities, we used simple linear regression in Program R [43]. Exuvia

densities were the dependent variable and densities of mature larvae and all age class larvae

were used in separate analyses as independent variables. Because sites were visited multiple

times to encompass the entire emergence, population estimates for a single site from multiple

days were added together to get a final density estimate.

Results

Adult emergence of P. californica lasted between 2–8 days at each site and proceeded upstream

approximately 4 km per day. Early in the emergence, male exuvia were dominant and sex

Table 1. Year class lengths and frequency distribution of Pteronarcys californica larvae collected 30 April- 1 May

2010 from the Colorado and Fraser Rivers. Lengths in mm from anterior tip if head to posterior tip of epiproct.

Year Class Male larvae (n = 149) Female larvae (n = 123)

1 �15 mm (33) �17 mm (41)

2 16–25 (34) 18–25 (25)

3 26–34 (31) 26–38 (29)

4 � 35 (51) � 39 (28)

https://doi.org/10.1371/journal.pone.0227088.t001
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ratios were more even toward the end of the emergence. Approximately 97% of exuvia

(n = 21,526) were collected within two meters of the bank. A total of 47 separate surveys were

completed at the 10 sites in June 2010 and 19 of those surveys found enough exuvia for the full

three pass removal sampling. A total of 592 larvae were collected during the benthic sampling.

Larvae from the Colorado and Fraser Rivers separated into four year classes; mature female

larvae were�39 mm TL (mean 46.5, SE 0.51) and males� 35 mm TL (mean 39.2, SE 0.34)

(Table 1). Larvae from the Gunnison River separated into three year classes; mature female lar-

vae�41 mm TL (mean 49.1, SE 0.51) and mature males� 37 mm TL (mean 41.9, SE 0.46)

(Table 2). Mature females were significantly larger than mature males within each river

(p< 0.001 for each).

Exuvia densities were highly correlated with both mature larval densities (R2 = 0.90) and

total larval densities (R2 = 0.88). Exuvia densities averaged 2.6/m2 and ranged from 0.002/m2

to 11.443/m2 (Table 3). Total larval density averaged 80.0/m2 and ranged from 0 to 437.3/m2.

Density of mature larvae averaged 16.1/m2 and varied from 0 to 101.3/m2. While there was a

strong relationship between larvae density and exuvia density, the relationship was not 1:1.

Larval estimates were generally higher than exuvia estimates except at sites two, three, and

seven where exuvia were found but no larvae. To predict the density of mature larvae, the lin-

ear equation was: larval density = 7.358�(exuvia density) - 2.854.

Exuvia surveys detected P. californica populations at all 10 sites whereas larvae were found

at only seven of the 10 sites in benthic samples (Table 3). Capture probabilities of exuvia with

the two pass model ranged from 0.33 to 0.92 (average 0.73). Capture probabilities with the

three pass Huggins model ranged from 0.43 to 0.87 (average 0.70) for the first pass and 0.38 to

0.85 (average 0.62) on the second pass. The time varying capture probability model was the

favored by AICc over the constant capture probability in nine of the nineteen surveys and had

an average model weight of 0.54 vs. 0.47 for the two pass model.

Discussion

Multiple pass removal estimates of P. californica exuvia effectively predicted densities of total

larvae as well as mature late instar larvae. While there was evidence that capture probabilities

did vary by pass in some of the surveys (47%), any bias in the population estimates appears to

be small. Population estimates derived from the Huggins model and the two pass model were

highly correlated by the coefficient of determination and population estimates were extremely

close by the two methods (Fig 2). The average difference between population estimates from

the two methods was 7% and ranged from 0–25%. Our work agrees with previous analysis in

both fish and dragonflies that for removal sampling to give accurate estimates, capture proba-

bilities should be as high as possible and/or more than two passes should be used [32, 37]. Cap-

ture probability of exuvia declined at low density sites and extremely high density sites. For

sites with moderate densities of exuvia (214–994 per 30.5 m) capture probabilities estimated

by the Huggins model averaged 0.78 and the difference in population estimates by the two

methods averaged only 4%, indicating that two pass method was sufficient at these sites. The

estimated capture probability for second and third passes was estimated to higher than the first

Table 2. Year class lengths and frequency distribution of Pteronarcys californica larvae collected 14 April 2010

from the Gunnison River. Lengths in mm from anterior tip if head to posterior tip of epiproct.

