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SUMMARY

Gene regulatory networks (GRNs) process important information in develop-
mental biology and biomedicine. A key knowledge gap concerns how their re-
sponses change over time. Hypothesizing long-term changes of dynamics
induced by transient prior events, we created a computational framework for
defining and identifying diverse types of memory in candidate GRNs. We show
that GRNs from a wide range of model systems are predicted to possess several
types ofmemory, including Pavlovian conditioning. Associativememory offers an
alternative strategy for the biomedical use of powerful drugs with undesirable
side effects, and a novel approach to understanding the variability and time-
dependent changes of drug action.We find evidence of natural selection favoring
GRN memory. Vertebrate GRNs overall exhibit more memory than invertebrate
GRNs, and memory is most prevalent in differentiated metazoan cell networks
compared with undifferentiated cells. Timed stimuli are a powerful alternative
for biomedical control of complex in vivo dynamics without genomic editing or
transgenes.

INTRODUCTION

Gene regulatory networks (GRNs) are key drivers of embryogenesis, and their importance for guiding cell

behavior and physiology persists through all stages of life (Alvarez-Buylla et al., 2008; Huang et al., 2005).

Understanding the dynamics of GRNs is of high priority not only for the study of developmental biology

(Davidson, 2010; Peter and Davidson, 2011) but also for the prediction and management of numerous dis-

ease states (Fazilaty et al., 2019; Qin et al., 2019; Singh et al., 2018). Much work has gone into the compu-

tational inference of GRNmodels (De Jong, 2002; Delgado and Gómez-Vela, 2019), and the development

of algorithms for predicting their dynamics over time (Schlitt and Brazma, 2007). However, the field has

been largely focused on rewiring—modifying the inductive and repressive relationships between

genes—to control outcome. This can be difficult to control in biomedical contexts, and even in amenable

model systems, it is often unclear what aspects of the network should be altered to result in desired sys-

tem-level behavior of the network. Dynamical systems approaches have made great strides in under-

standing how GRNs settle on specific stable states (Herrera-Delgado et al., 2018; Zagorski et al., 2017).

However, significant knowledge gaps remain concerning temporal changes in GRN dynamics, their plas-

ticity, and the ways in which their behavior could be controlled for specific outcomes via inputs not

requiring rewiring.

Thus, an important challenge in developmental biology, synthetic biology, and biomedicine is the identi-

fication of novel methods to control GRN dynamics without transgenes or genomic editing, and without

having to solve the difficult inverse problem (Lobo et al., 2014) of inferring how to reach desired system-

level states by manipulating individual node relationships. A view of GRNs as a computational system,

which converts activation levels of certain genes (inputs) to those of effector genes (outputs), with layers

of other nodes between them, suggests an alternative strategy: to control network behavior via inputs—

spatiotemporally regulated patterns of stimuli that could remodel the landscape of attractors correspond-

ing to a system’s ‘‘memory.’’ A broad class of systems, frommolecular networks (Szabó et al., 2012) to phys-

iological networks in somatic organs (Goel and Mehta, 2013; Turner et al., 2002), exhibit plasticity and his-

tory-based remodeling of stable dynamical states. Could GRNs likewise exhibit history dependence that

could help us explain the variability of cellular responses, and that could be exploited to control their
iScience 24, 102131, March 19, 2021 ª 2021 The Author(s).
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Figure 1. Extending associative learning paradigm to GRNs

The sequence of behavioral changes is driven by particular combinations of stimuli in every phase of associative memory.

The stimuli-response mapping is shown for each phase, and the relevant ones are marked with a green box. For example,

during the pre-association phase (A), the relevant combinations are where either the individual stimuli or no stimuli are

presented. (B) During the association phase, both stimuli are presented at the same time. The most important

observation to be made here is the distinction between the stimuli-response mappings of the pre-association and the

post-association phases (C). In particular, the salivation response to CS during post-association is altered compared with

that in the pre-association phase. This is accomplished by the activation of memory during the association phase. In other

words, the dog with a memory of the association between UCS and CS responds to the latter stimulus differently. This

altered behavior is a result of memory, as shown by the equation at the bottom of (C). The underlying Boolean network

model (D) shows the rules of behavior of the memory (M) and the response (R) nodes. The phenomenon of associative

memory can also be understood in symbolic terms as follows. During the pre-association phase M is not activated as per

the relevant stimuli-response combinations. Thus, if we set M = OFF in the rule for R, we get a rule that says that R can be

triggered by UCS only (R)UCS). During the association phase, the joint presentation of the stimuli activates M. Finally,

during the post-association phase, if we set M = ON in the rule for R, we get a rule that says R can be triggered by either

UCS or CS in a symmetrical way (R)UCS OR CS). In other words, association casts UCS and CS as equivalent from the

point of view of R.
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function by modulating the temporal sequence of inputs? This is a different approach from existing con-

ceptions of memory as changes at the epigenetic and protein levels (Corre et al., 2014; Nashun et al.,

2015; Quintin et al., 2014; Zediak et al., 2011).

Several prior studies have tested specificmemory phenomena inGRNmodels (Kandel et al., 2014; Levine et al.,

2013;Macia et al., 2017; Ryan et al., 2015; Science, 2003; Sible, 2003; Urrios et al., 2016;Watson et al., 2010, 2011;

Xiong and Ferrell, 2003). However, there has been no systematization of the kinds of memories that such net-

works could possibly exhibit. We sought to rigorously define several types of memory (loosely analogous to

those found in the behavioral science of neural networks), provide an algorithm with which any future network

model can be evaluated for interesting memory dynamics (to make predictions for experiment), and compare

existing models of important biological networks with those of random networks.

One especially intriguing possibility concerns associative learning (Kohonen, 2012; Palm, 1980). The text-

book experiment by Pavlov illustrates associative learning in a specific form known as ‘‘classical condition-

ing’’ (Lee and Young, 2013; Rescorla, 1967) (Figures 1A–1C). Here, initially, the dog naturally salivates when

it smells food, termed the unconditioned stimulus (UCS), and does not salivate when it hears a bell ring (Fig-

ure 1A), making the bell the neutral stimulus (NS). The smell of food and the sound of a bell are unrelated

stimuli, and only one, the UCS, induces the dog’s salivation (the response R). In this experiment, the dog is

exposed to the UCS and NS at the same time repeatedly (Figure 1B). Gradually, the dog learns to associate

the NS with the UCS, to the point where it responds to the bell alone as if food is present, functionally
2 iScience 24, 102131, March 19, 2021



ll
OPEN ACCESS

iScience
Article
transforming the NS to a conditioned stimulus (CS), which can now produce the response R (Figure 1C).

Although associative learning is traditionally studied as a neural phenomenon, many different types of

dynamical systems can instantiate it (Balu�ska and Levin, 2016; Fernando et al., 2009; Manicka and Levin,

2019a, 2019b; McGregor et al., 2012) (Figure 1D). Indeed, the original experiments of Pavlov showed asso-

ciative and other kinds of learning within his dogs’ organ systems (Gantt, 1974, 1981), in addition to the well-

known learning of the animal via its brain.

In biomedical contexts, some drugs targeting specific network nodes are highly effective in laboratory

studies but too toxic to use long-term in patients (Frey et al., 2019). If associative memory existed in

GRNs, predictive algorithms could be developed to reveal which stimuli can be used to trigger desired re-

sponses via a paired ‘‘training’’ paradigm. In this case, the network would associate the effects (R) of a

powerful but toxic drug (UCS) with a harmless one (NS, which would become the CS). It might then be

possible to treat the patient with the neutral drug (NS) to obtain the desired therapeutic response of the

UCS without the side effects (Figure 1D). This is just one example of a number of strategies that can be

developed for rational control of GRN function, once the memory properties of GRNs of interest were

characterized.

To achieve this, we rigorously systematized the notion of memory in dynamical models of GRNs and similar

types of networks and developed algorithms to analyze the plasticity of response to specific node activations

over time. Here, we focus on a well-known class of dynamical models known as Boolean networks (BN) that

was pioneered by Stuart Kauffman (Kauffman, 1969) and Rene Thomas (Thomas, 1973) as simple coarse-

grained models of GRNs. The nodes (variables) in a BN are binary: a state of 0 (OFF) represents repression,

whereas 1 (ON) represents activation. Gene states are updated over time due to interactions with other genes

and their transcripts, as described by the Boolean functions associated with each node. The Boolean opera-

tors defining the relations among the genes are AND, OR, NOT, and XOR (see Transparent methods for more

details). Boolean models have proved to be useful in gaining dynamical insight into numerous phenomena,

such as criticality (Kauffman and Strohman, 1994), cell signaling (Saez-Rodriguez et al., 2009), pattern forma-

tion and control (Marques-Pita and Rocha, 2013), cancer reprogramming (Zanudo and Albert, 2015), drug

resistance (Eduati et al., 2017), and evenmemory in plants (Demongeot et al., 2019); theCell Collectivemodel

database (Helikar et al., 2012) that we utilize in this work contains many more such published examples. For

comprehensive reviews of BNs, including aspects of how they are inferred, analyzed, and used to make pre-

dictions, see Albert et al. (2008), Albert and Thakar (2014), Albert (2004), and Wang et al. (2012).

We hypothesized that GRNs in general may be capable of diverse new kinds of memory, in that their

response to future node activation events would change to implement the desired network behavior,

and that an algorithm could discover the necessary sequence of stimuli to make this occur predictably.

Such long-term change in behavior due to experience (memory) could occur via changes at the level of

the dynamical system state space, not requiring changes in inductive/repressive relationships between

genes (rewiring the connectivity). We specifically hypothesized that such historicity would be an inherent

property of networks but would be significantly enriched in real biological GRNs. It is important to note

that the memory being tested here takes place within the lifetime of a single, constant GRN, rather than

during a process of evolutionary selection or population learning.

If found, long-term changes in GRNs’ dynamical system states would be analogous to intrinsic plasticity in

neuroscience, which functions alongside synaptic plasticity (rewiring that changes the connection weights

between nodes). There is increasing biological evidence that learning and memory happen at the level of

single neurons and that memory could be stored in their dynamic activities as intrinsic plasticity due to the

dynamics of bioelectric circuits (Banerjee, 2015; Daoudal and Debanne, 2003; Debanne et al., 2003; Gal-

laher et al., 2010; Geukes Foppen et al., 2002; Izquierdo et al., 2008; Law and Levin, 2015; Snipas et al.,

2016). The theoretical foundations of such plasticity-free learning have been explored (Stockwell et al.,

2015; Yamauchi and Beer, 1994). Thus, the existence of plasticity-free memory in GRNs would have major

implications along several lines. First, it would suggest novel developmental programs where dynamic

gene expression could result from GRNs whose functional behavior was shaped by prior biochemical inter-

actions and not genomically hardwired. Second, it would suggest a new approach to biomedical interven-

tions complementing gene therapy: drug strategies with temporally controlled delivery regimes could be

designed to train GRNs to produce specific outcomes, shape their responses to drug and other interven-

tions in the future, disrupt cancer cells’ adaptation to therapeutics, or prevent disease states from arising in
iScience 24, 102131, March 19, 2021 3



Figure 2. Definition of different memory types

UCS and NS input stimuli are schematized as switches, whereas response R is schematized as ON/OFF electric bulb. To

represent the ON, OFF, Repeated, and Relaxed states of UCS and NS, blue and green switches with different positions

are used, respectively. We define the pre-requisites for memory testing in the block headed as Before training. It requires

that initially (at time t_0) UCS, NS, and R should be OFF, and such that UCS triggers R and NS does not trigger R. The

memory evaluation table describes each memory type as a row. The five broad memory types are described here as UCS

Based, Pairing, Transfer, Associative, and Consolidation memory. For each memory evaluation, there are training and

testing phases, showing the overall dynamic and what is learned (the stable change in system behavior) over time.
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specific circumstances. Moreover, an understanding of GRNs’ long-term modification by prior physiolog-

ical experiences could help explain the wide divergence of drug efficacy and side effects across patients

and even across clonal model systems (Durant et al., 2017).

