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Abstract
Genome-wide association studies (GWAS) have emerged as a powerful tool to uncover the genetic basis of human common
diseases, which often show a complex, polygenic and multi-factorial aetiology. These studies have revealed that 70–90% of all
single nucleotide polymorphisms (SNPs) associated with common complex diseases do not occur within genes (i.e. they are
non-coding), making the discovery of disease-causative genetic variants and the elucidation of the underlying pathological
mechanisms far from straightforward. Based on emerging evidences suggesting that disease-associated SNPs are frequently
found within cell type-specific regulatory sequences, here we present GARLIC (GWAS-based Prediction Toolkit for Connecting
Diseases and Cell Types), a user-friendly, multi-purpose software with an associated database and online viewer that, using
global maps of cis-regulatory elements, can aetiologically connect human diseases with relevant cell types. Additionally,
GARLIC can be used to retrieve potential disease-causative genetic variants overlapping regulatory sequences of interest.
Overall, GARLIC can satisfy several important needs within the field of medical genetics, thus potentially assisting in the
ultimate goal of uncovering the elusive and complex genetic basis of common human disorders.

Introduction
A major goal in the postgenomic era is to dissect the genetic
basis of human disease, which has far-reaching diagnostic and
therapeutic implications. Although there has been a remarkable
success in uncovering the causative mutations and the relevant
genes involved in a number of rare Mendelian diseases (1,2),
this has proven considerably more challenging in the case of
common and complex human disorders. These disorders are
characterized by polygenic and multifactorial aetiology,
whereby the combination of certain genetic variants and

environmental risk factors contribute to disease susceptibility
(3,4). The completion of the human genome project, more than
a decade ago, together with the appearance of microarray tech-
nology, paved the way for the establishment of Genome-Wide
Association Studies (GWAS) (4) as a powerful approach to un-
cover the genetic basis of common complex diseases. In GWAS,
thousands of single nucleotide polymorphisms (SNPs) are typic-
ally genotyped in large cohorts of patients and matched con-
trols in order to reveal genetic variants associated with a
particular disease or trait. As microarray technology became
cheaper and more robust, GWAS bloomed and genetic
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association data are now available for hundreds of human dis-
eases and traits (e.g. GWAS Catalog (https://www.ebi.ac.uk/
gwas/). However, the initial excitement regarding GWAS was
somewhat dampened by the recurrent observation that most
(70–90%) disease-associated genetic variation lie outside genes,
within the vast non-coding fraction of the human genome (5,6).
Consequently, the molecular and pathological consequences of
many of the uncovered genetic variants remain unknown (7–9).

As GWAS became a regular tool in medical genetics, the gen-
omics field was revolutionized by the emergence of next gener-
ation sequencing (NGS). Among its many applications, NGS has
been instrumental in the functional annotation of the human
genome. In this regard, epigenomic profiling and the use of
chromatin signatures revealed that the human genome is
densely populated by cis-regulatory elements (CREs; i.e. pro-
moters, enhancers, insulators). Amongst them, enhancers,
which can control gene expression in a distance- and
orientation-independent manner, seem to be particularly abun-
dant and cell type-specific. Using epigenomic approaches such
as ChIP-seq, DNAse-seq or ATAC-seq, regulatory maps have
now been generated in hundreds of different human cell types
and tissues, mostly as part of large international efforts such as
The Encyclopedia of DNA Elements (ENCODE) (5), the Roadmaps
Epigenomics (10) or the BLUEPRINT (11) consortia. Importantly,
global analysis of GWAS data and CRE maps suggests that a sig-
nificant fraction of all non-coding genetic variants associated
with common complex human diseases lie within putative cis-
regulatory elements, especially within enhancers (6). Moreover,
SNPs associated with a particular disease were frequently over-
represented within CREs present in cell types or tissues thought
to be relevant for that disease. Consequently, it has been
hypothesized that SNPs occurring within CREs might alter the
regulatory properties of these sequences and lead to quantita-
tive changes in gene expression with potentially pathological
consequences (8,12–16).

