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Abstract
1.	 Understanding the drivers of trait selection is critical for resolving community as-

sembly processes. Here, we test the importance of environmental filtering and 
trait covariance for structuring the functional traits of understory herbaceous 
communities distributed along a natural environmental resource gradient that var-
ied in soil moisture, temperature, and nitrogen availability, produced by different 
topographic positions in the southern Appalachian Mountains.

2.	 To uncover potential differences in community-level trait responses to the re-
source gradient, we quantified the averages and variances of both abundance-
weighted and unweighted values for six functional traits (vegetative height, leaf 
area, specific leaf area, leaf dry matter content, leaf nitrogen, and leaf δ13C) using 
15 individuals of each of the 108 species of understory herbs found at two sites in 
the southern Appalachians of western North Carolina, USA.

3.	 Environmental variables were better predictors of weighted than unweighted 
community-level average trait values for all but height and leaf N, indicating strong 
environmental filtering of plant abundance. Community-level variance patterns 
also showed increased convergence of abundance-weighted traits as resource 
limitation became more severe.

4.	 Functional trait covariance patterns based on weighted averages were uniform 
across the gradient, whereas coordination based on unweighted averages was 
inconsistent and varied with environmental context. In line with these results, 
structural equation modeling revealed that unweighted community-average traits 
responded directly to local environmental variation, whereas weighted commu-
nity-average traits responded indirectly to local environmental variation through 
trait coordination.

5.	 Our finding that trait coordination is more important for explaining the distribu-
tion of weighted than unweighted average trait values along the gradient indicates 
that environmental filtering acts on multiple traits simultaneously, with abundant 
species possessing more favorable combinations of traits for maximizing fitness in 
a given environment.
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1  | INTRODUC TION

Understanding the factors influencing plant community assembly is 
central to explaining the formation and maintenance of biodiversity 
(Rosindell et  al.,  2011) and how communities respond to environ-
mental change (Díaz et  al.,  2004; Shipley et  al.,  2006). Functional 
trait-based approaches offer valuable insights into the community 
assembly process by providing a mechanistic link between plant 
traits and the environment while avoiding the idiosyncrasies asso-
ciated with site-specific patterns of taxonomic community compo-
sition (Jiang et al., 2018; Siefert et al., 2013). Functional traits are 
heritable attributes that reflect specific physiological and morpho-
logical adaptations to abiotic and biotic constraints, thus indicating 
the diverse ecological strategies plants use to survive and co-exist 
under differing environmental conditions (Westoby, 1998; Westoby 
& Wright, 2006). Identifying the drivers of trait selection along envi-
ronmental gradients at local scales is particularly important for sup-
porting conservation and management actions.

Multiple mechanisms have been proposed to explain the pro-
cesses of plant community assembly. These mechanisms generally 
fall into two categories: environmental filtering, which is expected 
to increase similarities among plant traits based on the degree of 
trait–environment correspondence (Cornwell et  al.,  2006; Weiher 
& Keddy, 1995), and competitive interactions (i.e., niche partition-
ing, limiting similarity), which are expected to prevent coexistence 
among species with similar trait values (Chesson, 2000; MacArthur 
& Levins, 1967). Broad-scale analyses of plant functional traits have 
revealed mixed support for both categories, indicating that multiple 
mechanisms operate simultaneously during the community assem-
bly process (Cahill et al., 2008; Mayfield & Levine, 2010; Spasojevic 
& Suding,  2012). How these mechanisms operate on individual 
and multivariate traits is likely to have important consequences 
for species presence–absence and abundance within a community 
(Cingolani et al., 2007).

Plant community responses can involve both changes in species 
presence–absence and abundance. Community-level trait averages 
are generally weighted by species relative abundances, and are thus 
expected to reveal trait values that maximize fitness and perfor-
mance under a given suite of environmental conditions (Muscarella & 
Uriarte, 2016; Shipley et al., 2011). In contrast, community-level av-
erages based on unweighted trait values for each species at the plot 
scale reflect changes in species presence–absence. Consequently, 
weighted and unweighted community-average trait values may 
provide complementary information about the community assem-
bly process. Supporting this idea, Cingolani et  al.  (2007) found 
different relationships with environmental variables for weighted 
and unweighted community-average height: weighted values were 
positively related to soil moisture whereas unweighted values were 

unrelated to the measured environmental parameters. This differ-
ential response was interpreted as evidence that different factors 
determine which species will establish upon arriving at a site and 
which will achieve relative dominance versus remain rare (Cingolani 
et al., 2007). Evaluating the strength of trait–environment relation-
ships among unweighted and weighted trait distributions may there-
fore be valuable for determining if multiple environmental filters are 
indeed influencing plant community assembly.

Traits do not vary independently, with evolutionary and physi-
cal trade-offs leading to multiple functional traits that covary (Reich 
et al., 1997; Wright et al., 2004). Covariation or coordination among 
traits reflects the dimensions of trait variation that are hypothesized 
to maximize fitness within a community. Traits that show little or 
no coordination with respect to one another are hypothesized to be 
associated with different ecological strategies (Angert et al., 2009; 
Dwyer & Laughlin, 2017b; Wright et al., 2004). For example, among 
leaf traits, specific leaf area (SLA) is closely correlated with leaf ni-
trogen (LN), and collectively these traits represent trade-offs asso-
ciated with resource acquisition strategies (Wright et al., 2004). In 
contrast, SLA and plant height (H) are frequently found to vary inde-
pendently of one another and therefore can provide insights into dif-
ferent ecological strategies such as resource allocation and resource 
acquisition (Westoby, 1998). Investigating trait coordination in the 
context of local trait–environment relationships may thus reveal how 
trade-offs associated with different ecological strategies influence 
trait distributions (Dwyer & Laughlin, 2017a).

