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Gestational diabetes mellitus (GDM) refers to different degrees of glucose tolerance
abnormalities that occur during pregnancy or are discovered for the first time, which
can have a serious impact on the mother and the offspring. The screening of GDM mainly
relies on the oral glucose tolerance test (OGTT) at 24–28 weeks of gestation. The early
diagnosis and intervention of GDM can greatly improve adverse pregnancy outcomes.
However, molecular markers for early prediction and diagnosis of GDM are currently
lacking. Therefore, looking for GDM-specific early diagnostic markers has important clinical
significance for the prevention and treatment of GDM and the management of subsequent
maternal health. Circular RNA (circRNA) is a new type of non-coding RNA. Recent studies
have found that circRNAs were involved in the occurrence and development of malignant
tumors, metabolic diseases, cardiovascular and cerebrovascular diseases, etc., and could
be used as the molecular marker for early diagnosis. Our previous research showed that
circRNAs are differentially expressed in serum of GDM pregnant women in the second and
third trimester, placental tissues during cesarean delivery, and cord blood. However, the
mechanism of circular RNA in GDM still remains unclear. This article focuses on related
circRNAs involved in insulin resistance and β-cell dysfunction, speculating on the possible
role of circRNAs in the pathophysiology of GDM under the current research context, and
has the potential to serve as early molecular markers for the diagnosis of GDM.
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INTRODUCTION

Gestational diabetes mellitus (GDM) is defined as varying degrees of glucose intolerance identified
for the first time during pregnancy (American Diabetes Association, 2019). In the past decade, with
the increasing numbers of pregnant and parturient women who are obese or of advanced age, the
incidence of GDM has increased worldwide (McIntyre et al., 2019). According to the latest data from
the International Diabetes Federation in 2019 (International Diabetes Federation, 2019), the global
prevalence of diabetes in pregnancy is 15.8%, affecting approximately 20.4 million women and
newborns each year, with GDM accounting for 83.6% of these cases. In China, the incidence of GDM
is 14.8% (Gao et al., 2019). GDM is associated with adverse pregnancy outcomes and long-term
complications for the mother and fetus, and has certain effects on the long-term health management
of postpartum mothers. Long-term exposure to a hyperglycemic uterine environment can lead to
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epigenetic changes for the fetus (Franzago et al., 2019), and
increase the risk of metabolic and cardiovascular diseases in
the offspring (Scholtens et al., 2019; Perak et al., 2021). Recent
research demonstrates a 5–10 times higher risk of type 2 diabetes
mellitus (T2DM) after childbirth in women with GDM than in
women without GDM, with the highest risk at 3–6 years after
childbirth (Song et al., 2018; Vounzoulaki et al., 2020).

The current diagnosis of GDM is based on the criteria defined
by the International Association of Diabetes and Pregnancy Study
Groups. The oral glucose tolerance test has some limitations,
including repeated blood sampling, poor compliance of subjects
and late diagnosis, because it is impossible to screen high-risk
groups of GDM in the first trimester, However, those women with
gestational diabetes have abnormal glucose metabolism before
OGTT screening (Yefet et al., 2020). Early intervention for GDM,
especially lifestyle modification, can effectively reduce fetal
exposure to hyperglycemia in the uterus and greatly improve
adverse pregnancy outcomes (Ehrlich et al., 2021). Therefore,
looking for a specific early diagnostic marker to facilitate early,
active, and appropriate intervention is of great significance for
preventing and delaying the development and progression of
long-term maternal diabetes in the early stage.

Non-coding RNAs, which do not encode proteins, include
microRNAs (miRNAs), long non-coding RNAs (lncRNAs),
circular RNAs (circRNAs), tRNA-derived small RNAs, and
PIWI-interacting RNAs (Slack and Chinnaiyan, 2019). Non-
coding RNAs such as miRNAs, lncRNAs, and circRNAs have
been reported to serve as potential molecular markers for
metabolic diseases, including GDM. Despite the large amount
of research on miRNAs and lncRNAs in GDM, little is known
about the role of circRNAs in this context. CircRNAs, which are
formed by covalent joining of the 3′ and 5′ ends through exon or
intron circularization, are more stable than linear RNA
(Kristensen et al., 2019). In this review, we summarize recent
research advances that have further elucidated the roles of
circRNAs in the development and progression of GDM.