In theory, the combination of GWAS information and CRE
maps from different human cell types and tissues should
streamline the identification of causative genetic variants for
common complex diseases (8,17,18). However, using candidate-
based approaches, this has been so far accomplished in only a
handful of SNPs and CREs, which have nevertheless led to the
discovery of novel genes and pathways involved in relevant
human disorders (7,16,19–23). There are probably multiple rea-
sons explaining this moderate success in uncovering disease
causative non-coding variants: (i) SNPs reported in GWAS
should be considered as mere markers of larger human haplo-
types. Thus, they are not necessarily causative and, instead,
they might be in linkage-disequilibrium (LD) with the true
causative variants (8); (ii) CREs, especially enhancers, are highly
dynamic and cell-type specific. Thus, regulatory and patho-
logical effects of disease-causative SNPs might only be revealed
if investigated in the relevant human cell types or tissues (6,24);
(iii) Most attempts to investigate the pathological consequences
of non-coding SNPs have focused on cell types/tissues that are
considered relevant for a particular disease based on previous
knowledge (6,25). However, the repertoire of cell-types/tissues
that are important for particular common complex diseases
might not be completely understood in some cases; (iv) GWAS
and epigenomic data are not readily accessible to the average
user, typically requiring some computational skills in order to
formulate testable hypothesis regarding the genetic basis of
human disease. Here we present a novel software and associ-
ated database, named GARLIC (GWAS-Based Prediction Toolkit
for Connecting Diseases and Cell Types), which aims at

minimizing all the previously mentioned issues in order to pro-
vide a user-oriented, user-friendly and systematic approach to
facilitate the genetic dissection of common and complex
human disorders.

Results
The GARLIC database

A central component of GARLIC is a local database (DB) designed
to store and combine different data sets: (i) SNPs reported in
GWAS as associated with a list of 1049 different diseases (Lead
SNPs (L-SNPs), total¼ 13707) and those SNPs that are in high LD
(r2>0.8) with the L-SNPs (Follower SNPs (F-SNPs, total¼ 218663),
resulting in a total of 232370 SNPs; (ii) CRE maps generated by
DNase-seq in 77 different human cell types and tissues (from the
ENCODE (5), Roadmap Epigenomics (10) and BLUEPRINT (11) repo-
sitories) (Supplementary Material, Table S1). The user can also
add to the DB novel CRE maps generated in any human cell type
or tissue of interest, which can in principle be generated by sev-
eral alternative methods (DNAse-seq, ChIP-seq, ATAC-seq, CAGE)
or combinations thereof. Similarly, the user can also add lists of
SNPs identified as associated with a disease or trait in novel
GWAS studies. An overview of the integrated datasets used in
the DB is shown in Figure 1A (complete DB schema is included as
Supplementary Material, Fig. S1).

The GARLIC DB can be fully accessed using MySQL querying
techniques. Moreover, basic DB query functions are provided
through several wrap-up shell scripts requiring no prior pro-
gramming knowledge, thus making the DB accessible to a
broader audience.

Predicting aetiological connections between diseases
and cell types/tissues

The GARLIC toolkit includes a novel method to aetiologically
connect human diseases and traits with different cell types or
tissues based on the overlap between disease genomic risk-
regions (GRRs) and CRE maps (Fig. 1B; see Methods for details). It
is worth mentioning that the GARLIC method does not require
GWAS SNPs (L-SNPs or F-SNPs) to be directly located within
CREs. In addition, we speculated that, by combining a large
number of diseases/traits and CRE maps it should be possible
not only to confirm previously known aetiological connections
between diseases and cell types/tissue, but also to predict some
novel and unexpected ones.

In order to test our method, we focused on diseases included
in the DB that have seven or more GRRs. This ensured suffi-
ciently large sample sizes, and was thus compatible with the
random sampling procedure described in the Methods section.
After applying this criterion, we were able to test 510 out of the
1049 diseases included in the GARLIC DB against the 77 CRE
maps from the different human cell types and tissues. To illus-
trate our method’s performance, the aetiological connections
between a selected subset of 27 diseases and 25 CRE maps are
depicted in Figure 2A. The results of testing all CRE maps
against 167 diseases for which a statistically-significant connec-
tion (P�0.01) was found with at least one CRE map are presented
in Supplementary Material, Fig. S2. From a global perspective, it
is obvious that some diseases/traits showed highly significant
connections with a large number of cell types/tissues, probably
reflecting their complex and pleiotropic genetic basis (e.g.
height, platelet counts). In contrast, other diseases were almost
exclusively connected to just a single CRE map (e.g. Parkinson’s
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disease with cerebellum CRE map). Moreover, distinct clusters
connecting related group of diseases and cell types could also
be visualized (e.g. autoimmune diseases with immune system-
related cell types) (Supplementary Material, Fig. S2). Overall,
there were many statistically significant connections in agree-
ment with the current understanding of various human dis-
eases and traits and we discuss some of these below.