Trait coordination is expected to strongly constrain community 
assembly along environmental gradients given that filtering acts on 
multiple traits simultaneously, thus potentially reducing the num-
ber of viable trait combinations present in a community (Dwyer & 
Laughlin,  2017a; Westoby & Wright,  2006). Yet, how trait coordi-
nation affects species abundance versus presence is incompletely 
understood. If coordinated traits increase fitness, then abundance 
(as indicated by abundance-weighted trait values) should be more 
strongly influenced by trait coordination than presence (as indi-
cated by unweighted trait values) (Funk & Cornwell, 2013; Wright 
et al., 2001). Trait coordination should also lead to stronger abiotic 
filtering of weighted than unweighted trait values because maintain-
ing a wide range of trait values across multiple traits simultaneously 
carries high fitness costs when resource availability is low (Bernard-
Verdier et  al.,  2012; Dwyer & Laughlin,  2017b). Consequently, 
weighted trait values may converge as environments become more 
limiting. In support of this hypothesis, leaf and stem trait coordi-
nation in dry tropical forests has been shown to be more conver-
gent compared to leaf and stem trait coordination in wet tropical 
forests (Baraloto et al., 2010; Markesteijn et al., 2011). Elucidating 
patterns of trait coordination along environmental gradients and 
with respect to weighted and unweighted trait values may thus be 
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important for improving understanding of the mechanisms influenc-
ing plant community assembly (Dwyer & Laughlin, 2017b; MacLean 
& Beissinger, 2017).

In this study, we investigated the influence of environmental fil-
tering and trait coordination on the abundance and presence of for-
est herb species by examining abundance-weighted and unweighted 
community-level trait responses along an environmental resource 
gradient produced by differences in topographic position (eleva-
tion and aspect) in the southern Appalachian Mountains. Changes 
in elevation and aspect are associated with changes in temperature, 
moisture, and other environmental factors such as soil nutrient avail-
ability over relatively short distances (Körner, 2007). Mountains are 
thus well suited for examining trait selection in response to envi-
ronmental variation (Albert et al., 2010; Sundqvist et al., 2011). The 
novelty of our approach lies in the parallel assessment of commu-
nity responses to the gradient, with and without consideration of 
species relative abundances, while accounting for trait coordination. 
By quantifying leaf and size traits representing different ecologi-
cal strategies, we addressed three hypotheses. (a) Environmental 
variables will be stronger predictors of weighted than unweighted 
plot-average trait values because environmental filtering on species 
abundance is stronger than filtering of species presence–absence 
in a community; (b) Weighted traits will exhibit stronger trait con-
vergence than unweighted traits with increasing resource limitation 
because species abundance is strongly determined by the magnitude 
of trait–environment correspondence; (c) Trait coordination will be 
stronger for and better predict weighted than unweighted plot-aver-
age trait values because abundant species possess combinations of 
traits that maximize fitness in a given environment.

2  | METHODS

2.1 | Study area and experimental design

This study was conducted at two sites in the southern Appalachians 
of western North Carolina, USA. The Coweeta Hydrologic 
Laboratory is embedded within the Coweeta basin and located in 
the Nantahala Mountain Range (35°03′N 83°25′W). The Mainspring 
Land Trust conservation easement property is located in the Cowee 
Mountain Range (35°27′N 83°53′W). Regional climate of the south-
ern Appalachians is classified as marine humid temperate with cool 
summers and mild winters (Swift et al., 1988). The growing season 
spans early April to October, with the highest temperatures occur-
ring from June to August (~20°C) and the lowest from December 
to January (~5°C). Mean annual temperature is 12.6°C, and mean 
annual precipitation is 179  cm. Soils are mostly Inceptisols or 
Ultisols and are classified as Mesic or Humic Hapludults, or Typic 
Humudepts. Parent material consists of high-grade metamorphic 
rocks (e.g., mica gneiss, mica schist) and metasedimentary rocks (i.e., 
metasandstone, phyllite, shale) (Block et al., 2012). Mixed deciduous 
forests with dense perennial understories represent the dominant 
vegetation communities (Bolstad et al., 1998; Whittaker, 1956). Both 

sites have a similar history and have not experienced disturbance 
since they were logged in the early 1900s.

In the spring of 2016, we established twenty 5 m × 5 m study 
plots in each site (n = 40 plots total) along a natural environmen-
tal resource gradient produced by different topographic positions. 
Half of the plots in each site were located on south-facing slopes 
and distributed evenly among low-elevation (850 m) and high-ele-
vation positions (1,400 m). The other half of the plots were located 
on north-facing slopes and distributed in the same manner as de-
scribed above. Plots in each topographic position were spaced a min-
imum of 150 m apart to ensure independent observations. We used 
a Modified-Whittaker plot design (Stohlgren et  al.,  1995) in which 
we randomly nested five 1-m2 subplots within each plot. This design 
has been shown to enhance the detection and measurement of plant 
species, especially when vegetation is spatially clustered (Campbell 
et al., 2002; Fortin et al., 1990; Stohlgren et al., 1995).

2.2 | Plant traits and environmental data

In June 2016, we recorded the percent cover of all herbaceous spe-
cies in each subplot. Percent cover was averaged by species across 
subplots to obtain total cover for each species in each plot. For the 
most abundant species (representing > 80% of the cumulative cover 
in each plot) (Pakeman & Quested,  2007), we measured six func-
tional traits that are important for defining the general syndromes of 
plant resource capture and use (Reich et al., 2003; Westoby, 1998; 
Wright et al., 2004): vegetative height (H; cm), leaf area (LA; mm2), 
specific leaf area (SLA; mm-2 mg-1), leaf dry matter content (LDMC; 
mg/g), leaf nitrogen (LN; mg N/g), and leaf δ13C (‰). Measurements 
were taken on three mature individuals of each species from each 
subplot (n = 15 individuals per species per plot) following standard-
ized methods (Pérez-Harguindeguy et al., 2013). We only sampled 
from recognizable separate above-ground individuals, which were 
assessed by looking for absence of rhizomes or stolons at the base 
of each plant. Trait functions and measurement details are provided 
in Appendix S1.