The presence of a kind of learning in GRNs has been suggested in specific cases (Deritei et al., 2019; Fer-

nando et al., 2009; Herrera-Delgado et al., 2018; Sherrington and Wong, 1989, 1990; Stockwell et al., 2015;

Tagkopoulos et al., 2008; Zañudo et al., 2017), but there has been no systematic study of memory across

diverse GRNs or analysis of possible different kinds of memories that may exist and the relationships be-

tween them. Moreover, plasticity in the form of changes to the weights of connections, or mechanisms,

is generally thought to be required for memory in GRNs. It is also unknown whether memory is a property

of all networks (e.g., random ones) or whether biological GRNs exhibit unique memory types or increased

propensity for memory. Here, we comparatively analyze the definitions of memory in the context of animal

behavior, mapping them onto possible GRN dynamics, providing a taxonomy of learning types appro-

priate for GRNs and other networks like protein pathways, all without any changes to weights or mecha-

nisms. We rigorously define the kinds of memory that could be present in GRNs (Figures 2 and S1) and

then produce an algorithm (Figure S2) to systematically test any given GRN for the presence of different

types of memory with different choices of network nodes as stimuli targets.
4 iScience 24, 102131, March 19, 2021
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Analyzing a database of known GRNs (Table S1) from a wide range of biological taxa, we show that several

kinds of memory can be found, including associative memory. We develop configuration models (random-

ized versions of each biological GRN) to demonstrate that the amount of memory found in a GRN is not

governed solely by the node number and edge density, and that real biological GRNs are distinct in their

types and degrees of memory compared with similar random networks. Comparing GRN data with analysis

of configuration models revealed that the biological networks have disproportionately more memory (sug-

gesting that biological evolution may have favored networks with memory properties). We also identified

statistical relationships between the likelihood of a given network exhibiting a particular kind of memory

and two factors: what other memory types it may have and what kind of cell or organism the GRN is

from. Taken together, our results provide a novel way to understand and control GRN behavior, establish-

ing a software framework for discovery of memory, and thus for actionable intervention strategies for

biomedical, developmental, and synthetic biology settings.
RESULTS

Transcriptional networks can exhibit multiple kinds of memory

AGRN is a model of transcriptional control consisting of genes and their mutual regulations (Blais and Dyn-

lacht, 2005; De Jong, 2002). Each gene has a basal expression level that applies when the gene is neither

regulated by any external stimuli nor influenced by other genes (through their encoded proteins). Basal

expression levels change when a gene is activated via regulation, which then in turn may modulate others

(Macneil andWalhout, 2011; Samal and Jain, 2008). We designate the activation of some nodes as ‘‘inputs’’

(corresponding to specific sensory experiences that an animal may receive from its environment) and the

activation of another node R as a ‘‘response’’ (corresponding to a discrete behavior that can be produced

under specific circumstances). We define ‘‘training’’ in this context as the stimulation of some of the network

nodes in a specific pattern to induce long-lasting changes in how the network responds to node activation

events in the future.

We formally define ‘‘memory’’ (Figure 2) in this context as a phenomenon describing the relationship be-

tween two sets of genes, namely, ‘‘stimulus’’ and ‘‘response’’ that satisfies the following conditions: (1)

the stimulus activates the response and (2) the response retains its activation state even after deactivation

of the stimulus (the existence of history). The fundamental signature of memory is its temporality—a long-

lasting and stimulus-specific change induced by a transient experience (Bacchus et al., 2013; Chechile,

2018; Durso and Nickerson, 1999; Weitz and Simmel, 2012). We consider individual nodes of a Boolean

GRN as the potential targets of external stimuli and able to produce a response (output or effector nodes).

For example, a specific transcript can be upregulated by some exogenous factor triggering its expression,

and the appearance of a given gene product (e.g., secretion of an important hormone or growth factor) can

be considered the circuit’s response. For applications, we are especially interested in nodes that can be

readily stimulated with small-molecule drugs, and for response, we are interested in nodes that control

key drivers of health and disease (e.g., the levels of calcium, pH, immune activation, cell differentiation,

etc.). The challenge then, for any given network and response of interest, is to computationally identify

the correct nodes that may serve as inputs, as well as a temporal stimulation regime for those stimulus no-

de(s) that will result in desired changes in response activity over time.

Specifically, we consider two types of stimulus nodes, namely, unconditional stimulus (UCS) and neutral

stimulus (NS), and a single response node (R). The first type of stimulus, UCS, is capable of triggering R,

and the second type, NS, is initially neutral to R but may be conditioned such that it becomes a driver to

activate R. In classical conditioning of a GRN, we pair the NS with the UCS and apply both repeatedly so

that the system can learn the association between the two stimuli and functionally link the NS with the state

of R. Later, we test to see if R is now driven by the NS alone (if true, NS can now be called a conditioned

stimulus [CS]). The taxonomy of possible memory types in such systems, and their relationships, are sche-

matized in Figure 2, including UCS-based memory (UM, long-term response induction by a specific stim-

ulus), pairing memory (PM, one-shot stabilization of response to compound cues), transfer memory (TM,

resembling discrimination training that results in a more generalized response), associative memory

(AM, including two of its sub-categories: long recall associative memory [LRAM] and short recall associative

memory [SRAM]), and consolidation memory (CM).

We tested (using the algorithm shown in Figure S2) many models of a diverse range of biological systems

(networks with fewer than 25 nodes) obtained from the publicly available dataset Cell Collective (Helikar
iScience 24, 102131, March 19, 2021 5
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et al., 2012) for each of the kinds of memory using the criteria in Figures S1 and 2. A key aspect of our al-

gorithm is that for any given GRN to be analyzed, the algorithm tests all the combinations of different no-

des for their ability to serve as NS, CS, UCS, and R in the various assays. Thus, for any given network (or set of

networks), one can compute the prevalence of memories—what percentage of all possible combinations of

choices of nodes as NS, UCS, and R give rise to different kinds of memories. Figure 3 describes the structure

function of a Boolean GRN, the network simulation for UCS-basedmemory evaluation, and overall memory

estimation of a GRN with an example of a small GRN named Cortical Area Development GRN.

The raw data in each of the training and testing phases for AM are shown in Figure 4 (representative data for

the other memory types are shown in Figures S3–S6), using the Mammalian Cell Cycle 2006 network and

suitable choices of nodes for NS, CS, UCS, and R as an example (Figure 4A). The Boolean equations cor-

responding to this GRN and each of other GRNs tested in this article (as given in the GRN repository)

can be found in Data S1. The pre-requisite conditions (Figure 4B), for an appropriate choice of nodes to

serve as UCS, NS, and R (see Figure 3B) out of all possible choices of nodes for these roles, are that

UCS alone should be sufficient to trigger R and that NS alone does not trigger R before training and mem-

ory evaluation. The training phase (Figure 4C) shows pairing of UCS and NS activations. After successful

training, the NS alone becomes sufficient to trigger R (Figure 4D); it is seen that the NS has in fact become

a conditioned stimulus because when it stops, the response stops, and when it is presented again, the

response begins again (Figure 4E). This fulfills the basic criteria of Pavlovian conditioning (Figure 1) and

shows that the functional roles of the input nodes with respect to GRN behavior have been stably altered

by experience of stimuli, the pairing of two node activations during training (Figure 4C). It should be noted

that in identifying specific nodes as effective CS, UCS, and R nodes for a given instance of memory, it is not

the case that the memory somehow resides in those three nodes: memories are a function of the entire

network, distributed therein and revealed as experience-dependent changes of network-wide activity by

stimulation and readout at specific nodes chosen as inputs and outputs.

We sought to discover minimal networks showing each kind of memory, to serve as prototypical examples

clarifying the logic of each type of memory, and to guide the design of novel GRNs for synthetic biology

applications that could exploit transcriptional dynamics for memory functions. At minimum a network

needs two nodes (UCS and R) to form UM and three nodes (UCS, R, and NS) to form any other type of mem-

ories. To test the topographies andmotifs associated with each type of memory, we created 10,000 random

Boolean networks (RBNs) for each case and evaluated each memory using our toolkit (see Transparent

methods). The smallest networks discovered to be sufficient for each type of memory are shown in Figure 5.

We conclude that even fairly simple networks, readily accessible to synthetic biology construction, can give

rise to memory functionality.
Biological GRNs possess various memory types: an analysis across taxa

We tested 35 biological GRNs (those <25 nodes in size, from Cell Collective (Helikar et al., 2012); Data S1

provides Boolean equations for each GRN obtained from the same website) for each kind of memory (Fig-

ure 6A). These included GRNs at different strata of the tree of life (prokaryotes and eukaryotes), cancer,

diverse metabolic processes in adult and embryonic stages of mammals, cellular signaling pathways in

invertebrate and plants, etc. For each network, the prevalence of each type of memory was analyzed by

assessing the number of different combinations of nodes that can serve as UCS-R-NS.

Three of 35 (8.57%) GRNs exhibited no feasible stimuli-response (UCS-R-NS) combinations exhibiting

memory. For those GRNs with memories (32 out of 35), UM was the most prevalent type of memory, fol-

lowed by TM. AM and PMmemory types were somewhat rarer (only 5 of 35 GRNs). AM appeared in "Aurora

Kinase A in Neuroblastoma,’’ ‘‘B cell differentiation,’’ ‘‘CD4+ T Cell Differentiation and Plasticity’’, ‘‘Cell Cy-

cle Transcription by Coupled CDK and Network Oscillators,’’ ‘‘Mammalian Cell Cycle 2006,’’ and Neuro-

transmitter Signaling Pathway’’ GRNs, among which the first and the third GRNs (highlighting one combi-

nation of stimuli-response for each) are shown in Figures 6B and 6C respectively. In each of the first three

and the last GRNs, AM and PM occurred together. For each GRN, the percentage of combinations where a

certain memory appeared out of all feasible combinations is listed in Table S2.

We then asked whether there is any grouping of the different GRNs that reveals a pattern—is predictive for

the presence of memory capacity. Although it is difficult to define categories that objectively and unambig-

uously sort the available GRNs into sharp classes, we considered two simple, rough categorizations of
6 iScience 24, 102131, March 19, 2021



Figure 3. Description, simulation, and overall memory evaluation of Cortical Area Development GRN

This figure provides the description of topology, simulation outcome, and overall memory evaluation procedure of a

Boolean GRN with an example of a small 5-node GRN, named Cortical Area Development GRN.