We anticipate that GARLIC users might be interested in ac-
cessing the previous aetiological connections from two different
standpoints: users might be particularly interested in the dis-
eases showing a statistically significant connection with a given
cell type/tissue or, alternatively, might want to predict which
cell types/tissues are more relevant for a given disease/trait.
Using simple command-line tools or a dedicated, user-friendly
online interface, the GARLIC Viewer (http://bifacility.uni-koeln.

de/GARLIC/viewer.php), GARLIC allows the user to retrieve
these connections for any given cell type/tissue or disease/trait
of interest. To illustrate the former, we show the results for four
different cell types/tissues: fetal heart (full results from this
regulatory map are listed in Supplementary Material, Table S2
to exemplify the output generated by GARLIC), T-lymphocytes
(CD3þ), astrocytes, and fetal renal pelvis (Supplementary
Material, Fig. S3). The results obtained for other cell types are
fully accessible through the GARLIC Viewer. In the case of fetal
heart and T-lymphocytes, highly significant connections mostly
with expected diseases and traits were observed (i.e. fetal heart:
heart rate, QT interval, electrocardiographic traits, atrial fibrillation,
coronary heart disease; T-lymphocytes: autoimmune disorders
such as Celiac disease, Psoriasis, Type I diabetes and atopic derma-
titis). In contrast, astrocytes did not associate with neurological

A

B

Figure 1. Overview of the GARLIC rationale and the included datasets. (A) SNPs causally involved in common complex diseases are predicted to occur within CRE pre-

sent in disease-relevant cell types. These SNPs can alter the regulatory properties of CRE, which can lead to quantitative changes in gene expression and increased dis-

ease susceptibility. (B) GARLIC major underlying hypothesis is that the regulatory maps from the cell types or tissues most relevant for a given disease should be

preferentially enriched in disease-associated SNPs in comparison with non-relevant cell types.
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Figure 2. GARLIC can be used to aetiologically connect human complex diseases and cell type-specific CRE maps. (A) GARLIC results obtained for a selected subset of

diseases (rows) and CRE maps (columns) are shown as a heat map. The statistical connection between each disease and cell type is color coded according to GARLIC P-

values, with the most and least significant connections represented in red and blue, respectively. (B) Radial plot summarizing the statistical connection between four

selected diseases (indicated in the bottom left corner) and all cell types included in the GARLIC DB. The name of only a subset of all the investigated cell types is shown.

Peaks closer to the outer border of the radial plot represent more significant connections, while those closer to the center are the least significant ones.
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disorders and instead showed significant connections with
non-neural diseases, including intracranial aneurysm and ischae-
mic stroke. This suggests that astrocytes might play a causative
(yet largely unexplored) role in cerebrovascular disease via non-
coding mutations occurring within astrocyte CREs. Similarly,
when the CRE map from the fetal renal pelvis (the broadened
top part of the ureter into which the kidney tubules drain) was
considered, statistically significant connections were observed
not only to kidney-related diseases and traits, but also to other
somehow unexpected human conditions, such as metabolic syn-
drome. Interestingly, this complex metabolic disorder also dis-
played a strong connection with immune system cell types,
indicating that uncovering the genetic basis of this disease
might require considering not only tissues involved in meta-
bolic regulation (e.g. liver, pancreas, fat tissue), but also unex-
pected contributors, such as the kidney and the immune
system.

On the other hand, to illustrate the performance of GARLIC
when focusing on particular diseases, results for four common
complex diseases (i.e. coronary artery disease or large artery stroke,
Type I diabetes, Parkinson’s disease and atrial fibrillation) are shown
in Figure 2B. These diseases were selected based on the varying
number of cell types/tissues with which they seem to be con-
nected. Coronary artery disease displayed moderate connection
with a large number of cell types/tissue, suggesting a complex
and pleiotropic aetiology. Type I diabetes also strongly associated
with a large number of cell types, but in this case, most of them
were related to the immune system. In contrast, Parkinson’s dis-
ease and atrial fibrillation were considerably more specific, as
they showed highly significant connections to only a few cell
types [i.e. Parkinson’s disease: cerebellum (P¼ 7�10�5) and fron-
tal cerebrum (P¼ 6.7�10�3); atrial fibrillation: skeletal muscle
(P¼ 6�10�4), fetal heart (P¼ 6.1�10�3), cardiac mesoderm
(P¼ 1.07�10�2)].