PATHOPHYSIOLOGICAL FEATURES
OF GDM

In a normal pregnancy, as the gestational age increases, the
energy requirements of the fetus increase, and the mother’s
basal metabolism increases (Catalano et al., 1999). Insulin
resistance is an adaptive response, which promotes increased
levels of glucose and free fatty acids in the maternal blood that can
be transferred as sources of energy to the fetus (Plows et al., 2018).
Although insulin response has increased, insulin secretion is still
relatively insufficient. On the other hand, exogenous insulin
sensitivity, defined as the ability of insulin to increase glucose
uptake in skeletal muscle and adipose tissue, is reduced by about
50% in late pregnancy (Catalano et al., 1991). In addition,
placenta, skeletal muscle, and adipose tissue produce factors
related to insulin resistance, such as Human placental lactogen
(hPL), human placental growth hormone (hPGH), leptin, TNF-α,
etc., which may reduce the efficiency of glucose uptake or cause
insulin signal transduction obstacle (Kirwan et al., 2002;

Andersson-Hall et al., 2020). thus resulting in a progressive
reduction in insulin sensitivity. Adenosine monophosphate
(AMP)-activated kinase (AMPK), which is decreased in insulin
resistant states (Hegarty et al., 2009). The expression of AMPK is
decreased in the skeletal muscle and adipose tissue of pregnant
women with GDM (Cantó et al., 2010). The elevated blood
glucose levels stimulate a compensatory increase in the release
of insulin, and there is an adaptive increase in pancreatic β-cell
mass caused by increased cell proliferation and reduced apoptosis
(Plows et al., 2018).

Potential metabolic abnormalities in gestational diabetes are
insulin resistance and pancreatic β-cell dysfunction (Filardi et al.,
2020). Insulin resistance in GDM is mediated by various factors,
Compared with those in healthy pregnant women, glucose uptake
is reduced by approximately half, and insulin sensitivity is
decreased approximately 60% in patients with GDM
(Catalano, 2014). Peripheral insulin resistance plays an
important role in the pathophysiology of GDM. Some women
have peripheral insulin resistance before pregnancy or early
pregnancy, but it is asymptomatic and undetected. Moreover,
in the second and third trimesters that GDM occurs may be due
to increased insulin resistance (Catalano et al., 1999). Women
with normal glucose tolerance in non-pregnant, insulin binds to
the insulin receptor on the cell surface of surrounding tissues
(such as skeletal muscle and fat) to activate the tyrosine kinase
domain of the insulin receptor β subunit (IRβ), then activates the
typical insulin-signaling cascade that induces the redistribution of
glucose transporter type 4 (GLUT4) to the cell surface, allowing
the cell’s glucose uptake (Tokarz et al., 2018). In pregnant women,
the insulin-stimulated glucose transport rate dropped by about
40%, while in GDM women it reduced by 60% (Barbour et al.,
2007). The total abundance of GLUT4 in the skeletal muscle did
not change in normal pregnant women and GDM patients.
Decreased glucose transport was associated with decreased
Insulin receptor substrate-1(IRS-1) tyrosine phosphorylation
(Barbour et al., 2007). However, in GDM subjects, the
decrease of insulin receptor β subunit tyrosine
phosphorylation level is related to the further decrease of
glucose transport activity (Friedman et al., 1999). The increase
in adipose tissue and impaired insulin signal transduction
increase insulin resistance by approximately 56%, while
progesterone can lower the expression of IRS-1 to inhibit
glucose uptake by adipocytes (Nguyen-Ngo et al., 2019). In
addition, endoplasmic reticulum stress or mitochondrial
dysfunction in skeletal muscle, placental DNA methylation,
and activation of adipose tissue inflammation are potential
mechanisms of insulin resistance in GDM (Boyle et al., 2013;
Lappas, 2014; Liong and Lappas, 2016; Hivert et al., 2020).