We quantified environmental conditions during the 2016 grow-
ing season in each plot. We measured soil temperature continu-
ously (5  cm depth, iButton datalogger), volumetric soil moisture 
twice per week (7 cm depth, Field Scout TDR 100 probe, Spectrum 
Technologies), and photosynthetically active radiation (PAR; wave-
length: 400–700 nm) twice per month following full canopy leaf out 
using a 0.5-m handheld ceptometer (Decagon Devices). To charac-
terize average soil characteristics within each plot, 10 soil cores were 
collected at random from the upper 10  cm of mineral soil using a 
2.2-cm diameter soil probe. Cores were composited by plot, sieved 
(<2 mm), and air dried prior to subsampling for determination of pH 
(1:1 mass: H2O volume) and carbon (C) and nitrogen (N) concentra-
tions (Costech 4010 CHNSO Elemental Analyzer, Costech Analytical 
Technologies). Inorganic nitrogen (N) and phosphorus (P) concentra-
tions were determined by randomly installing three pairs of ion-ex-
change resin strips (6.0 cm × 2.5 cm) in the mineral soil at 0–6 cm 
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depth and a minimum distance of 0.5 m from one another in each 
subplot in June 2016 (Schoenau et al., 1993). Resin strips were left 
in the ground for 30 days (Coweeta) and 25 days (Mainspring). Upon 
removal, resin strips were rinsed with DDI water and extracted in 
2  mol/L KCl. Extractions were filtered through 0.7-μm Whatman 
filter paper and frozen (−20°C) until analysis. We analyzed extracts 
for NH4-N using the phenolate method, NO3-N using a cadmium 
column reduction method, and PO4 using the molybdenum blue 
method on a Lachat QuikChem 8500 (Hach Company). All values 
were expressed on a per day basis and averaged for each plot for use 
in statistical analyses.

2.3 | Characterizing the environmental 
resource gradient

We conducted principal component analysis (PCA) to quantify the 
leading dimensions of the environmental resource gradient. We 
used 10 environmental parameters to characterize the contrast-
ing environmental conditions across all plots: average temperature, 
maximum and minimum temperature, soil pH, total soil N concentra-
tion, NH4-N, NO3-N, PO4, average soil moisture, and PAR. We per-
formed PCA on the correlation matrix after scaling and centering the 
environmental parameters. We used analysis of variance (ANOVA) 
to assess differences in average environmental variables across each 
topographic position (high elevation, north-facing slope: HN; high-
elevation, south-facing slope: HS; low-elevation, north-facing slope: 
LN; low-elevation, south-facing slope: LS).

2.4 | Relating unweighted and weighted trait values 
to the resource gradient

For each trait in each plot, we calculated unweighted and weighted 
trait averages as:

where pij is the relative cover of species i in plot j, xij is the mean trait 
value of species i measured in plot j, and S is the number of species 
sampled in the plot.

To test for environmental filtering among individual unweighted 
and weighted plot-average trait values across the resource gradient, 
we used linear mixed effect models and an information theoretic ap-
proach. We first developed a set of candidate models including the 
plot scores of the first two PCA axes, environmental variables, eleva-
tion, aspect, and canopy cover as fixed effects and site as a random 
effect. Because we measured functional traits that are explicitly 
linked to species composition, relating CWM trait values to environ-
mental variables via linear mixed effect models does not run the risk 

of inflated Type I errors and therefore is fully justified (Zelený, 2018). 
For each of the candidate models, we included highly correlated 
predictor variables (soil N:soil C, |r|  >  .6) and PCA axes scores in 
separate models to reduce collinearity and the number of variables 
in model. Variables were log-transformed as needed to meet as-
sumptions of normality and equal variance. Support for models was 
assessed using the Akaike information criterion corrected for small 
sample sized (AICc). We considered models to have competitive sup-
port when AICc weights were >0.95. Because the number of fixed 
effects varied between models, maximum likelihood estimation was 
used for model selection. Parameter estimates for the final model 
were calculated using restricted maximum likelihood estimation. We 
considered variables with p < .05 as significant and p < .10 as mar-
ginally significant (sensu Hurlbert & Lombardi, 2009). Analyses were 
performed using the AICcmodavg package in R (Mazerolle, 2016).

To evaluate the relative contributions of interspecific (variation 
in trait values among species) and intraspecific (variation in trait val-
ues within species) trait variation to total among-plot variation of 
unweighted and weighted average trait values along the resource 
gradient, we partitioned trait variance components using the ap-
proach outlined by Lepš et  al.  (2011). Using the unweighted and 
weighted plot-average trait values, we computed three types of trait 
averages: (a) total trait average, reflecting the effect of both species 
turnover and ITV, (b) interspecific trait average, and (c) intraspecific 
trait average. Calculations were performed as follows:

Total unweighted and weighted trait averages were calculated as 
outlined in Equations 1 and 2.

We tested for differences in the relative contributions of inter- 
and intraspecific trait variability between unweighted and weighted 
averages across all traits using paired t tests.