Overall, these results illustrate how GARLIC can be used to
systematically link human diseases/traits and cell types/tis-
sues, which in some cases might lead to unexpected yet poten-
tially relevant aetiological insights. Importantly, users can also
incorporate novel CRE maps or GWAS datasets into GARLIC that
can be then analysed with respect to all other datasets already
present in the DB.

Combinatorial procedure to identify the cell type pairs
with an increased aetiological contribution to human
disease

Despite the statistically significant aetiological connections
observed between many human diseases/traits and specific cell
types/tissues, there were still a large number of diseases for
which strong aetiological associations could not be made (e.g.
343 diseases/traits did not achieve P-value< 0.01). Due to the
polygenic and the multifactorial aetiology of most common
human diseases, it is conceivable that certain disorders will not
display strong aetiological connections with any individual cell
type or tissue. Moreover, it is also possible that CRE maps are
currently not available for the cell types/tissues that might be
more relevant for certain human diseases/traits. Alternatively,
multiple cell types/tissues may all moderately contribute to
such diseases through specific CREs. To address this possibility
without using a brute force approach, we implemented a soft-
ware feature that identifies combinations of CRE maps from dif-
ferent cell types/tissues that achieve more significant results for
a given disease/trait than when regulatory maps are tested

individually (Supplementary Material, Fig. S4A; see Methods).
To exemplify the potential of this GARLIC feature, we prioritized
diseases/traits for which our previous individual CRE maps did
not find strong aetiological connections (P-value> 0.01). Among
these diseases/traits, we tested 95 (out of 343) and found seven
of them having at least one CRE pairwise map combination that
yielded a lower P-value in comparison to the results obtained
when the two corresponding CRE maps were tested separately
(Supplementary Material, Fig. S4B). Amongst the identified CRE
map combinations, those that yielded a lower P-value than all
individually tested CRE maps were particularly interesting, as
they illustrate the potential of our combinatorial procedure to
discover aetiological connections that would be missed other-
wise. For example, for the trait Dietary macronutrient intake, the
merged CRE map for Choroid plexus epithelial cells and Frontal
Cortex achieved a P-value (0.019) that was lower than either of
these two maps when tested separately (P-value¼ 0.168) or,
more importantly, than any of the individually tested CRE maps
(P-value¼ 0.045). These results suggest that genetic variants
located within CREs present in different parts of the brain might
contribute to the control of nutrient intake, which is believed to
have an important neural component (26). Similarly, for
Response to serotonin reuptake inhibitors in major depressive disorder,
a significant association was obtained for the combination of
Hepatic Stellate Cells with Renal Cortical Epithelial Cells, sug-
gesting that the response to these drugs might depend on how
they are metabolized in the liver and the kidney.

Extracting disease-associated SNPs overlapping CREs or
loci of interest

GARLIC aetiologically links cell types/tissues and diseases/traits
based on the overlaps between CREs and GRRs, which does not
require that the actual GWAS SNPs (L-SNPs and F-SNPs) occur
directly within CREs. Nevertheless, once cell types/tissues and
diseases/traits are aetiologically connected, GARLIC enables the
identification of all GWAS SNPs (both L-SNPs and F-SNPs) asso-
ciated with a disease/trait of interest and overlapping CREs in a
given cell type/tissue (Fig. 3A). Using simple command-line
tools (see Online user manual, https://github.com/mnikoli/
GARLIC) or the GARLIC viewer, this can provide the user with a
limited list of SNPs that can be prioritized for downstream in sil-
ico (27–30) and/or experimental analyses to evaluate their poten-
tial role as disease-causative SNPs. CRE maps already included
in the GARLIC DB or any other CRE map generated through dif-
ferent techniques, such as DNAse-seq, ATAC-seq or ChIP-seq,
may be used. For example, when considering congenital heart
malformation GWAS data and the fetal heart CRE map as in-
puts, we found nine out of 55 SNPs associated with this malfor-
mation within two different CREs (Table 1). Eight of these SNPs
occurred within a single CRE (chr4: 140797201-140796912; hg19)
located within an intron of MALM3. Interestingly, MALM3 is a
coactivator of the NOTCH signalling pathway, which is known
to play a crucial role in cardiac development and heart congeni-
tal diseases (31).