Pancreatic β-cells, which are the only insulin-secreting cells in
the human body, are critical for blood glucose homeostasis. A
reduction in the number and function of β-cells will lead to
insufficient insulin release and increased blood glucose levels
(Marchetti et al., 2017) Under normal pregnancy, the number of
pancreatic islet β cells in women increases adaptively by
1.2∼2.4 fold (Assche et al., 1978; Butler et al., 2010). In the
context, GDM is regarded as β-cell dysfunction and cannot
compensate for insulin resistance during pregnancy (Xiang
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et al., 2013). The mechanism of β-cell dysfunction in GDM is
not fully understood. Pre-pregnancy obesity, mother’s
overnutrition, excessive weight gain during pregnancy, and
genetic susceptibility may all cause β-cell dysfunction and
hyperglycemia (Moyce and Dolinsky, 2018). The pregnancy
hormones prolactin (PrL) and placental prolactin (PL) signal
through the prolactin receptor (PRLR) and contribute to the
beta cell adaptive response during pregnancy (Baeyens et al.,
2016). In GDM, inactivation of prolactin receptors on the
surface of islet β cells promotes apoptosis and inhibits
proliferation of β cells (Banerjee et al., 2016). Moreover,
down-regulation of prolactin action in non-beta cells during
pregnancy negatively secondary affects beta cell gene
expression and increases beta cell susceptibility to external
injury (Shrivastava et al., 2021). Adiponectin plays an
important role in the proliferation of beta cells during
pregnancy by promoting prolactin expression in trophoblast
cells (Qiao et al., 2021). Melatonin deficiency impairs
pancreatic remodeling via apoptosis and proliferation of
pancreatic islets and impairs beta cell glucose-induced
insulin release during pregnancy and lactation (Gomes
et al., 2021). In addition, under the mediation of obesity

and systemic inflammation, a variety of cytokines (such as
tumor necrosis factor α, interleukin-1β and interferon-γ are
released, which induces β cells to undergo oxidative stress and
endoplasmic reticulum Stress and mitochondrial damage
interfere with cell dedifferentiation and cause cell apoptosis
(Moyce and Dolinsky, 2018).

CIRCRNAS

Overview of circRNAs
CircRNAs are created by a back-splicing process in which the
downstream splice donor site is joined to the upstream splice
acceptor site to form a covalently closed transcript. These
molecules were first identified in a plant virus in 1976 (Sanger
et al., 1976) and identified as an endogenous RNA splicing
product in eukaryotes in 1979 (Hsu and Coca-Prados, 1979).
CircRNAs were later found in the human hepatitis D virus in
1986 (Kos et al., 1986). In 2012, Salzman et al.(Salzman et al.,
2012) analyzed the types and abundance of circRNAs in
mammalian cells, and found that more than 10% of expressing
genes could produce circRNAs. Based on the genomic source and

FIGURE 1 | The type of circRNAs. CircRNAs are derived from precursor mRNA. (A) According to different biogenesis patterns from genomic regions, circRNAs can
be divided into four categories: (1) Exonic circRNA (ecircRNA), ecircRNAs are predominantly generated from the back-splice exons (exon 1 or exon 2 and exon 3), where
downstream 3 splice donors are covalently linked to upstream five splice acceptors in reverse order; (2) Circular intronic RNA (ciRNAs), intronic lariats that escape from
debranching can lead to the formation of ciRNAs; (3) Exon-intron circRNAs(EIcircRNA), exons 3 and exon 4 are reversed spliced to form a loop containing an intron;
(4) Intergenic circRNAs, the exons 3 from gene A and exons 2 from gene Bwere reversed spliced to form a loop. (B) A “cap” (m7G5’ppp5’Nm) was added to the 5 ‘end of
pre-mRNA, and a “tail” Q18 (polyA) was added to the 3’ end of precursor RNA to form linear RNA.
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sequence composition, circRNAs are classified into four types:
exonic circRNAs derived from exons, intronic circRNAs derived
from introns, exon-intron circRNAs containing both exons and
introns, and intergenic circRNAs (Wang et al., 2016; Kristensen
et al., 2019; Figure 1).

CircRNAs can escape degradation by exoribonucleases
and the half-life of these molecules is 4.8 times longer
than that of linear RNA (Jeck and Sharpless, 2014).
CircRNAs are also more stable than linear RNAs (Stoll
et al., 2020). CircRNAs are abundant in exosomes, and
ubiquitous in extracellular fluids including saliva, blood,
and urine (Hutchins et al., 2021; Wang et al., 2021a; Xiao
et al., 2021). Their expression levels are 10-fold higher than
those of linear mRNAs, and are highly conserved in the
evolution of species (Jeck et al., 2013). CircRNA
expression is time- and space-specific, showing distinct

expression patterns in different tissues, cell types and
developmental stages (Salzman et al., 2013).