2.5 | Quantifying trait dispersion

To test for differences in the dispersion of single, unweighted plot-
average traits across the environmental resource gradient, we used 
Levene's test with unweighted traits as dependent variables and 
elevation and aspect as independent variables (Levene, 1960). For 
single weighted trait values, we calculated community-weighted 
variance (CWV) for each trait t in each plot, with each species, i, 
weighted by its relative abundance, pi (Bernard-Verdier et al., 2012):

We then estimated the extent to which community trait variance 
differed from what is expected from a random null model (i.e., an 
“effect size”). We compared our observed values of CWV for each 
trait across gradients with a random distribution generated by 9,999 
runs of a null model. The null model shuffles species abundance val-
ues randomly while the list of observed species and their associated 

(1)Totalunweighted trait average=xij

(2)Totalweighted trait averagej=

S
∑

i=1

pijxj

(3)
Intraspecific trait averagej=Total trait averagej− Interspecific trait averagej

(4)CWV=

n
∑

i=1

pi× (ti−CWM)2
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traits in each community remains unchanged. Randomization breaks 
any relationship between trait values and abundances, while main-
taining the same richness and evenness of abundances in each plot, 
allowing the examination of single-trait dispersion patterns for abun-
dance-weighted traits in response to environmental variation. We 
calculated an effect size (ES) based on the probability of each ob-
served value being lower than expected by chance (i.e., the quan-
tile of the null distribution in which the observed value is found) 
(Bernard-Verdier et  al.,  2012; Chase & Myers,  2011). We rescaled 
ES values to vary from −1 to 1 and interpreted negative values as 
an indication of a lower observed dispersion than expected and vice 
versa (Bernard-Verdier et al., 2012). To evaluate whether there was a 
significant departure in observed ES from the null expectation (trait 
convergence or trait divergence) across the entire community, we 
used a two-tailed Wilcoxon signed-ranks test (W) on ES values to 
test if they were overall different from zero (positive or negative) 
(Sokal & Rohlf, 1995). To test for significant trends between disper-
sion patterns, the environmental resource gradient, and topographic 
position, and because ES data were nonparametric, we used non-
parametric Spearman's rank correlation analysis (S) (Bernard-Verdier 
et al., 2012).

2.6 | Testing for changes in unweighted and 
weighted trait covariation

To investigate how patterns of unweighted and weighted trait covar-
iation change across the environmental resource gradient, we used a 
modified permutation test to generate a two-tailed significance value 
for trait covariation at the unweighted and weighted levels at each 
topographic position. Permutation tests correct for inflated Type I 
error rate, especially when relating weighted trait values (Zelený, 
2018; Zelený & Schaffers, 2012). Specifically, for each trait combina-
tion, we generated 9,999 permutations of individual unweighted and 
weighted trait values for one trait while keeping the original values 
of the other trait intact. The permuted trait values represent the null 
hypothesis of no covariation among traits. We tested for correlation 
among measured trait combinations at unweighted and weighted 
levels against the 9,999 randomized samples using nonparametric 
Spearman's Rank correlation analysis (S). Unweighted and weighted 
trait correlations were considered significant if the correlation coef-
ficient of measured trait values fell within the lower or upper 95th 
percentile of the randomized null distribution. Permutation tests 
were performed using the wPerm package in R (Weiss, 2015).

2.7 | Estimating the direct and indirect effects of 
environmental variables and trait covariation on 
unweighted and weighted trait distributions

To determine the relative roles of environmental variables and 
trait covariation for predicting individual trait distributions, we 
used structural equation modeling. Our specific goal was to test 

the prediction that unweighted trait averages would be structured 
largely by environmental variables whereas weighted trait averages 
would be structured largely by trait coordination. Our approach was 
to generate structural equation models (SEMs) that were consistent 
with our data with the fewest modifications of the initial model as 
possible. For this reason, nonsignificant pathways were retained in 
each model (Grace, 2006). For our conceptual model, trait values are 
assumed to result from three latent variables: microclimate (climate), 
soil conditions (edaphic), and leaf trait coordination (leaf economics 
spectrum). Latent variables are used to define factors that cannot be 
measured or quantified in their entirety but are hypothesized to be 
responsible for the outcome of observed measurements. The latent 
variables were defined using a set of measured variables that serve 
as indicators of the latent variable (Grace, 2006). The variables that 
defined microclimate were comprised of soil temp, soil moisture, and 
PAR, the variables that defined soil conditions were comprised of N 
availability, P availability, and pH, and the traits that defined leaf trait 
coordination (LES) were comprised of either unweighted or weighted 
averages of traits (LA, SLA, LDMC, LN, δ13C) identified as significant 
covariates of the trait of interest by the modified permutation tests 
described above. Because the modified permutation test corrects for 
inflated Type I error rate, we were able to avoid biasing our estimates 
of trait coordination (Zelený, 2018; Zelený & Schaffers, 2012). We 
fitted the SEMs with the robust maximum likelihood method using 
the R-package lavaan (Rosseel,  2012) and constructed the SEMs 
using the R-package piecewiseSEM (Lefcheck, 2016). The goodness 
of fit of each model was evaluated with the chi-square statistic and 
the root mean square error of approximation (RMSEA). Chi-square 
values higher than 0.05 and RMSEA below 0.05 indicate a good fit 
between the SEM and the observed data (Kline, 2010). The signifi-
cance of each pathway was evaluated with a t test computed on the 
unstandardized coefficients. To facilitate comparison of effects, we 
report the standardized path coefficients in the figures. All analy-
ses were conducted in R 3.6.3 (R Core Team, 2018). The data set is 
publicly available on the EDI Data Portal (https://doi.org/10.6073/
pasta/​2f230​0df5d​98458​18952​16fcd​96cff08).

3  | RESULTS

3.1 | Environmental resource gradient

Across both sites, the most resource-limited plots were at low el-
evation, on south-facing slopes and were characterized by low soil 
N, low soil moisture, and higher average temperatures. The least 
resource-limited plots were at high elevation, on north-facing slopes 
and were characterized by high soil N, high soil moisture, and lower 
average temperatures. PCA identified two significant axes (eigenval-
ues > 1) of the variation in resource conditions. The first PCA axis 
(29.4% of the variation explained) was associated with average tem-
perature, maximum temperature, and soil moisture. The second PCA 
axis (19.7% of the variation explained) was associated primarily with 
NH4-N availability and PAR (Appendices S3 and S4). On average, high 

https://doi.org/10.6073/pasta/2f2300df5d984581895216fcd96cff08
https://doi.org/10.6073/pasta/2f2300df5d984581895216fcd96cff08
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elevation plots were cooler (p < .01) and had higher levels of soil ni-
trogen (p < .01 for NO3-N, NH4-N, and total N concentration). Plots 
on north-facing slopes had higher levels of soil moisture than plots 
on south-facing slopes (p = .01), especially at low elevations. Soil pH 
did not differ significantly among plots (p > .05), whereas PAR was 
lowest in low-elevation, north-facing plots (p = .03; Table 1).