Conversely, instead of using CRE maps, users can provide
genomic coordinates for a single locus of interest as input [e.g.
gene, lincRNA, topological domain (TAD)] for which pathological
connections want to be investigated (Fig. 3B). GARLIC can then
be used to retrieve all diseases for which L-SNPs or F-SNPs occur
within the locus of interest, together with a detailed list of all
those SNPs. As an example, we looked into the TBX5 gene locus,
which encodes a transcription factor considered as a master
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regulator of heart development (32). The TBX5 genomic coordin-
ates were extended by 61 Kb and used as input for the identifi-
cation of 20 disease-associated SNPs. Interestingly, despite the
large number (>1000) of diseases and traits included in our DB,
all identified SNPs were associated with heart-related functions:
PR interval, QRS duration and electrocardiographic traits (Table 2). A
detailed description of all commands and calling parameters
required for the two strategies described above is provided in
the Online user manual.

Finally, although GARLIC was originally designed to investi-
gate the aetiological connection between diseases and cell types
based on CRE maps, it can also make such connections using
other types of regulatory maps (as far as they are provided in BED
format) potentially enriched in disease-associated genetic vari-
ants. To illustrate its broad applicability, we used GARLIC with
regulatory maps from recursive splicing sites (RSSs) in two differ-
ent cell types, human umbilical vein endothelial cells and neural
progenitors. Recursive splicing is thought to mediate the excision
of long human introns (33,34) and it is conceivable that SNPs
mutating such sites can interfere with proper mRNA maturation.
Due to the low number of recursive splice sites per cell type, we

applied our method without any prior removal of disease-
associated GRRs. Results connected variation at endothelial
cell RSSs mostly to smoking and chronic obstructive pulmonary

disease, which, interestingly, are known to become aetiologic-
ally linked due to initial lesions occurring in the lung endo-
thelium (35). Likewise, variation at neuronal progenitor RSSs
associated to diseases like migraine and Parkinson’s, or to co-

caine and alcohol consumption (Supplementary Material, Fig. S5),
which are all diseases and traits with a well-known neuro-
logical component.
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Figure 3. Identification of SNPs located within CREs of interest. (A) SNPs overlapping CREs and their associated-diseases can be retrieved using as input either regula-

tory maps or (B) a single locus of interest.

Table 1. SNPs associated with congenital heart malformation over-
lapping CREs from Fetal heart

Name Chr Position Overlapping Region

rs12725053 chr1 118939846 118938659 – 118940963
rs11100326 chr4 140797683 140796912 – 140800330
rs1455480 chr4 140800330 140796912 – 140800330
rs150260800 chr4 140798452 140796912 – 140800330
rs17368602 chr4 140800012 140796912 – 140800330
rs4863518 chr4 140799733 140796912 – 140800330
rs4863519 chr4 140799749 140796912 – 140800330
rs4863699 chr4 140799855 140796912 – 140800330
rs6834463 chr4 140797201 140796912 – 140800330

Table 2. SNPs associated with different diseases and traits located
within the TBX5 locus

Name Chr Position SNP_type Associated_disease(s)

rs1895585 chr12 114802138 L PR interval
rs3825214 chr12 114795443 L Electrocardiographic traits
rs883079 chr12 114793240 L QRS duration
rs10507248 chr12 114797093 F PR interval; QRS duration
rs10744823 chr12 114798082 F Electrocardiographic traits
rs10744824 chr12 114808638 F Electrocardiographic traits
rs12367410 chr12 114796688 F Electrocardiographic traits
rs148020424 chr12 114805057 F PR interval; QRS duration
rs1895582 chr12 114807035 F PR interval; QRS duration
rs1895583 chr12 114806885 F PR interval
rs1946293 chr12 114802760 F PR interval; QRS duration
rs1946295 chr12 114802361 F PR interval; QRS duration
rs2113433 chr12 114794057 F Electrocardiographic traits
rs3825215 chr12 114804898 F PR interval; QRS duration
rs4767237 chr12 114800813 F PR interval; QRS duration
rs6489956 chr12 114792236 F Electrocardiographic traits
rs7135659 chr12 114801772 F PR interval; QRS duration
rs7312625 chr12 114799974 F PR interval; QRS duration
rs7316919 chr12 114791455 F Electrocardiographic traits
rs7955405 chr12 114797306 F PR interval; QRS duration
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Discussion
GWAS have emerged as a powerful and broadly-used strategy
to uncover the genetic basis of common and complex diseases.
As a result, thousands of genetic variants have now been asso-
ciated with various human disorders and numbers keep
increasing at a remarkable pace. However, as GWAS data accu-
mulate in dedicated databases, relatively little progress has
been made regarding the molecular and pathological character-
ization of most of the uncovered genetic variants. Therefore,
there is a major need to identify disease-causative genetic vari-
ants, as this can dramatically increase the diagnostic and thera-
peutic impact of existing and forthcoming GWAS.