In recent years, there have been significant advances in our
understanding of the function of circRNAs. Accumulating
evidence shows that circRNAs are the main factors that
control gene expression by regulating transcription and
translation. Rich in miRNA binding sites, circRNAs can act
as a miRNA sponges, or competing endogenous RNAs
(Hansen et al., 2013). By binding to RNA binding proteins,
circRNAs can alter splicing patterns or mRNA stability, and
inhibit the activity of proteins (Conn et al., 2015). CircRNAs
can also serve as templates for the translation of proteins, and
become a source of pseudogenes that regulate gene expression
(Liu and Chen, 2021). However, the molecular mechanisms of
the various biological functions of circRNAs remain to be fully
elucidated.

TABLE 1 | CircRNAs as novel biomarkers in human diseases.

Disease CircRNA name Sample Expression Function References
(n)

Pre-diabetes hsa_circ_0054633 plasma Up – Zhao et al., (2017)
hsa_circ_0068087 (n�40)
hsa_circ_0018508
CDR1as plasma Up Related to HbA1c Rezaeinejad et al.

(2021)
(n � 200)

Type 2 diabetes
mellitus

hsa_circ_0054633 plasma Up Related to glycosylation
index

Zhao et al., (2017)

hsa_circ_0068087 (n�40)
CircHIPK3 plasma Up Related to HbA1c Rezaeinejad et al.

(2021)
(n � 200)

hsa-circRNA11783-2 plasma Down -- Li et al. (2017)
(n � 124)

has_circ_0063425
hsa_circ_0056891

plasma Up Related to HbA1c and
HOMA-IR

Lu et al. (2021)

(n � 60)
hsa_circ_007,110 plasma Up Related to hyperlipidemia Yingying et al. (2021)
hsa_circ_0071271 (n � 206)

Type 1 diabetes
mellitus

hsa_circ_0060450 Plasma Up Involved in pancreatitis Yang et al. (2020a)

(n � 40)
circPPM1F plasma Up Regulate islet function Zhang et al. (2020)

(n � 8)
Gestational diabetes
mellitus

hsa_circ_0005243 Placenta Down trophoblast cell dysfunction Wang et al. (2020a)

Plasma (in the third trimester)
(n � 40)

hsa_circRNA_102682 Plasma Down regulate lipid metabolism Wu et al. (2021)
(in the third trimester) (n � 200)

hsa_circ_0054633 Placenta Up Related to glycosylation
index

Wu et al. (2019)

Plasma (in the second/third trimester)
(n � 130/80)

hsa_circ_063981 Plasma Down -- Wu et al. (2019)
(in the third trimester) (n � 40)

hsa_circ_102893 Plasma (in the first/second trimester) Down -- Yang et al. (2020b)
(n � 24/36)

circ_5824 Placenta Down -- Wang et al., (2019)
circ_3636 (n�45)
circ_0395
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CircRNAs as Novel Molecular Diagnostic
Markers
With the recent advances in gene sequencing and bioinformatics
technologies, circRNAs have been found to play an important role
in various diseases such as cancer, metabolic diseases (e.g., T2DM
and hyperlipidemia) as well as disorders of the cardiovascular and
immune systems (Lei et al., 2020), (Garikipati et al., 2019). In
malignant tumors including gastric cancer, liver cancer, breast
cancer, lung cancer, bladder cancer, and cervical cancer, circRNAs
are abnormally expressed, and regulate tumor proliferation and
invasion, thus representing potential molecular markers for
diagnosis and outcome prediction and also as therapeutic
targets (Li et al., 2020) (Table 1). Furthermore, numerous
studies have indicated that circRNAs are key molecules in
metabolic homeostasis, regulate multiple genes related to
glucose and lipid metabolism, and mediate the development
and progression of metabolic disease. Thus, circRNAs are also
implicated as promising targets for resolvingmetabolic disturbance
as well as novel molecular diagnostic markers (Zeng et al., 2021).

CIRCRNAS AND GDM

CircRNA is involved in insulin resistance and pancreatic β-cell
dysfunction (Zhang et al., 2021; Lin et al., 2021), provides certain
insights for exploring the pathogenesis of GDM, and provides a
possible future direction for the diagnosis of GDM and the
prediction of complications.