3.2 | Trait–environment covariation

We identified a total of 108 herbaceous species across both sites. 
High elevation plots on north-facing slopes contained the most spe-
cies (66), followed by high elevation plots on south-facing slopes (59), 
low-elevation plots on north-facing slopes (57), and low-elevation 
plots on south-facing slopes (39) (Appendix S2). Interspecific varia-
tion contributed significantly more to total among-plot variation of 
weighted and unweighted average trait values along the resource 
gradient (Appendix S6).

Unweighted and weighted traits responded similarly to the re-
source gradient, but environmental variables were stronger predic-
tors of weighted than unweighted plot-average trait values for all but 
height (H) and leaf N (LN; Figure 1, Appendix S7). PCA axes scores 
consistently explained less variation in our trait data than individual 
environmental variables. Similarly, canopy cover had no significant 
effect on any of the traits we measured. Unweighted and weighted 
H, LA, and LN, as well as unweighted SLA, increased significantly 
with increasing soil moisture (Figure  1a,b,e, Appendix  S7). A sig-
nificant soil moisture  ×  elevation interaction term indicated that 
weighted SLA and LDMC increased more quickly as soil moisture 
increased at low elevations (SLA: β = 1.70, LDMC: β = 1.80) than 

at high elevations (SLA: β  =  0.73, LDMC: β  =  1.10) (Figure  1c,d, 
Appendix S7). None of the environmental variables explained vari-
ation in unweighted LDMC (Figure  1d, Appendix  S7). Unweighted 
δ13C became more negative (depleted) as average temperature in-
creased, and a significant soil moisture × elevation interaction term 
indicated that weighted δ13C became depleted more quickly as soil 
moisture decreased at low elevations (β = −1.69) than at high eleva-
tions (β = −0.68) (Figure 1f, Appendix S7).

3.3 | Trait dispersion

Plot-average unweighted traits were under-dispersed in resource-
limited environments associated with south-facing slopes and low 
elevations (Appendix S8). Results of the Levene's Test revealed that 
the variance of LA (F74 = 16.4, p = <.001) and SLA (F74 = 6.05, p = .01) 
differed significantly with aspect, with south-facing slopes exhibiting 
significantly under-dispersed trait distributions compared to north-
facing slopes. Aspect had no effect on the variance of unweighted 
H, LDMC, LN, and δ13C (p > .05). Unweighted trait variances differed 
significantly with elevation for H (F74 = 7.96, p = <.001), and margin-
ally so for LA (F74 = 3.32, p =  .07), with higher elevations showing 
larger variances than lower elevations. The variances of LDMC, SLA, 
LN, and δ13C did not differ with elevation (p > .05, Appendix S8).

Abundance-weighted trait variance patterns were investigated 
by relating CWV to the expectations of the null model. Considering 
all plots collectively without abiotic variables, we found no evidence 
for overall reductions in trait dispersion (nonsignificant Wilcoxon 
test toward lower values; Figure 2). In contrast, we found evidence 
of trait under- and over-dispersion in H, SLA, and δ13C with respect 

Environmental 
variable

Elevation & aspect

High North High South Low North Low South

Average 
temperature (°C)

18.3 ± 0.96a 18.7 ± 0.96a 19.0 ± 0.96b 20.3 ± 0.97b

Maximum 
temperature (°C)

19.6 ± 0.16a 20.4 ± 0.19b 20.3 ± 0.19b 22.1 ± 0.22c

Minimum 
temperature (°C)

16.1 ± 2.41a 16.8 ± 2.41a 17.0 ± 2.41a 18.0 ± 2.42a

Soil moisture (%) 15.1 ± 0.56a 13.4 ± 0.65ab 14.1 ± 0.63ab 12.7 ± 0.73b

pH 5.03 ± 0.13a 4.90 ± 0.14ab 5.25 ± 0.14ab 5.12 ± 0.15b

NO3-N (µg N/
cm2 day−1)

0.45 ± 0.08a 0.09 ± 0.08a 0.11 ± 0.08a 0.05 ± 0.09b

NH4-N (µg N/
cm2 day−1)

0.46 ± 0.09a 0.40 ± 0.10ab 0.27 ± 0.10ab 0.10 ± 0.11b

PO4 (µg P 
cm−2 day−1)

0.26 ± 0.13a 0.30 ± 0.13a 0.15 ± 0.13a 0.21 ± 0.14a

Soil nitrogen (%) 0.47 ± 0.03a 0.36 ± 0.03a 0.19 ± 0.03b 0.14 ± 0.04c

PAR (%) 1.86 ± 0.22a 1.42 ± 0.26ab 0.85 ± 0.25ab 1.30 ± 0.29b

Note: Variables were averaged from individual measurements across the two study sites (n = 5 for 
each position). PAR is photosynthetically active radiation (wavelength: 400–700 nm). Superscript 
letters indicate significant differences.

TA B L E  1   Environmental conditions 
(mean ± 1 SE) of different topographic 
positions in western, North Carolina, USA
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to environmental resource availability. Limiting environments such 
as those at low elevation on south-facing slopes (characterized by 
high soil temperature, low soil moisture, and low soil N) were associ-
ated with lower than expected CWV in H, SLA and δ13C, indicating 
that abundant species tended to converge on similar values under 
these conditions (Figure  2a–d). Similarly, we found lower than ex-
pected CWVs for SLA and δ13C in low-elevation plots (Figure 2e,f).