A major reason that explains the difficulty in moving from
GWAS to the identification of disease-causative genetic variants
is that the vast majority of disease-associated genetic variation
occurs within human non-coding sequences (6). Based on accu-
mulating evidences, we and others have hypothesized that a
significant fraction of disease-causative non-coding genetic
variants can disrupt CREs, such as enhancers, and therefore
lead to pathological changes in gene expression (8,12,13). Since
many enhancers are cell-type specific, the impact of genetic
variants of interest might only be revealed if investigated in the
relevant cell type/tissue (6,36). With these ideas in mind, we de-
veloped GARLIC, a multipurpose and user-oriented toolkit that
enables to aetiologically connect human diseases with relevant
cell types/tissues in a systematic and unbiased manner. To test
GARLIC performance, we first analysed a large cohort of GWAS
datasets and CRE maps (510 GWAS and 77 CRE maps). In most
previous studies (6,25,37) in which CRE maps were used to link
diseases and cell types, the in silico tools developed were not
made publicly-available and, in addition, major emphasis was
given to finding previously known aetiological connections. In
other cases in which the implemented tools were made avail-
able (36,38), the user has to retrieve and provide the relevant
GWAS datasets and CRE maps, which requires some back-
ground in genomics and basic computational skills. To over-
come these limitations, GARLIC allows users to not only analyse
the link between any GWAS dataset and CRE map of interest,
but also, to explore globally and neutrally all the data included
in our database. Similar to previous studies (25,37), we found
strong statistical support for already established or expected
aetiological connections between certain disorders and cell
types (e.g. autoimmune disorders and immune-system cell
types), thus validating the performance of our approach.
However, we also observed numerous novel and unexpected
aetiological links that might merit further experimental ana-
lysis, as illustrated for example by the potential involvement of
astrocytes in cerebrovascular disease.

The prediction of disease-causative SNPs is neither the pri-
mary nor the major feature of GARLIC, which is especially de-
signed to make statistical predictions regarding the aetiological
connections between diseases and human cell types/tissues. To
make these connections, GARLIC relies on the overlap between
the GRRs of human diseases and the CRE maps of different cell
types/tissues, without requiring GWAS SNPs (i.e. L-SNP or F-
SNPs) to be actually located within CREs. Using this strategy, we
tried to minimize the possibility that disease-causative genetic
variants might not be part of the considered GWAS SNPs, which
can frequently occur due to the disease contribution of rare gen-
etic variants and/or variants showing lower LD (i.e. r2<0.8) with
the L-SNPs than required by GARLIC. Nevertheless, once dis-
eases and cell types are aetiologically linked, GARLIC can be
used to extract all disease-associated SNPs overlapping CREs

within the cell type/tissue of interest. These SNPs represent po-
tential disease-causative genetic variants that can be prioritized
for further analysis via other in silico tools designed ad hoc for
the prediction of non-coding regulatory variants (27–30), fol-
lowed by experimental validation. Additionally, although we
focused on CREs as the key non-coding sequences harbouring
disease relevant genetic variations, using recursive splicing
sites from two different cell types as an example (33,34), we
show that GARLIC can use as input other lists of genomic loci
with potential medical relevance (e.g. lincRNAs, splicing regula-
tory sequences).

The GARLIC toolkit and its associated DB offer a systematic
and user-friendly approach to investigate the aetiological and
genetic basis of common and complex human disorders. We be-
lieve that the variety of implemented features and its usability
render GARLIC accessible for a broad scientific audience.
Finally, whole-genome NGS approaches, which are expected to
be superior to GWAS in uncovering the disease-causative gen-
etic variants, are now used to investigate the genetic basis of an
increasing number of complex diseases (39). In parallel, recent
methodological advances in genomics, such as ATAC-seq or
single-cell ChIP-seq (40,41) will enable the generation of CRE
maps from hitherto inaccessible human cell types/tissues,
including patient material. Therefore, we anticipate that there
will be an increasing need to combine genetic information with
the continuously improved functional annotation of the human
genome. Hence, we believe that, with further optimization and
frequent updates, GARLIC will be an important asset in facing
these upcoming challenges.