(A) Here we provide the topology of the Cortical Area Development GRN and the set of Boolean equations required to

simulate it. In the topology, a gene is represented with a blue circle and enhancive and repressive regulations are

represented with green and red arrowheads, respectively.

(B) Here we show the criteria of choosing a feasible stimuli-response combination and the simulation of the GRN

activating chosen stimuli in the training phase of memory evaluation. We observe that both the stimulus (Pax6 gene

treated as UCS) and response (Sp8 gene treated as R) are in low state before training. Wemake the stimulus high (flip) and

clamp it in high state during training. We unclamp UCS at the end of training and detect R, retaining the memory of its

state during training phase. Here, UCS also keeps itself in high state through the post-training period by some internal

mechanism. It should be noted that as we do not require NS in UCS-based memory evaluation presented here, we treat

Coup-fti of the stimuli-response combination as a normal gene.

(C) Here we show the memory evaluation procedure of the whole GRN. Out of all possible node combinations treated as

UCS, NS, and R we obtain 19 feasible combinations where UCS triggers R and NS does not trigger R. For each such

combination, we separately perform each type of memory evaluation and list the results in the table. If a test passes, we

put a 1, 0 otherwise. We calculate the percentage of each type of memory in the GRN, treating total memory as 100% for

the network.
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GRNs: one based on whether they belong to vertebrates or invertebrates and the other based on whether

they belong to generic or unicellular cell activities versus specific cell types in metazoan bodies. We found

that both the vertebrate/invertebrate and the cell specificity distinctions are excellent predictors (with an
iScience 24, 102131, March 19, 2021 7



Figure 4. Time series data of a GRN’s evaluation for associative memory

This trace describes the run time state changes in evaluating associative memory of a mammalian cell cycle network.

(A) In the mammalian cell cycle network 2006, the genes used as UCS, NS/CS, and R are highlighted with blue, red, and

cyan respectively. With these respective colors the states of UCS, NS/CS, and R in different plots are defined. A downward

arrow in each plot shows the start of the activation of the corresponding stimuli. In each panel, we show the 10 past states

of a stimulus to depict its state change upon the activation at time 0.

(B) The resultant states of R, observed from activation of UCS and NS, respectively, before training: R gets activated with

onset of UCS but NS cannot trigger R.

(C) Pairing (training) experiment shows the successful activation of R.

(D) After training, activation of the previously neutral stimulus causes R to be activated, confirming that the experience of

paired stimuli has converted the NS node to a CS.

(E) As further confirmation of stable causality established between CS and R by training, we first deactivate CS, to see if R

gets deactivated, and then reactivate the CS to ensure that it can activate R again.
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accuracy of 74% and 86%, respectively) of the existence of memory, as evidenced by their performance as

classifiers of prevalence of memory (Figure 7). Thus, we conclude that a diverse set of biological GRN struc-

tures exhibit various types of memory, which are especially highly represented within differentiated cells of

vertebrate organisms.

Memory types and their relative prevalence among possible GRNs

Do larger networks in general have more memory capacity than smaller ones? To better understand the

properties that underlie memory in networks, we generated RBNs to test different aspects of network struc-

ture. To determine howmemory in RBNs changes with increasing network size, we created RBNs ranging in

size from 5 to 25 nodes, with 100 RBNs generated for each size range (see Table S7). We evaluated the pool

of RBNs of each size separately to observe the change of average memory distribution with the increase in

size. We found that memory is less common in smaller RBNs (under 15 nodes in size, Figures 8A and 8D) and

restricted to UM- and TM-type memory. Other types of memory start appearing in RBNs with 15 or more

nodes. Although UM dominates, all memory types were observed (Figures 8B–8D), with increasing

amounts of the non-UM memory types at network sizes of 20 and 25 (Figures 8C and 8D). Interestingly,
8 iScience 24, 102131, March 19, 2021



Figure 5. Minimal RBNs have distinct memory types

(A–E) Minimal BNs of the memory types (A) UM, (B) PM, (C) TM, (D) CM, and (E) AM. Each node of a network shows the

Boolean equation matching the description of the relationship between the nodes. We present the symbols used in the

equations in the legend.
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in 15 and 20 node networks, LRAM is more common than SRAM, but in 25 node RBNs, SRAM dominates

(Figures 8B–8D). We then asked whether the same relationship between network size and likelihood of

memory holds in biological networks. We grouped the 35 biological GRNs into 5 categories with network

size 5–9 (2 GRNs), 10–14 (6 GRNs), 15–19 (14 GRNs), 20–24 (10 GRNs), and 25–25 (3 GRNs). We evaluated

memory and presented averagememory distribution in the samemanner as RBNs. We observed that GRNs

have large amount of memories across networks, but, like RBNs, the percentage of networks with memory

increases with network size. Availability and proportion of different types of memories in GRNs (Figures 8E–

8H) are not entirely size dependent, although this relationship will become better quantified for biological

networks when larger numbers of GRNs become available at different size ranges.

We next asked whether the likelihood of finding memories in networks of different sizes was similar in bio-

logical GRNs as in randomly constructed networks: is there anything special about how memories are

distributed in biological networks of various sizes? For each type of memory in a GRN, we observed how

its prevalence fits into the probability distribution of the corresponding values of 100 RBNs of similar

size. To determine whether the size/memory relationship in biological GRNs is in any way unique (distinct

from that observed in random networks), we calculated p values (Table S3) and performed an outlier test

(Table S4) comparing the distributions in Figure 8. The null hypothesis is that the distributions of GRN
iScience 24, 102131, March 19, 2021 9



Figure 6. Associative memory in biological GRNs

(A and B) (A) Types of memory found in each of the 35 GRNs taken from the Cell Collective database. Associative memory

was found in two of the GRNs: Aurora Kinase A in Neuroblastoma (B) and CD4+ T cell Differentiation and Plasticity (B). For

each network, we present an example of the stimuli-response combination where AM is obtained. (A) Cell Collective

network where 3 genes, WEE1, PP2A, and TPX2, act as UCS, R, and CS respectively. Activating TPX2 together with WEE1

enables TPX2 to activate PP2A, whereas previously only WEE1 did so.

(C) Cell Collective network where IL4e, IL4, and GATA3, respectively, act as UCS, R, and CS. Activating GATA3 together

with IL4e enables GATA3 to activate IL4, whereas previously only gene IL4e did so.
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memories across size categories are not different from the memories of similar-sized RBNs. If the outlier

test is passed for a given memory type, this would indicate rejection of null hypothesis: GRN memory dis-

tributions are different from those found in similar RBNs. In each analysis, we obtained a matrix (35 GRNs
10 iScience 24, 102131, March 19, 2021
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Figure 7. Distribution of different memory types across diverse biological systems

(A and B) The memory capacity of GRNs can be systematically classified according to their features. (A) A classification of GRNs based on whether they

correspond to vertebrate or invertebrate species. This panel shows that vertebrate GRNs tend to contain more memory than the invertebrates, as quantified

by the classification performance metrics: Accuracy = 0.74, Sensitivity = 0.88, Specificity = 0.63, Positive predictive value = 0.67, Negative predictive value =

0.86, and AUC = 0.75. Red borders indicate data from invertebrate GRNs, whereas green borders indicate data from vertebrate GRNs. (B) A classification of

GRNs based on whether they derived from a unicellular or generic process or from a specific somatic cell type. This panel shows that the GRNs

corresponding to the non-generic cell types tend to contain more memory than the generic ones, as quantified by the classification performance metrics:

Accuracy = 0.86, Sensitivity = 0.88, Specificity = 0.84, Positive predictive value = 0.82, Negative predictive value = 0.89, and AUC = 0.86. Classification was

performed as follows. First, the memory capacity of each GRN was computed as the proportion of memory within the total that included the ‘‘no-memory’’

type. Then, if the memory capacity of a GRN exceeded 50% it was categorized under the ‘‘memory’’ class or in the ‘‘no memory’’ class otherwise. The

standard binary classification metrics reported above were computed based on the associated confusion matrix containing the number of True-Positives

(TP), False-Positives (FP), True-Negatives (TN), and False-Negatives (FN) where the ‘‘memory’’ class is the ‘‘positive’’ class and the ‘‘no-memory’’ class is the

‘‘negative’’ class. As per standard definitions, Accuracy is the proportion of TP and TN among the total number of instances, Sensitivity is the proportion of TP

among the actual positive instances, Specificity is the proportion of TN among the actual negative instances, Positive predictive value is the proportion of TP

among the predicted positive instances, Negative predictive value is the proportion of TN among the predicted negative instances, and AUC is the area

under the receiver operating characteristic curve, which can be interpreted as the probability that the classifier will rank a randomly chosen positive instance

higher than a randomly chosen negative instance.
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each having 8 types of memory, including no memory). In the first case, each element of the matrix is a

p value [0, 1]. We considered significance when p < 0.05. In the second case, the value is binary (1 if the value

is an outlier in the distribution of similar-sized 100 RBNs; 0 otherwise). Using either test, the percentage of

significant deviations from random distributions was relatively higher for UM and TM when compared with

other memory types.

To confirm the differences between the class of biological GRNs and random counterparts, we also con-

ducted Fisher’s exact test to determine whether GRNs and RBNs are statistically different. For 3 categories

of GRNs we tested network sizes of 5–9 (small), 15–19 (intermediate), and 25–25 (large). Using contingency

tables of memory versus no memory in GRN and similar-sized RBNs, for all the 3 cases, the null hypothesis

that occurrences of memory in GRNs and RBNs are not different was rejected with p values 2.0E-05, 7.4E-

323, and 4.4E-323, respectively. Taken together, our statistical analyses show that biological GRNs have

unique distributions of memory types with respect to network size.
The memory profile of biological GRNs is unique

Do real biological networks’ topologies offer more opportunities for memory dynamics than would be ex-

pected by chance in arbitrary networks of similar size and type? We generated 3500 ‘‘configuration

models’’—100 randomized versions for each biological GRN—and analyzed them for the presence and

prevalence of each memory type. We then used statistical tests to compare these aggregate statistics to

the memory profiles of the 35 actual biological networks, to determine whether GRNs of biological origin

are in any way special with respect to memory capacity over what is provided by the generic properties of

BNs. We note that comparisons across different types of GRNs are limited by the set of available specific

GRNs; thus, future analyses of a broader set of GRNs emerging from this field are likely to refine and

expand our results.

Given a certain type of memory in a GRN, we checked to see how the value fits into the probability distri-

bution of the corresponding values of its ensemble. We calculated p values (Table S5) and conducted an

outlier test (Table S6). In each type of analysis, we obtained a matrix (35 GRNs each having 8 types of mem-

ory, including no memory). In the p value test each matrix element was a p value [0, 1]. We considered sig-

nificance when p<0.05. In the outlier test, the value was binary (1: if the value is an outlier in its random

ensemble; 0: otherwise). In either test, the percentage of success was relatively high for UM and TM

compared with others.