3.4 | Trait covariation

Covariations between leaf traits and plant height at different topo-
graphic positions were considerably stronger and more consistent for 
weighted trait averages than for unweighted trait averages, indicat-
ing greater coordination when abundance was considered (Figure 3, 
Appendix S10). For unweighted trait averages, covariation between 

leaf traits and plant height differed in strength and direction among 
topographic positions (Figure 3a,c, Appendix S10a,c,e,g). Significant 
relationships between unweighted leaf versus height traits were 
found between H and LA in high- (p = .009 S = 0.51) and low-eleva-
tion (p = <.001, S = 0.79), north-facing plots; low-elevation, south-
facing plots (p = .01, S = 0.64; Figure 3a); and between H and LN in 
low-elevation, south-facing plots (p = .03, S = 0.56) (Appendix S10a). 
Overall, leaf traits showed more consistent patterns of covariation 
than leaf versus height for unweighted trait averages, with leaf traits 
such as unweighted SLA and δ13C significantly related across all 
topographic positions (Figure 4c) (p <  .05) except for LN and SLA 
in low-elevation, south-facing plots (Appendix  S10g). In contrast, 
covariations based on weighted trait averages were remarkably con-
sistent among topographic positions, with significant correlations at 
every topographic position (Figure 3b,d. Appendix S10b,d,f,h).

F I G U R E  1   Model coefficient estimates and 95% confidence intervals for predictors included in the confidence set of simple linear 
regression models explaining weighted (black) and unweighted (white) trait distributions for (a) plant height, (b) Leaf Area, (c) SLA, (d) LDMC, 
(e) Leaf N, and (f) δ13C.R2indicates model fit for each level of trait modeling. Continuous predictors were standardized (mean = 0,SD = 1) 
to make effect sizes comparable. Abbreviations are as follows: Avg Temp, average temperature; itmax, maximum temperature; LDMC, leaf 
dry matter content; Leaf N, leaf nitrogen; Min Temp, minimum temperature; NH4, NH4-N; NOx, NO3-N; PAR, photosynthetically active 
radiation; pH, soil pH; SLA, specific leaf area; Soil M, soil moisture. Full model outputs reported separately in Appendix S7
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3.5 | Direct and indirect effects on trait 
distributions

Structural equation models (Figure  4) demonstrated that envi-
ronmental variables had strong direct effects on unweighted 
trait averages, whereas the effects of environmental variables 
on weighted trait averages were indirect and operated through 
their influence on trait coordination (Figure 5, Appendices S9 and 
S11). SEMs specified on unweighted and weighted trait averages 
adequately fit our data, with all RMSEA values below 0.06 and 
both CFI and TLI above 0.9 for all models. The exceptions were 
the models for unweighted and weighted LDMC, which did not 
show a satisfactory fit. For unweighted SLA, standardized path co-
efficients indicated a direct effect of soil pH (R2 = .99; Figure 5a), 
whereas weighted SLA trait variation was predicted by indirect 
contributions of soil N concentration and microclimate (mois-
ture and maximum temperature) variables via trait coordination 
with LDMC (R2  =  .99; Figure  5b). Similarly, unweighted LN was 
explained best by a direct effect of microclimate (average and 
maximum soil temperature, and soil moisture) (R2 = .20; Figure 5c), 

whereas weighted LN was explained best by indirect contribu-
tions from microclimate and soil variables via trait coordination 
with δ13C (R2  =  0.92; Figure  5d). Similar patterns occurred in all 
other unweighted and weighted traits that we measured except 
for LDMC (Appendices S9 and S11).

4  | DISCUSSION

Multiple ecological factors can influence plant community assem-
bly and functional trait-based approaches offer valuable insights 
into the mechanisms that filter species presence and abundance 
within a community. Trait coordination is expected be especially 
important for community assembly along environmental gradi-
ents, yet how trait coordination affects species presence versus 
abundance is incompletely understood. Our results suggest there 
are two levels of environmental filtering influencing understory 
herb community assembly in the southern Appalachian Mountains. 
Trait presence–absence, described by unweighted trait averages, 
showed weak environmental filtering, characterized by weak 

F I G U R E  2   Community-weighted trait variance (CWV) of height and leaf traits showing (a) CWV height along a temperature gradient, (b) 
CWV height along a soil moisture gradient, (c) CWV SLA along a soil moisture gradient, (d) CWV δ13C along a soil N gradient, (e) CWV SLA 
along an elevation gradient, and (f) CWV δ13C along an elevation gradient. Effect sizes (ES) of CWV were calculated by comparing observed 
CWV to a null distribution. The solid horizontal line represents the null expectation (ES = 0). Negative ES represents a lower CWV than 
expected (trait convergence) and positive ES represents a larger CWV than expected (trait divergence). Circles represent landscape position. 
Statistics for one-sided Wilcoxon test (W) and Spearman's rank correlations (ρ) indicated above panels (ns:p ≥ .05, *p < .05, **p < .01, 
***p < .001)

F I G U R E  3   Trait covariation 
relationships between leaf and height trait 
averages based on topographic position. 
Covariation between unweighted height 
and leaf traits (a) is considerably less than 
coordination between unweighted leaf 
traits (c). Unweighted traits (a and c) show 
context-dependent coordination whereas 
weighted traits (b and d) show uniform 
coordination. Regression lines (blue) 
are shown for all elevation and aspect 
combinations and were generated via 
linear regressions. Significant relationships 
denoted byp-value within each plot. Axes 
reflect scaled and centered trait values to 
enable direct comparisons of effect sizes. 
See Appendix S10for additional linear 
relationships
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associations with environmental variables, context-dependent 
trait coordination, and high dispersion within communities. By 
contrast, trait abundance, described by weighted trait averages, 
showed strong environmental filtering, with high convergence 
and consistent coordination among traits, especially in resource-
limited environments such as those found on southern aspects. 
These observed differences indicate that the constraints on trait 
abundance are stronger than the constraints on trait presence 
across resource gradients. Overall, we demonstrate that environ-
mental filters influence species abundance by acting on multiple 
traits simultaneously, whereas species presence is determined by 
site-level environmental conditions.