Materials and Methods
GARLIC database and data preprocessing

We designed and implemented a MySQL DB as an integral part
of the GARLIC software to accommodate all available SNP data
from the GWAS Catalog (https://www.ebi.ac.uk/gwas/) [accessed
on 15.06.2015]. Considering that SNPs reported in GWAS, which
we will refer to as lead SNPs (L-SNPs), are not necessarily
disease-causative, additional SNPs (follower SNPs (F-SNPs)) hav-
ing an r2>¼0.8 with the L-SNPs were identified using HaploReg
tool (http://archive.broadinstitute.org/mammals/haploreg/hap
loreg_v2.php; date last accessed June 15, 2015). 46 entries from
the GWAS Study named “A genome-wide search for common
SNP x SNP interactions on the risk of venous thrombosis” repre-
senting epistatic interactions between pairs of SNPs were dis-
carded and not included in GARLIC DB. Next, genomic risk-
regions (GRRs) for each L-SNP were defined by the position of
the corresponding F-SNPs located furthest upstream and down-
stream from the L-SNP (Fig. 4A, Left). GWAS studies are not al-
ways performed with the same genotyping platforms and thus,
different L-SNPs can be in principle used as markers of the
same common human haplotypes, which can introduce
dependencies among the data. Therefore, for each GRR with
multiple L-SNPs in LD associated with the same disease, all
those L-SNPs were considered as F-SNPs (ex-L-SNPs) except one
that was kept as a name tag for the GRR, while all F-SNPs from
ex-L-SNPs were assigned to be F-SNPs of the remaining L-SNP
(Fig. 4A, Right). Additionally, all GRRs were assigned to one of
five different sized-bins according to their GRR length l: [1–
1000 bp], [1000–10000 bp], [10000–25000 bp], [25000–55000 bp],
[55000–Inf bp), to ensure that randomly-sampled GRRs from the
GARLIC DB were of similar size to those tested when investigat-
ing the aetiological connection between cell types/tissues and
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diseases/traits (as described below). GRRs with less than 1000 bp
in length were extended to 1000 bp to minimize potential under-
estimation of the disease scores. In total, we stored GWAS data
for 1049 common and complex diseases and traits, which re-
sulted in 15101 GRRs including 13707 L-SNPs and 218663 F-SNPs.

DNAse-seq data (i.e. DNAseI hypersensitivity sites (DHS)
sequencing) generated by the ENCODE, Roadmap Epigenomics
and BLUEPRINT (5,10,11) were gathered for 77 healthy human
cell types/tissues either directly from the consortia databases or

the CistromeFinder database (http://cistrome.org/finder/; date
last accessed November 20, 2016). DNAse-seq peaks were identi-
fied using MACS2 or Hotspot (42,43). For MACS2, a false-
discovery rate (FDR) (44) cutoff of 0.01 was applied, while for
Hotspot, different FDR cutoffs were used by the different con-
sortia (0.01 for Roadmap Epigenomics and ENCODE; 0.05 for
BLUEPRINT). In order to define CREs, the DNAse-peaks were
equally extended in both the 5’ and 3’ directions to a final size of
2 kbp and overlapping intervals were merged using BEDtools

A

B

C

D

Figure 4. Graphical overview of GARLIC procedures. (A) As part of the data preprocessing, unique sets of GRRs for each disease and trait are generated. This is illus-

trated when either a single (Left) or multiple L-SNPs in LD (Right) are considered. (B) Each GRR gets assigned a GRR length and number of overlapping bp with a given

regulatory map. The 20% shortest and longest GRRs are excluded and the remaining 60% of GRRs are used to calculate disease scores from which empirical P-values

can be derived using the random sampling procedure. (C) Each seed map gets assigned a set of “complementary” regulatory maps, which are then used to generate

“combined” maps. The number of overlapping bp with a given disease or trait of interest is calculated for each combination and only the one with the highest increase

in coverage is kept for the next step of the procedure. (D) Seed combinations with the highest increase in bp coverage can then be tested for statistical connection with

human diseases/traits using the same method employed with individual CRE maps. The number of seed combinations to be tested can be determined with input par-

ameters based on coverage increase.
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(45). A detailed description of all the CRE maps used by GARLIC
is provided in Supplementary Material, Table S1.