Furthermore, we examined how each type of memory in a GRN fits into its random ensemble, visualizing

the distribution of memories via violin plots (Hoffmann, 2015). We found (Figure 9A) that the incidence

of memory-containing biological GRNs is generally unique with respect to possible GRNs, lying outside

the [5 95] percentile bars. Thus, we found that the data are not compatible with memory profiles in biolog-

ical networks occurring solely as a consequence of the generic mathematical dynamics of BNs (Kauffman,

1993). The fact that distribution of memories across real biological networks differs from that of randomized

networks suggests that biological evolution has given rise to GRNs with specific memory properties. Our

data do not distinguish between direct selection for memory in GRNs and indirect selection in which
12 iScience 24, 102131, March 19, 2021



Figure 8. Distribution of memory in different sizes of RBNs

(A–C) Pie charts show the memory distributions in RBNs with 5, 15, and 25 nodes (100 RBNs for each case).

(D) Comparative distribution of different memories in various sizes (5,10, 15, 20, and 25) of RBNs.

(E–G) Pie charts show the memory versus no memory distribution in GRNs.

(H) Comparative distribution of different memory types across biological GRNs of increasing size.
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memory is favored because it enables some other feature with selective advantage (e.g., plasticity of phys-

iological response).
Memories in biological GRNs do not occur independently

As different kinds of memories have not before been rigorously defined for GRNs, or examined across the

broad range of possible networks, it was not known whether memories tend to occur in the space of GRN

topologies independently or whether certain GRN structures simultaneously predispose the network to

multiple types of memories (perhaps distributed across different sets of CS/UCS nodes). Thus, we next

sought to characterize possible relationships between the incidence of distinct memories in a wide range

of possible networks. Having generated a large number of configuration models, we asked whether the

presence of one type of memory is statistically related to the likelihood of finding any other memories.

We found that conditional entropy (quantifying ordered correlation) between two types of memories in

biological GRNs (Figure 8B) is much higher than that of their randomized configuration models (Figure 9C).

Correlation between AM (especially LRAM) and any other memory type (not including SRAM and CM) is

especially significant. Biological GRNs show tight correlations between UM and TM. Moreover, in biolog-

ical GRNs, PM predicts the existence of both UM and TM, but the correlation does not hold for the reverse

direction, whereas CM implies you will find UM. In the case of configuration models, the sub-categories of

AM (LRAM and SRAM) showed correlation to AM. We conclude that the potentials for forming different

kinds of memories are not independent, that specific GRN architectures tend to simultaneously support

more than one kind of memory, and that the existence of some types of memory can be predicted solely

based on the finding of other types.
iScience 24, 102131, March 19, 2021 13



Figure 9. Biological GRNs exhibit unique memory properties

(A) Violin plots of the set of GRNs from the Cell Collective database (https://cellcollective.org/) are compared (in terms of

memories) with their configuration models. We show the median (violet dashed line), 5th percentile (teal line), and 95th

percentile (pink line). The actual frequency of memory of the real GRN is represented as a red star. Only the ‘‘Aurora

Kinase in Neuroblastoma’’ network from Cell Collective is plotted. The violin plots of memories for all the 35 GRNs are

given in Supplemental information (Data S2, plots 1–35). We calculated the conditional entropy among the different types

of memories of GRNs and configuration models, normalized these conditional entropies, applied Gaussian smoothing,

and visualized the results obtained from (B) GRNs and (C) configuration models. Notably, GRNs are different from their

randomized counterparts in terms of howmuch the appearance of one type of memory implies (predicts) the existence of

any other type of memory (i.e., biological GRNs havemore functional linkage among the different types of memory than is

expected by chance).

ll
OPEN ACCESS

iScience
Article
DISCUSSION

Numerous problems in biomedicine and fundamental life sciences face the inverse problem that affects all

complex emergent systems: how do we control system-level behaviors by manipulating individual compo-

nents? This problem is as salient for bioengineers and clinicians seeking to regulate gene expression cas-

cades as for evolutionary developmental biologists seeking to understand how living systems efficiently

regulate themselves (Crommelinck et al., 2006; Karsenti, 2008). An important direction in this field is the

discovery of strategies that exploit patterns of input (experiences), rather than hardware rewiring, to

achieve desired changes in network behavior or explain the modification of pathway properties faster

than occurs during evolution. This strategy requires the development of algorithms to identify specific pat-

terns of stimuli that exert stable, long-term changes in behavior, thus characterizing endogenous memory

properties of the system.

Wewondered if it were possible to train gene regulatory networks, providing targeted patterns of stimuli to

stably change their behavior at the dynamical system level, rather than rewiring network topology at the

genetic or chromatin epigenetic levels. This would take advantage of existing computational capabilities

of the system and effectively offload much of the computational complexity inherent in trying to manage
14 iScience 24, 102131, March 19, 2021
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GRN function from the bottom up. Such approaches (Pezzulo and Levin, 2016), if the GRN structures were

amenable to them, would enable the experimenter, clinician, and indeed the biological system itself to

reap the same benefits as training provides for neural systems. Thus, here we performed a systematic

and rigorous analysis of memory in Boolean GRNs, an important model of gene regulation that has previ-

ously been explored in other aspects (Barberis and Helikar, 2019; Bornholdt and Kauffman, 2019; Demon-

geot et al., 2019; Lähdesmäki et al., 2003; Martin et al., 2007; Thomas et al., 2014; Tyson et al., 2019; Wery

et al., 2019).

This approach was also motivated by advances in neuroscience that reveal how nervous systems and arti-

ficial neural networks learn from experience. Recent studies in the field of basal cognition (memory in aneu-

ral and pre-neural organisms [Balu�ska and Levin, 2016]) have revealed a broad class of systems, from mo-

lecular networks (Szabó et al., 2012) to physiological networks in somatic organs (Goel and Mehta, 2013;

Turner et al., 2002), that exhibit plasticity and history-based remodeling. Could GRNs likewise exhibit his-

tory-dependent behavior that could help explain variability and be could be exploited to control their func-

tion by modulating the temporal sequence of inputs? Based on the remarkable flexibility observed at the

anatomical and physiological levels (Blackiston and Levin, 2013; Emmons-Bell et al., 2019; Levin, 2014;

Schreier et al., 2017; Soen et al., 2015; Sullivan et al., 2016), and the conceptual similarity between GRNs

and neural networks (Sorek et al., 2013; Watson et al., 2010, 2014), we first established a formalization of

memory types for GRNs and implemented a suite of computational tests that reveal trainability in a given

GRN (Figures 2 and 3). We next created and tested thousands of 2-node and 3-node networks to identify

minimal networks exhibiting each type of memory (Figure 4). These motifs can be sought in novel networks

as they are discovered, or used as templates for construction of synthetic biology circuits with desired

computational properties.

Then we tested different types of BNs from a variety of sources (Figure 5). Our toolkit takes each network as

input, generates the feasible UCS-R-NS combinations, evaluates the type of memory(s) in the current com-

bination, counts the number of combinations for each type of memory (including combinations where no

memory appeared), and returns these numbers to represent the memory landscape of the network. Over-

all, we tested 35 GRNs, 3,500 configuration models (100 randomized models for each GRN), and 500 RBNs

(100 each for networks of size 5, 10, 15, 20, and 25 nodes). We found a non-linear relationship of memory

types with network size. Different types of memory begin to appear in RBNs when networks reach 15 nodes

in size. Larger networks of 25 nodes have stable quantities of memories and do not increase further. Thus,

the structure of the GRN is more important that its mere size for implementing memory. We did not have to

search for specific parameters (e.g., frequency) in the input stimulation structure—simple repetition of

stimuli was sufficient, suggesting that memory formation may be robust to choices of input timing; how-

ever, future work may identify especially effective input patterns.

Interestingly, in the majority of the cases of memory we identified, the input nodes (e.g., CS) received feed-

back from the network. The establishment of stable states in which the input node is stimulated by the

network, long after the real input event has ceased, is similar to a familiar strategy by which neural networks

represent states of the world that are not occurring at the moment (acquired memories as ‘‘virtual’’ repre-

sentations of past events). However, we found 411 cases of memory in which there was no feedback into US

or CS from the network, showing that it is possible to achieve dynamical memory without recurrent stimu-

lation back into the input nodes.

Prior work revealed a type ofmemory inGRNsof the developing vertebrate neural tube and in generic bacterial

networks (Herrera-Delgado et al., 2018; Sorek et al., 2013). We found the possibility of other types of memory

beyond associative memory, and examined these dynamics broadly across a diverse set of GRNs. Using the

data in Cell Collective, we tested 35 GRNs, 100 randomized models of each GRN (3,500 in total) and 500

RBNs (100 of each size 5, 10, 15, 20, and 25). AMwas identified in 5GRNs out of 35GRNswe tested, and among

these GRNs, Aurora Kinase A in Neuroblastoma (vertebrate, cancer category) (Carmena et al., 2009; Dahlhaus

et al., 2016), had the highest prevalence of AM. Here, TPX2 (Kufer et al., 2002) appeared as a CSwith a variety of

genes or processes serving as UCS and R. CD4+ T cell Differentiation and Plasticity (Martinez-Sanchez et al.,

2015), B cell differentiation (Méndez and Mendoza, 2016), and Fanconi anemia and checkpoint recovery

(Rodrı́guez et al., 2015) (vertebrate, adult category) have AM. Human gonadal sex determination GRN

(vertebrate-embryonic category) also contained AM. Thus AM represents 15% of our GRNs but is available

in complex physiological, pathological, and developmental regulatory processes.
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We observed that vertebrate GRNs have a much larger amount of memory than invertebrate GRNs (Fig-

ure 7A). This may indicate that more complex developmental processes were evolutionarily favored with

GRN architectures that exhibit more memory. Interestingly, the gut microbiome GRN is an exception,

with significant memory in the invertebrate class; the reason is unknown, but it is likely that memory prop-

erties could help microbiota regulate their functions based on patterns in the behavior of the host. Forth-

coming work will examine additional GRNs as they become discovered within diverse taxa, to more fully

understand the types of memory that exist across the tree of life and the evolutionary significance of their

distribution. Likewise, future incorporation of these analyses into artificial embryogeny and evolutionary

simulation approaches (Andersen et al., 2009; Basanta et al., 2008; Lowell and Pollack, 2016; Toda et al.,

2018) will reveal whether selection for memory capacity potentiates improved developmental complexity

and robustness. We further categorized the GRNs into broad ‘‘Generic’’ and ‘‘Differentiated’’ classes (Fig-

ure 7B), signifying the rough distinction between networks specific to individual cell types of the body

versus more generically applicable or unicellular GRN. With a few exceptions, the broad pattern revealed

memory capacity to be more prevalent in GRNs specific to differentiated cell types. However, this conclu-

sion is tempered by the possibility of differential annotation biases in GRN reconstructions of some model

systems versus others.

Memories are more common in biological GRNs than in random networks. It should be noted that although

there are multiple possible methods to construct randomized networks in addition to our method, we used

a method that preserves the major aspects of connectivity while randomizing the Boolean functions, spe-

cifically to compare against the null hypothesis that memory is not mediated by the dynamic relationships

among the interacting nodes. Our results suggest that memory in a GRN strongly depends on the category

of the GRN and the pathological and/or developmental processes in which they are involved, although

many more GRNs filling out the space of processes will be useful to have a fuller picture of this relationship.