4.1 | The effect of environmental gradients on 
single weighted and unweighted traits

Resource-limited environments such as those found on south-
facing slopes were dominated by trait values associated with 
conservative plant strategies (e.g., smaller leaves and low stature) 
among both weighted and unweighted trait averages. However, 
environmental variables were stronger predictors of weighted 
than unweighted trait distributions. Taken together, these results 
support our hypothesis that environmental filtering on species 

abundance is stronger than filtering of species presence–absence 
in a community (H1). Weighted trait values of LA, LDMC, and SLA 
responded most strongly to soil moisture and soil N availability. As 
soil moisture decreased, we saw reductions in the weighted aver-
ages of SLA. Similarly, as NH4-N availability decreased, so did the 
weighted averages of LA. Soil moisture plays a considerable role in 
controlling the availability of soil resources like NH4-N (Leuschner 
& Lendzion, 2009), which in turn places limits on the abundance 
and distribution of understory herbs (Whittaker,  1956). The leaf 
patterns we observed are consistent with the expected physi-
ological trade-offs mediated by N availability and soil moisture 
(Tilman,  1990; Westoby,  1998) and suggest that filtering of trait 
diversity has resulted in environmentally mediated fitness differ-
ences among species with different functional strategies (Chave 
et al., 2009; Wright et al., 2004). This is not surprising as both LA 
and SLA are associated with plant carbon economy and relative 
growth rate. An increase in the weighted averages of these traits 
thus indicates that conditions of high resource availability favor 
species that can maximize carbon gain (Gaudet & Keddy,  1988; 
Westoby, 1998; Wright et al., 2007).

Surprisingly, weighted averages for LDMC deviated from the 
predictions of the leaf economics spectrum (Wright et al., 2004) 
in that LDMC increased as soil moisture increased. Also, un-
weighted and weighted δ13C were more depleted in the warmest 
and driest plots, which indicates that plants were not adjusting 
their water use efficiency in drier plots such as those located at 
low elevation, on south-facing slopes. One explanation for the 
discrepancy between our data and theoretical expectations may 
be that environmental constraints often do not exert selection on 
single traits but instead exert selection on multiple traits simul-
taneously (Muscarella & Uriarte, 2016). Thus, species with sub-
optimal values in individual traits may persist in an environment 
but never reach high abundance there (Cingolani et  al.,  2007; 
Keddy, 1992).

4.2 | Dispersion of unweighted and weighted traits 
across the resource gradients

We also observed lower CWV of weighted H and SLA as soil mois-
ture and N concentration declined, which is in line with previous 
studies of herb community assembly (Bernard-Verdier et al., 2012; 
Freschet et al., 2011; Violle et al., 2012). These results offer ad-
ditional support for strong environmental filtering in constrain-
ing local trait diversity under limiting conditions for plant growth 
and support our hypothesis that species abundance is strongly 
determined by the magnitude of trait–environment correspond-
ence (H2). Numerous investigations have demonstrated resource-
limited environments are more restrictive on the variation and 
distribution of plant functional traits (Díaz et al., 1998; Laliberté 
et  al.,  2014; Lebrija-Trejos et  al.,  2010; Weiher & Keddy,  1995). 
Alternatively, high resource availability resulted in higher CWV 
of weighted H and SLA, which demonstrates that filtering does 

F I G U R E  4   Conceptual model of the direct and indirect 
influence of edaphic (soil nutrient availability), leaf economics (trait 
coordination), and climate (temperature and moisture availability) 
and functional trait averages (unweighted or weighted). Single 
arrows indicate direct relationships and double arrows indicate 
the potential for direct and indirect relationships among variables. 
Squares indicate direct measurements and rounded rectangles 
indicate latent variables, which are used to define factors that 
cannot be measured or quantified in their entirety but are 
hypothesized to be responsible for the outcome of observed 
measurements



14108  |     CANDEIAS and FRATERRIGO

not always result in the exclusion of species with different trait 
values but rather alters their chances of reaching high abundance 
(Grime,  1998; Whittaker,  1965). SEMs specified on unweighted 
trait distributions similarly demonstrated weak but direct re-
sponses to environmental variation (Figure  5a,c, Appendices S9 
and S11), which coupled with high variance among unweighted 
trait values, adds additional support for weaker filtering on spe-
cies presence than abundance within a community.

4.3 | The importance of trait coordination in 
explaining unweighted and weighted trait distributions

The importance of trait coordination in structuring weighted 
functional trait distributions supports the idea that trait coor-
dination is tightly correlated with fitness and performance and 
therefore exerts a strong influence on species abundance (H3) 
(Laughlin & Messier, 2015; Muscarella & Uriarte, 2016). To date, 