A random sampling procedure for determining
statistically-significant aetiological connections between
diseases/traits and cell type/tissues

Using the data stored in GARLIC DB, a scoring method based on
the abundance of CREs within previously described GRRs was
developed (illustrated in Fig. 4B) to determine aetiological con-
nections between diseases/traits and cell types/tissues, as fol-
lows: Firstly, given the input regulatory map, let

li;k; and gi;k; i ¼ 1; . . . ;n; k ¼ 1; . . . ;m;

represent the length in bps and the number of overlapping nu-
cleotides of the ith GRR associated with disease/trait k, respect-
ively; n the number of independent GRRs associated with
disease/trait k and m total number of diseases or traits from
GARLIC DB that will be tested for a regulatory map. Secondly, let

gk ¼ ½g1; . . . ; gn�; k ¼ 1; . . . ;m

be a vector of GRRs associated with disease or trait k, sorted in
ascending order by GRR lengths li,k. GRRs displayed a great vari-
ability in their length, ranging from one bp up to hundreds of
Kb. Extremely large GRRs are likely to display high overlaps
with CREs regardless of the input regulatory map, potentially
inflating the aetiological connections of certain diseases or
traits. Similarly, a large number of small GRR within a particular
disease/trait may also affect the overall disease score, as the
score is based on the arithmetic mean. Therefore, 20% of GRRs
from the beginning and end of the sorted gk vector were
excluded and the remaining 60% of GRRs were further used in
this procedure. Finally, the remaining GRR elements gi’,k and
their corresponding lengths li’,k, were used to calculate Dk – the
observed score for the disease or trait k, defined as

Dk ¼

P
i0 gi0 ;k
n0P
i0 li0 ;k

; i0 ¼ ½0:2 � n� þ 1; . . . ; ½0:8 � n�;

n0-number of GRRs after trimming;

representing the mean fraction of the covered (overlapping) re-
gions, normalized by the total length of the remaining GRRs.
The relevance of the observed score Dk in a given regulatory
map was tested by calculating empirical P-values, as described
in (46). Briefly, for each disease and trait k, a number of GRRs
corresponding to the number and size of GRRs in disease or trait
k were sampled without replacement 105 times from the whole
GARLIC DB. In each iteration, the simulated disease scores were
compared to the observed one. The number of occurrences in
which a simulated score was higher than the observed one was
counted and divided by the total number of iterations increased
by one. Finally, calculated empirical P-values were corrected
using the Benjamini-Hochberg procedure (44) and both values
were reported as part of the output. Since the given precision of
10�5 was not sufficient to provide the actual empirical P-values
of some diseases and traits in most of the tested regulatory

maps, corrected P-values represent the worst case scenario with
respect to the potential rate of false positives. The described
procedure is parallelized and testing all 510 diseases and traits
for each regulatory map takes around 30 minutes on a PC with
Intel I7 CPU using 8 threads. All these results can be accessed
online using the GARLIC viewer (http://bifacility.uni-koeln.de/
GARLIC/viewer.php).

Combinatorial procedure for identifying groups of cell
types with increased combined aetiological contribution
to complex diseases or traits

This method heavily relies on the previously described proced-
ure, as it uses the CRE maps that were already analysed and
stored in the GARLIC DB. Given a disease or trait as input, CRE
maps from various cell types are combined in order to increase
the likelihood of aetiological contribution of the combined CRE
map with a given disease or trait, compared to the association
of individual CRE maps when tested separately (Fig. 3A). First,
for each CRE map in the DB, the coverage of the GRRs associated
with a given disease or trait was calculated. Next, regulatory
maps having a coverage in the sth percentile were kept and
referred to as seeds or seed maps, as they are “fixed” in the
sense that they always occupy the first position of all possible
seed combinations, while other combination members are then
added to form pairs, triplets, etc. For parameter s, we used 0.6.
Next, for each seed map, regulatory maps that overlap GRRs or
parts of GRRs not previously covered by this seed were identi-
fied and then used to assemble combinations with the current
seed. For each of the combinations, a coverage and a fold-
change value were calculated, indicating how much the cover-
age increased compared to the maximum coverage obtained
from individual regulatory maps, as depicted in Figure 4A. Next,
from each seed combination set, only the combination with the
highest fold-change was kept, while others were discarded.
Therefore, each seed map provides exactly one candidate com-
bination that could potentially improve the aetiological connec-
tions with a disease or a trait of interest. Top n (default is three)
of these candidate combinations with the highest fold-change
are tested for a given disease or a trait (Fig. 4D) using the
method described above for individual CRE maps. Detailed de-
scription of the commands and calling parameters used here is
provided in the Online user manual (https://github.com/mni
koli/GARLIC).

Supplementary Material
Supplementary Material is available at HMG online.
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