Comparison of each GRN with its randomized configuration models indicated that GRN memory was an

outlier compared with its randomized equivalent. Moreover, we found that only in real biological GRNs

do different types of memory have distinct correlations between each other. AM is often highly correlated

with UM and TM, but not vice versa. Taken together, these analyses reveal several different ways in which

biological networks are unique (and reflect richer properties than present simply by virtue of network dy-

namics in general [Kauffman, 1993, 1995]). Moreover, the specific associations between diverse memory

types in biological GRNs form a complex and non-obvious relationship. These findings suggest the possi-

bility that the evolutionary history of real biological organisms contained pressures (direct or indirect)

favoring the existence of memory. Thus, an important area for future work is to identify GRN memory

phenomena in vivo and ascertain their effects on selective advantage in terms of robustness, plasticity,

and evolvability.

Numerous opportunities for subsequent work and for the interpretation of puzzling phenomena in

biomedicine are suggested by these results. On the computational side, these analyses will next be

extended to help understand the historicity of a wide variety of networks—continuous biological models

(especially as well-parameterized biological ODE-type GRNs become discovered), protein pathways,

and metabolic networks, as well as networks guiding the behavior of designed agents such as soft-body

robots (Auerbach and Bongard, 2011; Bongard and Lipson, 2007). The existence of several different mem-

ory types could explain phenomena where combinations of drugs produce outcomes that are not pre-

dicted by chemical biology, treatments cease working (pharmacoresistance), or well-tolerated compounds

begin to have a different (and undesirable) effect with time. Especially in the cancer and microbiome fields,

these outcomes are typically thought to be due to population-level selection but could actually result from

cellular- or tissue-level memory within individual agents (both host andmicrobiota). GRNmemory may also

underlie some of the remarkable variability in drug efficacy and adverse effects that is observed across the

population. An individual’s response may be partially due to the GRNmemories established over a lifetime

of unique physiological experiences. Another intriguing potential application of this approach is the

exploitation of associative memory to train tissues to respond to an NS to mimic the effects of a potent

drug that has too many side effects to use continuously. We will be testing this strategy in vitro and in vivo

at the bench, targeting neuroblastoma and immune cell activation (Figure 5).

It is worth noting that GRNs represented as BNs possess the Markov property, and therefore are ‘‘memo-

ryless’’ in a strict mathematical sense (Markov, 1954). In our work, memories were discovered to be stored

by a change in what global attractor the BN is in, which change brought about by external stimuli
16 iScience 24, 102131, March 19, 2021



ll
OPEN ACCESS

iScience
Article
(experiences). As the order of interventions matters for which attractor a system ends up in, this is a form of

path dependency or hysteresis across gene expression profiles (states of the GRN) (Abraham et al., 2019).

Our data and analyses show how this path dependency (in response to interventions) of the node relation-

ships in a GRN can fulfill the classic definitions of memory formation. The network topology determines

which nodes can serve as inputs and outputs for a desired type of memory, but no specific structure of

the input stimulation is needed besides the relevant repetition mode.

It is essential to understand howmuch plasticity and historicity can exist without altering the network struc-

ture (topology) for the purpose of biomedical applications and for understanding evolutionary change. We

demonstrate the phenomenon of non-rewiring memory using a small BN. We show how a form of history-

dependent behavior known as ‘‘hysteresis’’ is sufficient for associative memory. Hysteresis, where a recur-

rent dynamical system shows an opposite response to the same input in the future after passing through a

sequence of states (history) steered by external interventions, is not restricted to brains (Cragg and Tem-

perley, 1955). This phenomenon even occurs in ferromagnetic materials where the shape of the magnetic

domains in the material depends not only on the applied electric field but also on the shapes of the mag-

netic domains in the past. As we show in Figure 1, this history could alter the internal state of the system in a

way that modulates the effect of a stimulus, which is precisely what associative memory requires.

The type of memory acquisition we observed in these networks has many similarities to learning, which has

been shown in a wide variety of neural and aneural systems (Balu�ska and Levin, 2016). Future work will

further highlight parallels between classical models of learning via synaptic plasticity and dynamical

learning that can occur in a wide range of substrates including within neurons themselves. It is important

to also note that our methods are fully general and could be applied to identify memory in other types

of important networks, from contact networks in epidemiology (Perra et al., 2012) to brain networks (Bassett

and Sporns, 2017) to drug interaction networks (Barabási et al., 2011). Thus it is likely that the significance of

finding trainability in network structures will extend well beyond biology. Overall, the discovery of mem-

ories in GRNs is a first step toward merging the approaches of network sciences with a cognitive sci-

ence-based approach to regulation of complex systems (Manicka and Levin, 2019a; Pezzulo and Levin,

2015). It is likely that the discovery of memory, and perhaps future findings of other aspects of basal cogni-

tion in ubiquitous regulatory mechanisms, will provide important insight into the origin, self-regulation,

and external control strategies over a broad class of dynamic systems in health sciences and technology.

Limitations of the study

Our analyses were performed on available published models inferred by other groups from primary data

(transcriptomic measurements of specific organisms and cell types). Thus, it is possible that conclusions

about overall prevalence in memories across different types of networks are affected by ascertainment

bias in the construction of available GRNs from the choice of model systems. Our algorithm can be easily

applied to revised/updated versions of these GRN models, and to new models that are inferred in future

work in the field. Thus, it will be essential to rerun these analyses as new, better GRN models come on line,

and to test these novel predictions at the bench. Such functional tests for GRNmemory will not only identify

interesting biomedical avenues but also serve as a new way to test the quality of GRN models—an addi-

tional suite of tests that gauge the fit of the model to predictions of real biological data.

Resource availability
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Materials availability
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Data and code availability

All numerical results are available upon request. Code is not yet public due to intellectual property restric-
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All methods can be found in the accompanying Transparent methods supplemental file.
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Delgado, F.M., and Gómez-Vela, F. (2019).
Computational methods for Gene Regulatory
Networks reconstruction and analysis: a review.
Artif. Intell. Med. 95, 133–145.

Demongeot, J., Hasgui, H., and Thellier, M.
(2019). Memory in plants: boolean modeling of
the learning and store/recall memory functions in
response to environmental stimuli. J. Theor. Biol.
467, 123–133.

Deritei, D., Rozum, J., Regan, E.R., and Albert, R.
(2019). A feedback loop of conditionally stable
circuits drives the cell cycle from checkpoint to
checkpoint. Sci. Rep. 9, 1–19.

Durant, F., Morokuma, J., Fields, C., Williams, K.,
Adams, D.S., and Levin, M. (2017). Long-term,
stochastic editing of regenerative anatomy via
targeting endogenous bioelectric gradients.
Biophys. J. 112, 2231–2243.

Durso, F.T., andNickerson, R.S. (1999). Handbook
of Applied Cognition (Wiley).
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Transparent Methods 

 

Biological GRN models 

We used a set of 35 models of GRNs downloaded from an online repository called 

Cell Collective (Helikar et al., 2012), consisting of a maximum of 25 nodes each. Each 

model is defined as a standard Boolean Network (BN) (Herrmann et al., 2012): a discrete 

dynamical system whose nodes represent the components of the system (e.g., genes or 

proteins) that can be in one of two states, namely 1 (ON) or 0 (OFF), and whose edges 

represent the regulatory interactions (activation/repression) among the nodes, dictating 

their states (Kauffman et al., 2003). The state of a BN is represented as a vector of the 

individual gene states, updated synchronously in discrete time-steps: the state of each 

gene at time 𝑡 + 1 is determined by a Boolean function of the states of its input genes at 

time 𝑡 (Shmulevich and Kauffman, 2004). The BNs in the Cell Collective database are 

defined using only the elementary Boolean functions, namely AND, OR and NOT, since 

any Boolean function can be expressed using some combination of these elementary 

operators. A BN is simulated by initializing it with some state, then updating it to obtain 

the next state, and so on, for a specified number of time-steps. When a BN is simulated 

for a long enough time, it reaches an attractor state. An attractor may consist of a single 

BN state, known as a “point attractor”, or may consist of a set of states that the network 

cycles through, known as a “cyclic attractor.” A BN can have multiple attractors, and 

different inputs may lead to different attractors (Graudenzi et al., 2011; Groß et al., 2019; 

Mochizuki et al., 2013; Naldi et al., 2018; Serraa et al., 2007; Shmulevich and Dougherty, 

2010; Shmulevich and Kauffman, 2004; Veliz-Cuba et al., 2014; Xiao, 2009). In this work, 

we compute the memory profile of BNs in a manner that pays attention to its attractor 

states in order to avoid the effects of the transient dynamics on the analyses. This 

imposes a limitation on the size of networks considered here because the larger the 

network, the longer it takes to reach an attractor. This transient length to reach an attractor 

depends on the Network Size (the number of nodes in the network) and the Edge Density 

defined as (Number of edges / Total number of possible edges). We found that the 

transient length (Supplement 14) rises exponentially above 500 time-steps (a practical 

limit that we chose for this work) for networks of size larger than 25 with a biologically 

realistic edge density of 10% (Supplement 15). As a result, we restricted ourselves to 

analysis of BNs of size <=25 to be able to exhaustively analyze all our networks.  

 

Synthetic GRN models for comparison 

To evaluate the significance of the memory profiles of the biological GRN models, 

we generated synthetic Null models for comparison: 1) a set of 3500 BNs obtained by 

randomizing each GRN 100 times, known as “configuration models”; and 2) a set of 500 

random Boolean networks (RBN).  
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We generated a set of 100 configuration models for each one of the 35 biological 

GRN models. There are many ways to generate the configuration (Null) models, 

depending on the null hypothesis that one wishes to consider (Zhai et al., 2018). Since 

our principal motivation is the idea that memory in GRNs may be mediated by the dynamic 

relationships among the node’s mechanisms, our null hypothesis is therefore that those 

dynamic relationships don’t play a role in mediating memory-related phenomena but are 

entirely governed by things like edge degree. Therefore, in generating each configuration 

model we kept the number of nodes and the indegree distribution the same as the original 

GRN, while randomizing only the inputs to the nodes and the associated Boolean 

functions. That is, each node in the configuration model has the same number of inputs, 

but the actual input nodes will be different compared to the original model. Similarly, each 

Boolean function in the configuration model has the same number of inputs as the original 

but the Boolean operators are randomly chosen from the set of elementary operators 

(AND, OR, NOT). 

To determine how the memory properties of networks vary with network size in 

general, we generated five sets of 100 RBNs each, of size 5, 10, 15, 20 and 25 nodes 

respectively. The edge density was set to 𝑚𝑎𝑥(10% 𝑜𝑓 𝑁2, 𝑁 − 1), as the average edge 

density of the biological GRNs was found to be ~10%. Unlike the configuration models, 

we generated an RBN by first randomly choosing unique source-target node pairs and 

assigning a directed edge between them such that the total number of edges satisfied the 

specified edge density, and then assigning random Boolean functions to each node. We 

generated a random Boolean function for a given node as follows. First, we considered 

the inputs of the node X that may consist of just one input (X itself or some other node,) 

or more than one input. In the case of the former, the Boolean function may take one of 

the following forms: ‘X =X’, ‘X = Y’ or ‘X=~Y’, where ‘~’ represents logical NOT (invert) 

operation. If there are two or more inputs, such as (Y, Z), the Boolean function may take 

one of the following forms: (Y⊗Z), (~Y⊗Z), (Y⊗~Z) or (~Y⊗~Z), where ⊗ represents a 

Boolean operator randomly chosen from the list of Boolean operators (AND, OR and 

XOR). For more than two inputs, the Boolean functions would simply be larger 

compositions of the above. We then randomly applied NOT operation in the final or 

intermediate stages of the equation so that 50% of the nodes were affected.  