Year Class Male larvae (n = 191) Female larvae (n = 129)

1 �23 mm (162) �23 mm (95)

2 24–36 (14) 24–40 (12)

3 �37 (15) �41 (22)

https://doi.org/10.1371/journal.pone.0227088.t002
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pass in five of the 19 surveys indicating that the bias in population estimates due to differing

capture probabilities was not in a consistent direction as reported with fish [37]. Assumptions

of the multiple pass depletion models appeared to be met well at moderate density sites. The

two-pass depletion technique performed well at these sites due to immobility of exuvia, high

capture probability, and the lack of size selective gear [36, 37], suggesting two sampling passes

can be adequate if three or four passes are cost prohibitive as with Odonata exuvia [32].

Correlation between densities of exuvia and all larval age classes were high but not 1:1. Esti-

mates of exuvia density from removal surveys underestimated benthic larvae at high density

sites but overestimated larvae at low density sites. The underestimation of larval densities is

likely due to the behavior of mature larvae congregating near the river bank prior to

Table 3. Densities in m2 of Pteronarcys californica pre-emergent larvae, all larvae, total exuvia counted, and three pass exuvia population estimates from the Hug-

gins Closed Capture model collected from April-June 2010 from the Colorado, Fraser, and Gunnison Rivers.

Site Densities m2

All larvae Pre-emergent larvae Exuvia Exuvia population estimate

1 8.00 1.33 0.854 0.872

2 0.00 0.00 0.064 0.065

3 0.00 0.00 0.077 0.079

4 4.00 4.00 2.391 2.477

5 4.00 1.33 0.686 0.697

6 44.00 4.00 0.306 0.315

7 0.00 0.00 0.002 0.002

8 5.33 0.00 0.007 0.007

9 297.33 101.33 11.001 11.443

10 437.33 49.33 9.392 9.849

https://doi.org/10.1371/journal.pone.0227088.t003

Fig 2. Relationship of population estimates from a three pass Huggins Closed Capture model in Program MARK

(with time effect that allowed for varying capture probabilities) and the simple two pass model of that assumes a

constant capture probability.

https://doi.org/10.1371/journal.pone.0227088.g002
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emergence in the shallower water where benthic sampling with a Surber sampler occurs. Fur-

ther work is necessary with different sampling techniques to evaluate the spatial distribution of

the larvae pre-emergence. The underestimation of larvae by benthic sampling at low density

sites was likely due to the high capture probability of exuvia in conjunction with the known

difficulty of collecting the larvae of rare invertebrates using a Hess or Surber sampler [44]. The

exuvia sampling technique effectively reduces large areas of available benthic habitat to

smaller, well defined, and more easily accessible riparian sampling areas. Riparian sampling

areas averaged 61 m2 (30.5 m long x 2 m wide). They represented 742 m2 (400–1500 m2) of

unevenly distributed benthic habitat, much of which was not accessible by wading due to

excessive water depth and velocities and could not be effectively sampled with traditional ben-

thic sampling equipment like Hess or Surber samplers. Therefore, exuvia sampling may more

accurately estimate larval densities than benthic sampling at low density sites and be better for

detecting rare invertebrate species with the emergence behaviors and conspicuous exuvia that

allow for removal sampling.

Presence of exuvia or adults is the only evidence of successful life cycle completion. Varying

densities can indicate habitat quality and help identify reference sites and priority areas for

river conservation, restoration, and monitoring of P. californica. In regions where P. califor-
nica does not occur, this technique may be useful for other easily recognizable stoneflies like

Pteronarcella badia, Claassenia sabulosa, Hesperoperla pacifica, or mayflies like Timpanoga
hecuba. This technique eliminates the need for benthic sample collection, preservation, and

subsequent expense of processing in the laboratory. It also provided accurate and less biased

density estimates of P. californica larvae than those derived from benthic samples.

Benthic sampling of aquatic invertebrates is a useful and productive biomonitoring tech-

nique but the overall process to acquire data can be labor and cost intensive. In addition, it can

be difficult to find target species that are rare at a site with benthic sampling [44]. Using multi-

ple pass removal sampling of the recently shed exuvia can be an effective and efficient way to

estimate densities of P. californica and may be superior to traditional benthic sampling at

detecting the species at very low densities.
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