CircRNAs and Insulin Resistance
The expression patterns of circRNAs in patients with GDM show
distinct differences compared with healthy individuals (Yan et al.,
2018). The predicted target genes of circRNAs are involved in
glucose and lipid metabolism in GDM. AMPK signaling pathway
is involved in the pathophysiology of GDM (Han et al., 2020),
AMPK is critical for energy homeostasis, but its activity is
decreased in the context of increasing hyperglycemic stress as
the gestational age increases (Kumagai et al., 2018). In the skeletal
muscle induced by the bacterial endotoxin lipopolysaccharide
(LPS) and the pro-inflammatory cytokine IL-1β, activating
AMPK could ameliorate inflammation and insulin resistance
in GDM (Kumagai et al., 2018). CircACC1, a circRNA derived
from the human acetyl-CoA carboxylase 1 gene, is involved in the
formation of AMPK complex. Under metabolic stress, circACC1
activates the AMPK signaling pathway through JNK signaling,
and promotes fatty acid β-oxidation and glycolysis in cells (Li
et al., 2019). Unfortunately, the role of CircACC1 in GDM
requires to be verified by further experiments. PAPPA is a
metalloproteinase secreted from the human placenta that
regulates the bioavailability of insulin-like growth factor (IGF)
through the hydrolysis of IGF binding proteins (IGFBPs)-2, 3,
and 5 (Boldt and Conover, 2007). In vitro, recombinant PAPPA
has been shown to stimulate human adipose tissue to expand in
an IGFBP-5 and IGF-1-dependent manner (Gyrup and Oxvig,
2007). Rojas–Rodriguez et al. (Rojas-Rodriguez et al., 2020)
reported that insulin resistance is closely associated with

endothelial dysfunction (Aziz et al., 2018), and
hsa_circ_0010283 is involved in vascular smooth muscle cell
dysfunction by regulating the miR-133a-3p/pregnancy-
associated plasma protein A (PAPPA) pathway (Feng et al.,
2020). PAPPA-deficient mice develop insulin resistance in
pregnancy. Moreover, a study of 6,361 pregnant women
demonstrated that the concentration of PAPPA in the
circulation is negatively correlated with blood glucose levels
and the incidence of GDM (Rojas-Rodriguez et al., 2020). As a
miR-149-5p sponge, hsa_circ_0124644 regulates the expression
of PAPPA indirectly, resulting in endothelial cell injury (Wang
et al., 2020b). The circRNA SCAR is downregulated in liver
fibroblasts, and is negatively correlated with insulin resistance
(Zhao et al., 2020). CircHIPK3(one of the most abundant
circRNAs present in β-cells (Stoll et al., 2018)) regulates
hyperglycemia and insulin resistance by increasing the mRNA
levels of two key enzymes in glucose metabolism. However, it is
uncertain whether these circRNAs have the same regulatory
mechanism in peripheral insulin resistance. The circRNA
SAMD4A regulates fat formation via the miR-138-5p/EZH2
axis in obesity (Liu et al., 2020), which is a high-risk factor for
GDM. Nevertheless, the role of these circRNAs in insulin
resistance in GDM merits further investigation.

CircRNAs and β-Cell Dysfunction
CircRNAs are abundant in human pancreatic islets, and highly
conserved between species. As novel regulators for β-cell activity,
circRNAs are involved in β-cell dysfunction in hyperglycemia.
CircRNA-CDR1as was the first circRNA studied in pancreatic
islet cells, and is predominantly located in the cytoplasm (Hansen
et al., 2011). The researchers found that CircRNA-CDR1 acts as a
miR-7 sponge, regulating insulin secretion, pancreatic β cell
proliferation and insulin signal transduction (Xu et al., 2015).
Since then, researchers have continued to explore the role of
circRNA in beta cell dysfunction. Using microarrays, Stoll L
et al.(Stoll et al., 2018) found circHIPK3 regulates the
apoptosis, proliferation, and insulin secretion of β-cells
through sponging miR-124-3p and miR-338-3p and regulating
the expression of key genes such as SLC2A2, AKT1, and MTPN
(Brozzi and Regazzi, 2021). As shown above, diminished levels of
circHIPK3 and CircRNA-CDR1as cause β cells to be unable to
release enough insulin to meet the organism’s needs. CircRNA is
involved in β cell dysfunction mediated by lipotoxic and pro-
inflammatory cytokines (Zhang et al., 2021; Wang et al., 2021b).
Wu et al.(Wu et al., 2020) revealed that circTulp4 regulated β-cell
proliferation to lipotoxicity via the miR-7222-3p/soat1/cyclinD1
signaling pathway. In addition, Stoll et al. (Stoll et al., 2020)
discovered an intron circular RNA in mice, rats, and human
pancreatic islets—ci-Ins2/ci-INS, which was specifically
expressed in pancreatic β cells. It regulated insulin-releasing
genes by interacting with RBP TDP-43. Meanwhile, ci-INS
was found significantly lower in the islets of type 2 diabetes
and to be inversely correlated to HbA1c levels. Sun et al. (Sun
et al., 2021) found hsa_circ_0,054,633 mediates apoptosis and
insulin secretion via miR-409-3p/caspase-8 axis in human
pancreatic β cells. Under the premise that the pathogenesis of
GDM is not clear, the reduction in β-cell mass adaptability in
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patients with GDM may be related to circRNA-mediated
regulation of β-cell function and insulin secretion disorder.