 

Synthetic GRN models for illustration 

To illustrate the phenomenon of memory formation in BNs, we generated 10000 

minimal RBNs consisting of 2 and 3 nodes (Figure 5). The process of making the minimal 

models was same as that of making RBNs except the fact that here we selected a higher 

edge density randomly in [50, 100]. As we are interested here finding memory in the small 

networks where the number of nodes is few (2/3), a denser topology is required to 

produce memory. We first investigated the minimum number of nodes required to form a 

certain type of memory. In the case of UCS based memory, the minimum requirement 

was 2 (UCS and R); for all other types of memory it was 3 (UCS, NS/CS, and R). We then 
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fixed the edge density at a random percentage between 50 and 100. We evaluated 

memory and took as minimal the one which had the fewest edges. 

 

Memory detection 

We defined different types of memories, characterized by a specific number and 

timing of the stimuli, as described below. For each network, we looked for possible 

memories by considering all possible choices of nodes to serve as inputs or outputs in a 

training assay. We exhaustively considered all choices of nodes subject to the 

requirement that any node can only be a valid UCS if it triggers R prior to training, and 

any node can serve as a NS if it does not trigger R prior to training. In 3 cases, 

(Arabidopsis thaliana Cell Cycle, Iron acquisition and oxidative stress response in 

aspergillus fumigatus and Budding Yeast Cell Cycle 2009), we could not find any 

combinations matching this feasibility condition and thus considered the amount of “no 

memory” to be 100%. The set of all feasible stimulus-response combinations is a subset 

of all possible combinations, the cardinality of which is given by 𝑃(𝑁, 3) =
𝑁!

(𝑁−3)!
. We 

compute a memory profile for each feasible combination by passing it through a series of 

detection steps (Figure 3). We first let the BN settle on an attractor by initiating it with a 

state consisting of all “off” and simulating it for 500 time-steps.  

Then, we evaluated the memory of each network, given a choice of nodes as CS, 

UCS, and R via a sequence of steps picked from the following general recipe (the specific 

steps followed depends on the type of the memory being evaluated): 1) choose a stimulus 

set; 2) flip the state of the stimuli and fix them in that state, referred to as clamping (we 

did not let other genes to alter the state of UCS and all equations associated with different 

genes and UCS get the clamped value of UCS); 3) simulate the BN for M time-steps; 4) 

record the state of R compared to its state prior to the clamping step; 5) unclamp the 

stimuli (allow them to update states), referred to as relaxation; 6) simulate the BN for M 

time-steps; 7) record the state of R compared to its state prior to relaxation; 8) choose a 

different stimulus set; 9) flip and clamp the stimuli; 10) simulate the BN for M time-steps; 

11) record the state of R compared to its state prior to the clamping step 9; 12) relax the 

network; and 13) record the state of R. We deemed a given stimulus-response 

combination as having elicited a specific type of memory if it satisfies the associated set 

of conditions: 

i) UCS Based Memory (UM): choose the stimulus set consisting of in step 1, verify 
that R has flipped in step 3, and finally verify that R has not flipped in step 7. UM 
captures the idea that R may permanently remember changes in the activity of 
UCS. 

ii) Pairing Memory (PM): choose the stimulus set consisting of {UCS, NS} in step 1, 
verify that R has flipped in step 3, and finally verify that R has not flipped in step 
7. PM captures the idea that R may permanently remember changes in the joint 
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activities of UCS and NS. Even though the detection of PM is like AM, there are 
crucial differences (see AM definition below).     

iii) Transfer Memory (TM): choose the stimulus set consisting of {UCS} in step 1, 
verify that R has flipped in step 3, choose the stimulus set consisting of {NS} in 
step 8, and finally verify that R has flipped in step 11. TM captures the possibility 
that even though NS could not flip R initially, it may be able to do so after 
activating UCS, effectively transforming NS into CS.   

iv) Associative Memory (AM): choose the stimulus set consisting of {UCS, NS} in 
step 1, verify that R has flipped in step 3, choose the stimulus set consisting of 
{NS} in step 8, and finally verify that R has flipped in step 11. AM describes 
classical conditioning: after successful pairing of UCS and current NS, the NS is 
conditioned to become CS. This causes the NS to become CS and can be able 
to trigger R. In other words, we call it an AM if after successful pairing, NS can 
flip R.  

a. Long Recall Associative Memory (LRAM): Following the AM steps, verify 
that R has not flipped in step 13 compared to its state prior to the relaxation 
step 12. LRAM captures the idea that R may permanently remember 
changes to the activity of CS. 

b. Short Recall Associative Memory (SRAM): Following the AM steps, verify 
that R has flipped in step 13 compared to its state prior to the relaxation 
step 12. SRAM captures the idea that R may only transiently remember 
changes to the activity of CS. 

v) Consolidation Memory (CM): choose the stimulus set consisting of {UCS, NS} in 
step 1, verify that R has flipped in step 3, choose the stimulus set consisting of 
{NS} in step 8, verify that R has not flipped in step 11, and finally verify that R has 
flipped compared to its state prior to the clamping step 9. CM captures the idea 
that even though associative conditioning may not immediately turn NS into CS, 
it may do so after relaxing the BN. 

Note that UM and PM are mutually exclusive, as are TM and {AM, CM} (see Figures 2,3 

for details). 

After confirmation of each case of Transfer, Associative and Consolidation 

memory, we checked whether the change in the property of NS in inducing R is 

permanent. We deactivated the CS to check if R is also deactivated; again we activated 

CS to see if R is triggered back, and continued the activation/deactivation process 20 

times to see if causality between NS and R is stable. If stable, we called it second order 

memory. 

Mathematically, in an 𝑁 node GRN, there may be 𝑃𝑁
3 such combinations.  Here, 

we considered the current node as 𝑅 if the 𝑅 is stable over a certain period called 

Constancy Length during the relaxation phase of the network (see Supplement 16). We 

coded the methodology in MATLAB 2019a.  
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Supplements 

 

Supplemental Figure 1: Definition of and functional relationship among the different 

memory types [ This item relates to Figure 2 ] 

 

Legend: The definition and abbreviations of the defined memory types are as follows. 
UCS Based Memory UM: R retains the activation by UCS after UCS deactivated. Pairing 
Memory (PM): R retains the repetitive activation by {UCS, NS} pair even after their 
deactivation. Transfer Memory (TM): activation by UCS alone (not pairing) converts NS 
to CS. Associative Memory (AM): paired activation of {UCS, NS}, converts NS to CS. 
Long Recall AM (LRAM): this conversion of NS to CS is permanent. Short Recall AM 
(SRAM): the conversion is temporary (the association is lost). Consolidation Memory 
(CM): the pairing of {UCS, NS} does not immediately turn NS into CS but eventually does 
so after an elapsed time. The overlap/hierarchy of the ovals represents the relationship 
between the different types and subtypes of memory.  
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Supplemental Figure 2: Flowchart of Memory Evaluation [ This item relates to Figure 2 

] 

 

Legend: The computational procedures for our evaluation of five kinds of memories are 
shown here, namely, UM, PM, TM, AM and CM. We consider each of the two sub-
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categories of AM, LRAM and SRAM, as individual memory types. (A) Input of a GRN with 
a R-UCS pair and a probable list of NS. (B) The memory detection process. At the top of 
the figure we define the different modules frequently used in the section B. The process 
works as follows. 1) choose a stimulus set; 2) flip the state of the stimuli and fix them in 
that state, referred to as clamping; 3) simulate the BN for M time-steps; 4) record the state 
of R compared to its state prior to the clamping step; 5) unclamp the stimuli (allow them 
to update states), referred to as relaxation; 6) simulate the BN for M time-steps; 7) record 
the state of R compared to its state prior to relaxation; 8) choose a different stimulus set; 
9) flip and clamp the stimuli; 10) simulate the BN for M time-steps; 11) record the state of 
R compared to its state prior to the clamping step 9; 12) relax the network; and 13) record 
the state of R. We deem a given stimulus-response combination as having elicited a 
specific type of memory if it satisfies a number of specific conditions described fully in the 
Methods.  
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Supplemental Table 1: GRNs analyzed from cell collective [ This item relates to Figure 

3 ] 

IDs GRNs 

#1 Arabidopsis thaliana Cell Cycle 

#2 Aurora Kinase A in Neuroblastoma 

#3 B cell differentiation 

#4 BT474 Breast Cell Line Long-term ErbB Network 

#5 BT474 Breast Cell Line Short-term ErbB Network 

#6 Body Segmentation in Drosophila 2013 

#7 Budding Yeast Cell Cycle 

#8 Budding Yeast Cell Cycle 2009 

#9 CD4+ T Cell Differentiation and Plasticity 

#10 Cardiac development 

#11 
Cell Cycle Transcription by Coupled CDK and Network 
Oscillators 

#12 Cortical Area Development 

#13 FGF pathway of Drosophila Signaling Pathways 

#14 Fanconi anemia and checkpoint recovery 

#15 HCC1954 Breast Cell Line Long-term ErbB Network 

#16 HCC1954 Breast Cell Line Short-term ErbB Network 

#17 HH Pathway of Drosophila Signaling Pathways 

#18 Human Gonadal Sex Determination 

#19 
Iron acquisition and oxidative stress response in aspergillus 
fumigatus 

#20 Lac Operon 

#21 Mammalian Cell Cycle 

#22 Mammalian Cell Cycle 2006 

#23 Metabolic Interactions in the Gut Microbiome 

#24 Neurotransmitter Signaling Pathway 

#25 Oxidative Stress Pathway 

#26 Predicting Variabilities in Cardiac Gene 

#27 
Processing of Spz Network from the Drosophila Signaling 
Pathway 

#28 Regulation of the L-arabinose operon of Escherichia coli 

#29 SKBR3 Breast Cell Line Long-term ErbB Network 

#30 SKBR3 Breast Cell Line Short-term ErbB Network 

#31 T cell differentiation 

#32 T-LGL Survival Network 2011 Reduced Network 

#33 TOL Regulatory Network 

#34 Toll Pathway of Drosophila Signaling Pathway 

#35 VEGF Pathway of Drosophila Signaling Pathway 

 

Legend: GRNs from Cell Collective that were analyzed, all having 25 of fewer nodes. 
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Supplemental Figure 3: Time series data from the evaluation of a sample UCS Based 

Memory [ This item relates to Figure 4 ] 

 

 
Legend: These node traces show the timeseries data for an example of UCS Based 

memory evaluation in the CD4+ T Cell Differentiation and Plasticity GRN. Here, the 

memory is established between FOXP3 gene as UCS and IL2 gene as response. A) The 

network with specified stimulus-response combination. B) The pre-requisite before 

learning that UCS has the capability of triggering R. C) The training of R by inducing UCS 

repeatedly. D) Testing of R making UCS off. 
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Supplemental Figure 4: Time series data from the evaluation of a sample Pairing 