F I G U R E  5   Structural equation models fitted on both unweighted and weighted trait values measured from understory herbs 
communities in the southern Appalachian Mountains for (a) unweighted SLA, (b) weighted SLA, (c) unweighted LN, and (d) weighted LN. 
Measured variables are indicated by squares whereas latent variables are indicated by rounded rectangles. Solid arrows indicate positive 
relationships and dashed arrows indicate negative relationships. Latent variables consist of: Edaphic, soil nutrients; Leaf Economic 
Spectrum, functional trait averages; and Climate, moisture and temperature. Variable abbreviations are as follows: Leaf area, LA; specific 
leaf area, SLA; leaf dry matter content, LDMC; leaf nitrogen, Leaf N; maximum temperature, max temp; soil pH, pH; average temperature, 
avg temp; minimum temperature, min temp; PO4, Phos; NH4-N, NH4; PAR; Soil N Concentration, SoilN; soil moisture, soilm; and NO3-N, 
NOx. Significant paths are indicated by * (***<.01; **≤.05; *≤.1). Double headed arrows refer to covariance estimates.R2values show the 
proportion of variance explained for each variable. We fit models using the robust maximum likelihood method and overall goodness of fit 
estimated from chi-square statistic and the root mean square error of approximation (RMSEA). A full list ofSEMestimates can be found in 
Appendix S10. For additional SEMs, please see Appendix S11
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most investigations have explored variation in trait coordination 
at regional or larger scales (Díaz et  al.,  2016; Reich et  al.,  1997; 
Wright et al., 2004), leaving considerable gaps in our understand-
ing of how trait coordination may influence trait distributions 
along local environmental gradients. We found that coordination 
among weighted traits was uniform across the resource gradients 
(Figure  3b,d) and that soil and microclimate variables acted on 
weighted trait distributions indirectly via their influence on trait 
coordination (Figure 5b,d, Appendices S9 and S11). These results 
indicate that species abundance in a community is strongly de-
termined by coordination among multiple traits related to differ-
ent ecological strategies such as resource acquisition and carbon 
economy (sensu Ackerly et al., 2002).

Alternatively, coordination among unweighted trait averages 
was less consistent, depending strongly on environmental context. 
For instance, coordination among unweighted values of communi-
ty-average SLA and δ13C was particularly strong on water-limited, 
low-elevation, south-facing slopes and is indicative of plants with 
water conservation strategies (Cernusak et  al.,  2009; Farquhar 
et  al.,  2002). We also found coordination between unweighted 
SLA and LN on less limiting high elevation north-facing slopes, 
which likely stems from high N deposition rates at high elevations 
in the southern Appalachian Mountains (Block et al., 2012; Swank 
& Vose,  1997; Weathers et  al.,  2000). Indeed, our SEMs demon-
strated that coordination among traits was not a significant factor 
in explaining unweighted trait distributions whereas weak direct 
relationships between unweighted trait distributions environmen-
tal variables were significant (Figure 5a,c, Appendices S9 and S11). 
Taken together, these results provide further evidence of the con-
text-dependent relationships between unweighted trait distribu-
tions and environmental variables in explaining trait presence within 
a community.

The observed differences in coordination among unweighted 
and weighted traits are consistent with patterns found at larger 
scales among a variety of habitats from temperate and tropical 
forests (Laughlin & Messier,  2015; Liu et  al.,  2012) to dry scrub-
lands (Dwyer & Laughlin, 2017a) and suggest that, at local scales, 
the second-level filter is a strong predictor of abundance but not 
necessarily presence (Ackerly et  al.,  2002; Cingolani et  al.,  2007). 
The importance of trait coordination in determining weighted trait 
distributions further suggests that evolutionary processes and re-
sulting trade-offs are shaping understory herb communities so that 
each trait, in concert with other traits, contributes to the community 
assembly process (Goud & Sparks, 2018; Read et al., 2014; Wiens 
et al., 2010). Overall, our results suggest the presence of two lev-
els of environmental filters acting on understory herbs in south-
ern Appalachian forests: the first level filter determines whether 
a species is present or absent across resource gradients whereas 
the second-level filter, which acts on the degree of trait coordi-
nation, determines which species reach high abundance along the 
resource gradient (Cingolani et  al.,  2007; Leishman et  al.,  2010; 
Lodge, 1993; Westoby et al., 2002). Although additional research is 
needed to quantify biotic interactions to determine to what extent 

competition (i.e., limiting similarity) is also shaping functional trait 
distributions in this system, our study supports the view that en-
vironmental filters generally operate on multiple traits simultane-
ously rather than single traits in isolation (Kichenin et al., 2013; Read 
et al., 2014; Sundqvist et al., 2011).

Notably, the relationships between unweighted average traits 
and environmental variables left much of the variation in trait dis-
tributions unexplained. This may partly be due to the fact that only 
a snapshot of the local conditions experienced at each plot were 
measured. Lack of interannual variability in environmental variables 
at the plot level coupled with unknown dispersal history and sto-
chastic effects may have also played a large role in determining the 
trait distributions we observed at both sites, which is especially im-
portant when considering presence and absence. Additionally, we 
did not measure other key environmental variables such as nitrogen 
supply rate, midsummer water potential, and temperature variabil-
ity throughout the entire year. Environmental heterogeneity may be 
equally as important as environmental mean conditions in governing 
community assembly (Stark et al., 2017).

4.4 | Implications for functional trait investigations

In conclusion, we show the importance of considering local environ-
mental conditions and trait coordination when investigating under-
story herb community assembly. Our parallel assessment of single 
unweighted and weighted trait values provided novel insights into 
the importance of trait coordination in explaining understory herb 
species abundance in montane environments. Whereas niche dif-
ferentiation governs trait distributions where resource availability is 
high (Kraft et al., 2008), strong environmental filtering appears to be 
governing trait distributions in resource-limited settings. Stronger 
abiotic filters also manifest in stronger trait–environment relation-
ships and thus environmental variables have greater predictive 
power in resource-limited environments compared to high resource 
environments, especially for species abundances. However, our trait 
coordination results suggest evolutionary processes and associated 
trade-offs are important components of the community assembly 
process as well. Because the relative importance of trait coordina-
tion is governed by environmental context and is subject to change 
under future climate scenarios, studying species-specific fitness 
consequences of suites of traits in the context of abiotic variation 
has the potential to confer greater power to detect the complex pat-
terns and underlying processes of community assembly for under-
story herbs.
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