CircRNAs as Molecular Marker for GDM
CircRNA plays an important role in early diagnosis of GDM,
assessment of placental function, and prediction of
complications. In order to explore the value of circRNA in the
diagnosis of GDM, our team found that circRNAs such as
hsa_circ_0054633, hsa_circ_103410, hsa_circ_063981, and
hsa_circ_102682 were differentially expressed in the placenta,
cord blood and maternal plasma during the second and third
trimester in women with GDM. At the same time,
hsa_circ_0054633 was highly correlated with glycosylated
hemoglobin (Wu et al., 2019) and hsa_circ_102682 was closely
related to lipidmetabolism in GDM(Wu et al., 2021). Nonetheless, if
circular RNA is used as a marker for early diagnosis of GDM,
whether it changes before OGTT diagnosis in the second trimester.
And it is also unclear whether expression in placenta is related to
expression in early pregnancy, more experiments are required to
explore this. Then, Wang et al. (Wang et al., 2020a) discovered
hsa_circ_0005243 was significantly downregulated in the placenta
and plasma in the third trimester of patients with GDM, and its
downregulation induced trophoblast dysfunction and inflammation
in a hyperglycemic environment via the β-catenin and NF-κB
pathways. Similarly, the dynamic changes of the circular RNA
during pregnancy and its value as a molecular marker for early
diagnosis or predicting placental functionstill also need to be
verified. Increasingly, more and more circRNAs are identified to
be expressed differently in the serum of GDM women during the
third trimester of pregnancy and the placental tissues during
delivery. Meanwhile, the mechanism of action of the
corresponding circRNA is gradually being explored. Wang et al.
(Wang et al., 2019) identified 8,321 circRNAs in GDM and normal
placenta tissues, and revealed significantly reduced expression of
hsa_circ_5824, hsa_circ_3636, and hsa_circ_0395 in the GDM
group. Moreover, the reduced expression of hsa_circRNA_0395
in the placenta of patients with GDM overlapped with the
expression of the gene encoding PAPPA2, which can be used to
predict the development of fetal macrosomia in GDM. Yang
et al.(Yang et al., 2020b) found that hsa_circRNA_102893 was
downregulated in the plasma of women with GDM in the
15–24 weeks and bound to miR-33a-5p, miR-2115-3p, miR-197-
3p, miR-5187-5p, and miR-198 to regulate the expression of 24
target genes. In addition, it was predicted that hsa_circRNA_102893
contained six flanking region binding proteins, including EIF4A3
protein (involved in promoter translation) and AGO protein
(involved in the processing and maturation of small RNAs).

Tang et al.(Tang et al., 2020)found various differentially
expressed circRNAs in the placental tissue of patients with GDM
by transcriptome sequencing. GO and KEGG pathway analyses
indicated that the main function of the circRNAs was to activate
phospholipase C and regulate insulin secretion. Furthermore, the
circRNAs had one or more target sites for specific binding of
miRNAs that facilitated regulation of the development and
progression of GDM via the sponge mechanism. Although the
abnormal expression of these circRNAs were found, at which stage
of pregnancy circRNA changes, whether even occurs before
pregnancy, and how they will change after delivery, these string
of problems are still unknown at present, and more experiments are
needed to clarify in vivo and in vitro.

PROSPECTS

Although circRNAs are a focus of research in many fields, their
exact roles and regulatory mechanisms in GDM are preliminary
remain to be fully elucidated. In-depth and systematic
investigations are required to address the specific location of
GDM-related circRNAs in cells and the signaling pathways by
which they interact with proteins and miRNAs. Based on their
characteristic stability and abundance as well as their biological
functions, circRNAs show promise as molecular markers for early
diagnosis of GDM and prediction of its complications, which will
facilitate early intervention for GDM to reduce adverse perinatal
outcomes. CircRNAs are also implicated asmolecular markers for
predicting the long-term risk of GDM and identifying patients at
high risk to deliver intervention and guidance to provide a better
long-term quality of life.
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