Memory [ This item relates to Figure 4 ] 

 

Legend: These node traces show the timeseries data for an example of Pairing memory 

evaluation in the CD4+ T Cell Differentiation and Plasticity GRN. Here, the memory is 

established among IL4e gene as UCS, IL2e as NS and IL4 gene as response. A) The 

network with specified stimulus-response combination. B) The pre-requisite before 

learning that UCS has the capability of triggering R and that NS should not trigger R. C) 

The training by inducing {UCS, NS} together repeatedly. D) testing of R making the stimuli 

off.  
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Supplemental Figure 5: Time series data from an evaluation of a sample Transfer 

Memory [ This item relates to Figure 4 ] 

 

Legend: These node traces show the timeseries data for an example the evaluation of 

Transfer memory in Mammalian Cell Cycle 2006 GRN. Here, the memory is established 

among CycD gene as UCS, P27 as NS/CS and E2F gene as response. A) The network 

with specified stimulus-response combination. B) The pre-requisite before learning that 

UCS has the capability of triggering R and that NS should not trigger R. C) The training 

by inducing {UCS, NS} together repeatedly. D) Testing of R to check if NS has converted 

to CS through training. Here, when the CS was turned off after learning, the R is not totally 

off but exhibits some ripples; during the on phase of CS response of R is consistent. E) 

As further confirmation of stable causality established between CS and R by training, we 

first deactivated CS, to see R get deactivated, and then reactivated the CS to ensure that 

it can activate R again.  
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Supplemental Figure 6: Time series data from the evaluation of a sample Consolidation 

Memory  [ This item relates to Figure 4 ] 

 

 

Legend: These node traces show the timeseries data for a Consolidation memory in T 
cell differentiation GRN. Here, the memory is established among IL4R gene as UCS, 
IFNG as NS/CS and STAT6 gene as response. A) The network with specified stimulus-
response combination. B) The pre-requisite of learning, stated as before learning shows 
that UCS has the capability of triggering R and that NS should not trigger R. C) Sows The 
training by inducing {UCS, NS} together repeatedly and D) testing that NS is converted 
to CS, i.e. it alone can induce R. Here, CS has an inverse relation with R, i.e. when CS is 
on makes R off and when CS goes off triggers R. The CS being on does not make R 
totally off but exhibits some ripples in R. But when CS is off, R lately becomes fully ON. 
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E) As further confirmation of stable causality established between CS and R by training, 
we first deactivate CS, to see R get deactivated, and then reactivated the CS to ensure 
that it can activate R again. 

 

 

 

Data S1: Set of Boolean Expressions for each of the GRNs.  [ This item relates to Figure 

3 ] 

 

Legend: See file Expressions.zip – This file provides Boolean equations required to 

simulate each of the 35 GRNs used here from Cell Collective database 

(https://cellcollective.org/). The equation associated with a gene of a GRN comprises its 

regulators related by Boolean operators like AND, OR and NOT. We evaluate the 

equation during GRN simulation and assigns the result as the state of the current gene. 

We assign 0 to an external component during simulation. 

 

 

Supplemental Table 2: Memory Evaluation of GRNs   [ This item relates to Figure 7 ] 

UM PM TM AM LRAM SRAM CM NM 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

29.79 0.51 6.98 2.64 2.47 0.17 0.00 60.09 

46.82 0.74 11.12 0.11 0.11 0.00 0.00 41.21 

95.25 0.00 4.75 0.00 0.00 0.00 0.00 0.00 

96.02 0.00 3.98 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

59.94 2.21 29.02 0.95 0.95 0.00 0.00 7.89 

47.58 0.00 3.86 0.00 0.00 0.00 0.00 48.55 

0.00 0.00 0.00 2.33 2.33 0.00 0.00 97.67 

42.11 0.00 21.05 0.00 0.00 0.00 0.00 36.84 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

0.00 0.00 0.00 0.00 0.00 0.00 2.84 97.16 

95.22 0.00 4.78 0.00 0.00 0.00 0.00 0.00 

90.76 0.00 9.24 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

81.19 0.30 16.45 0.00 0.00 0.00 0.00 2.06 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

76.63 0.00 10.02 0.00 0.00 0.00 0.00 13.36 

12.04 0.00 4.63 2.78 0.93 1.85 0.00 80.56 
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80.41 0.00 9.28 0.00 0.00 0.00 0.00 10.31 

0.00 1.16 0.58 1.16 1.16 0.00 0.00 97.09 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

47.58 0.00 3.86 0.00 0.00 0.00 0.00 48.55 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

93.20 0.00 6.80 0.00 0.00 0.00 0.00 0.00 

97.60 0.00 2.40 0.00 0.00 0.00 0.00 0.00 

64.48 0.00 15.51 0.00 0.00 0.00 0.07 19.94 

93.71 0.00 0.00 0.00 0.00 0.00 0.00 6.29 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

 

Legend: For each GRN, the proportion of each memory type out of the total memory 

(within the available feasible combinations) has been calculated and put in the table. For 

those networks where no feasible combinations of stimulus/response were available, the 

proportion of no memory (NM) was considered as 100%. 
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Supplemental Table 3: p-value Test: comparing incidence of memories within GRNs vs. 

RBNs. [ This item relates to Figure 8 ] 

GRNs UM PM TM AM LRAM SRAM CM NM 

#1 0.85 0.99 0.96 1 1 1 0.99 0.85 

#2 0.1 0.15 0.08 0.03 0.03 0.09 0.7 0.08 

#3 0.02 0.12 0.06 0.76 0.81 0.9 0.7 0.03 

#4 0 0.8 0.15 0.73 0.81 0.86 0.58 0 

#5 0 0.86 0.11 0.84 0.89 0.93 0.88 0 

#6 0.62 0.86 0.74 0.84 0.89 0.93 0.88 0.52 

#7 0.57 0.81 0.58 0.76 0.81 0.9 0.7 0.33 

#8 0.62 0.86 0.74 0.84 0.89 0.93 0.88 0.52 

#9 0.02 0.03 0 0.1 0.05 0.93 0.88 0 

#10 0.05 0.86 0.11 0.84 0.89 0.93 0.88 0.06 

#11 0.92 1 0.98 0 0 1 1 0.92 

#12 0.06 1 0.02 1 1 1 1 0.06 

#13 0.57 0.81 0.58 0.76 0.81 0.9 0.7 0.33 

#14 0.62 0.86 0.74 0.84 0.89 0.93 0.03 0.58 

#15 0 0.8 0.15 0.73 0.81 0.86 0.58 0 

#16 0 0.86 0.02 0.84 0.89 0.93 0.88 0 

#17 0.57 0.81 0.58 0.76 0.81 0.9 0.7 0.33 

#18 0 0.14 0.01 0.84 0.89 0.93 0.88 0 

#19 0.57 0.81 0.58 0.76 0.81 0.9 0.7 0.33 

#20 0.85 0.99 0.96 1 1 1 0.99 0.85 

#21 0 0.81 0.07 0.76 0.81 0.9 0.7 0.01 

#22 0.13 0.99 0 0 0 0 0.99 0.1 

#23 0 0.99 0 1 1 1 0.99 0 

#24 0.62 0.04 0.74 0.07 0.04 0.93 0.88 0.58 

#25 0.62 0.86 0.74 0.84 0.89 0.93 0.88 0.52 

#26 0.05 0.86 0.11 0.84 0.89 0.93 0.88 0.06 

#27 0.57 0.81 0.58 0.76 0.81 0.9 0.7 0.33 

#28 0.85 0.99 0.96 1 1 1 0.99 0.85 

#29 0 0.8 0.1 0.73 0.81 0.86 0.58 0 

#30 0 0.86 0.2 0.84 0.89 0.93 0.88 0 

#31 0 0.81 0.03 0.76 0.81 0.9 0.7 0.01 

#32 0 0.86 0.74 0.84 0.89 0.93 0.88 0 

#33 0.57 0.81 0.58 0.76 0.81 0.9 0.7 0.33 

#34 0.85 0.99 0.96 1 1 1 0.99 0.85 

#35 0.62 0.86 0.74 0.84 0.89 0.93 0.88 0.52 

(%) 37.142 5.714 20 5.571 11.428 2.857 2.857 37.142 

Legend: For each GRN, we calculated a p-value for the position of the incidence of each 

type of memory within the probability distribution of 100 similar size RBNs. If the p-value 
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is less than or equal to 0.05, the statistical test rejects the null hypothesis that the 

incidence of that type of memory in the GRN is not an outlier amongst similar sized RBN 

memories. 
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Supplemental Table 4: Outlier Test: comparing incidence of memories within GRNs vs. 

RBNs. [ This item relates to Figure 8 ]    

GRNs UM PM TM AM LRAM SRAM CM NM 

#1 0 0 0 0 0 0 0 0 

#2 0 0 0 1 1 0 0 0 

#3 1 0 0 0 0 0 0 1 

#4 1 0 0 0 0 0 0 1 

#5 1 0 0 0 0 0 0 1 

#6 0 0 0 0 0 0 0 0 

#7 0 0 0 0 0 0 0 0 

#8 0 0 0 0 0 0 0 0 

#9 1 1 1 0 0 0 0 1 

#10 0 0 0 0 0 0 0 0 

#11 0 0 0 1 1 0 0 0 

#12 0 0 1 0 0 0 0 0 

#13 0 0 0 0 0 0 0 0 

#14 0 0 0 0 0 0 1 0 

#15 1 0 0 0 0 0 0 1 

#16 1 0 1 0 0 0 0 1 

#17 0 0 0 0 0 0 0 0 

#18 1 0 1 0 0 0 0 1 

#19 0 0 0 0 0 0 0 0 

#20 0 0 0 0 0 0 0 0 

#21 1 0 0 0 0 0 0 1 

#22 0 0 1 1 1 1 0 0 

#23 1 0 1 0 0 0 0 1 

#24 0 1 0 0 1 0 0 0 

#25 0 0 0 0 0 0 0 0 

#26 0 0 0 0 0 0 0 0 

#27 0 0 0 0 0 0 0 0 

#28 0 0 0 0 0 0 0 0 

#29 1 0 0 0 0 0 0 1 

#30 1 0 0 0 0 0 0 1 

#31 1 0 1 0 0 0 0 1 

#32 1 0 0 0 0 0 0 1 

#33 0 0 0 0 0 0 0 0 

#34 0 0 0 0 0 0 0 0 

#35 0 0 0 0 0 0 0 0 

# Outlier 13 2 7 3 4 1 1 13 

(%) 37.142 5.714 20 5.571 11.428 2.857 2.857 37.142 

Legend: We tested whether the incidence of each type of memory of a GRN is an outlier 
in the pool of similar size of 100 RBNs: ‘1’ if outlier; ‘0’ otherwise. The last two rows show 
total number and percentage of outliers in each memory type.  
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Supplemental Table 5: p-value Test: comparing memories in GRNs vs. in Configuration 

models [ This item relates to Figure 9 ] 

GRNs UM PM TM AM LRAM SRAM CM NM 

#1 0.7 0.92 0.74 0.89 0.94 0.92 0.79 0.55 

#2 0.05 0.05 0.03 0.01 0.01 0.04 0.89 0.03 

#3 0.03 0.02 0.01 0.04 0.04 1 0.93 0.02 

#4 0 0.92 0.05 0.91 0.93 0.98 0.93 0 

#5 0 0.95 0.11 0.97 0.97 1 0.96 0 

#6 0.76 0.9 0.78 0.91 0.92 0.99 0.96 0.68 

#7 0.76 0.9 0.74 0.92 0.93 0.99 0.94 0.68 

#8 0.62 0.81 0.6 0.86 0.89 0.95 0.84 0.46 

#9 0 0 0 0 0 1 0.94 0 

#10 0.11 0.83 0.2 0.85 0.87 0.97 0.84 0.13 

#11 0.7 0.9 0.71 0.08 0.07 0.98 0.94 0.6 

#12 0.19 0.98 0.1 0.98 0.98 1 0.99 0.19 

#13 0.85 0.96 0.93 0.97 0.97 1 1 0.83 

#14 0.73 0.89 0.7 0.92 0.93 0.99 0.04 0.64 

#15 0 0.92 0.08 0.92 0.93 0.98 0.91 0 

#16 0 0.95 0.06 0.95 0.95 1 0.95 0 

#17 0.94 0.99 0.94 0.99 1 0.99 1 0.93 

#18 0 0.13 0.03 0.81 0.85 0.93 0.72 0 

#19 0.64 0.87 0.62 0.86 0.88 0.97 0.93 0.52 

#20 0.75 0.96 0.78 0.93 0.95 0.98 0.98 0.68 

#21 0 0.87 0.08 0.85 0.89 0.94 0.82 0 

#22 0.25 0.9 0.25 0.07 0.1 0.01 0.89 0.24 

#23 0 0.94 0.1 0.94 0.94 1 0.96 0 

#24 0.6 0.11 0.68 0.17 0.12 0.92 0.85 0.45 

#25 0.67 0.92 0.71 0.91 0.93 0.98 0.87 0.54 

#26 0.05 0.89 0.16 0.88 0.9 0.96 0.9 0.06 

#27 0.74 0.97 0.85 0.94 0.95 0.99 0.96 0.69 

#28 0.83 0.97 0.83 0.97 0.98 0.99 0.97 0.79 

#29 0 0.89 0.03 0.9 0.9 0.97 0.89 0 

#30 0 0.96 0.11 0.96 0.96 1 0.99 0 

#31 0 0.88 0 0.87 0.88 0.98 0.06 0 

#32 0 0.81 0.6 0.78 0.8 0.93 0.7 0.01 

#33 0.82 0.98 0.87 0.98 0.98 1 0.97 0.78 

#34 0.69 0.96 0.88 0.97 0.97 1 0.98 0.64 

#35 0.86 0.98 0.91 0.98 0.98 1 0.98 0.83 

(%) 37.143 5.714 17.14 8.571 8.571 5.714 2.857 40 

 

Legend: For each GRN, the stated p-value represents the incidence of each memory 

type fit into the probability distribution of its random ensemble. If the p-value is less than 
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or equal to 0.05, the statistical test rejected the null hypothesis that the amount of the 

memory in the GRN is not an outlier in its random ensemble.  
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Supplemental Table 6: Outlier Test: comparing memory incidence in GRNs vs. 

Configuration models [ This item relates to Figure 9 ] 

GRNs UM PM TM AM LRAM SRAM CM NM 

#1 0 0 0 0 0 0 0 0 

#2 0 0 1 1 1 1 0 1 

#3 1 1 1 1 1 0 0 1 

#4 1 0 0 0 0 0 0 1 

#5 1 0 0 0 0 0 0 1 

#6 0 0 0 0 0 0 0 0 

#7 0 0 0 0 0 0 0 0 

#8 0 0 0 0 0 0 0 0 

#9 1 1 1 1 1 0 0 1 

#10 0 0 0 0 0 0 0 0 

#11 0 0 0 0 0 0 0 0 

#12 0 0 0 0 0 0 0 0 

#13 0 0 0 0 0 0 0 0 

#14 0 0 0 0 0 0 1 0 

#15 1 0 0 0 0 0 0 1 

#16 1 0 0 0 0 0 0 1 

#17 0 0 0 0 0 0 0 0 

#18 1 0 1 0 0 0 0 1 

#19 0 0 0 0 0 0 0 0 

#20 0 0 0 0 0 0 0 0 

#21 1 0 0 0 0 0 0 1 

#22 0 0 0 0 0 1 0 0 

#23 1 0 0 0 0 0 0 1 

#24 0 0 0 0 0 0 0 0 

#25 0 0 0 0 0 0 0 0 

#26 0 0 0 0 0 0 0 0 

#27 0 0 0 0 0 0 0 0 

#28 0 0 0 0 0 0 0 0 

#29 1 0 1 0 0 0 0 1 

#30 1 0 0 0 0 0 0 1 

#31 1 0 1 0 0 0 0 1 

#32 1 0 0 0 0 0 0 1 

#33 0 0 0 0 0 0 0 0 

#34 0 0 0 0 0 0 0 0 

#35 0 0 0 0 0 0 0 0 

#Outlier 13 2 6 3 3 2 1 14 

(%) 37.143 5.714 17.14 8.571 8.571 5.714 2.857 40 
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Legend: We tested whether the incidence of a certain memory type of a GRN is an outlier 

in its random ensemble (corresponding values of 100 configuration models of the GRN). 

‘1’ if outlier; ‘0’ otherwise. The last two rows show the total number and percentage of 

outlier in each memory type.  

 

 

Supplemental Table 7: The distribution of the transient length of RBNs. [ This item 

relates to Figure 8 ] 

 

 

 

 

 

 

 

Legend: The distribution of the transient length of RBNs. This table shows transient 

length data obtained from simulations of 1000 RBNs for each N (number of nodes), with 

each RBN run 1000 times starting from a different initial condition each time. Here, 

transient length indicates the number of time steps taken by a Boolean network to reach 

an attractor from a given initial state. 

 

 

Supplemental Table 8: Edge densities of biological GRNs. [ This item relates to Figure 

7 ] 

GRNs 

Number 
of 
Nodes 

Number 
of 
Edges 

Edge 
Density 

Arabidopsis thaliana Cell Cycle 14 66 33.673 

Aurora Kinase A in Neuroblastoma 23 43 8.129 

B cell differentiation 22 39 8.058 

BT474 Breast Cell Line Long-term ErbB Network 25 70 11.200 

BT474 Breast Cell Line Short-term ErbB Network 16 46 17.969 

Body Segmentation in Drosophila 2013 17 29 10.035 

Budding Yeast Cell Cycle 20 42 10.500 

Budding Yeast Cell Cycle 2009 18 59 18.210 

N Median Mean 99% Max 

10 3 3.414 12.01 29 

15 11 13.648 53.01 104 

20 14 19.302 86.02 142 

25 77 113.639 494.18 1180 

30 122 192.661 1070.54 2572 

35 1605 2558.796 14593.67 36478 

40 3918 6755.941 42507.43 78016 
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CD4+ T Cell Differentiation and Plasticity 18 78 24.074 

Cardiac development 15 38 16.889 

Cell Cycle Transcription by Coupled CDK and Network 
Oscillators 9 19 23.457 

Cortical Area Development 5 14 56.000 

FGF pathway of Drosophila Signalling Pathways 23 24 4.537 

Fanconi anemia and checkpoint recovery 15 66 29.333 

HCC1954 Breast Cell Line Long-term ErbB Network 25 70 11.200 

HCC1954 Breast Cell Line Short-term ErbB Network 16 46 17.969 

HH Pathway of Drosophila Signaling Pathways 24 32 5.556 

Human Gonadal Sex Determination 19 79 21.884 

Iron acquisition and oxidative stress response in 
aspergillus fumigatus 22 38 7.851 

Lac Operon 13 22 13.018 

Mammalian Cell Cycle 20 51 12.750 

Mammalian Cell Cycle 2006 10 35 35.000 

Metabolic Interactions in the Gut Microbiome 12 30 20.833 

Neurotransmitter Signaling Pathway 16 22 8.594 

Oxidative Stress Pathway 19 32 8.864 

Predicting Variabilities in Cardiac Gene 15 38 16.889 

Processing of Spz Network from the Drosophila 
Signaling Pathway 24 28 4.861 

Regulation of the L-arabinose operon of Escherichia 
coli 13 17 10.059 

SKBR3 Breast Cell Line Long-term ErbB Network 25 81 12.960 

SKBR3 Breast Cell Line Short-term ErbB Network 16 41 16.016 

T cell differentiation 23 34 6.427 

T-LGL Survival Network 2011 Reduced Network 18 43 13.272 

TOL Regulatory Network 24 48 8.333 

Toll Pathway of Drosophila Signaling Pathway 11 11 9.091 

VEGF Pathway of Drosophila Signaling Pathway 18 18 5.556 

Average edge density (%)  15.401 

 

Legend: For each biological GRN that we analyzed, we show here the number of edges 

they contain, the edge density (calculated as the proportion of the number of actual edges 

with respect to the number of possible edges which is simply (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑜𝑑𝑒𝑠2). The 

average edge density of around 13% was used as a basis for the choice of the edge 

density (10%) for the RBNs that we simulated.  
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Supplemental Table 9. The distribution of the constancy length of RBNs.  [ This item 

relates to Figure 8 ] 

N Median Mean 95% 99% Max 

10 1 1.709313 4 8 31 

15 2 2.553708 7 13 183 

20 2 3.056888 8 18 94 

25 3 4.872672 13 32 489 

30 4 6.44254 18 51 1195 

35 8 17.08245 29 167.46 8598 

40 10 31.6757 36 397 27908 

 

Legend: This table shows constancy length data obtained from simulations of 1000 RBNs 

for each N (number of nodes), with each RBN run 1000 times starting from a different 

initial condition each time. Here, constancy length indicates the maximum number of 

contiguous steps during which a node preserves its state (0 or 1) in an attractor, taken as 

the maximum over all nodes. For example, consider a network with N>2 nodes, of which 

node ‘X’ goes through the following states in an attractor cycle (period length of 13 steps) 

in the same order: 0110001001111, and node ‘Y’ goes through the following states in the 

same order: 0110000001111. Here, the constancy length of ‘X’ is 4 and that of ‘Y’ is 6. 

The constancy length of the network would be the maximum of the constancy lengths of 

the individual nodes. 

 

 

Data S2: See file Violins.zip – plots comparing distribution of memories for GRNs to their 

randomized configuration models.   [ This item relates to Figure 9 ] 

Legend: This supplement provides the violin plots of the set of all 35 GRNs (Plot 1-35) 

from the Cell Collective database (https://cellcollective.org/) compared (in terms of 

memories) to their configuration models. We show the mean (black line), median (red 

line), 5th percentile (teal line) and 95th percentile (pink line). The actual frequency of 

memory of the real GRN is represented as a red star.  We calculated the conditional 

entropy among the different types of memories of GRNs and Configuration models, 

normalized these conditional entropies, applied Gaussian smoothing and visualized the 

results obtained. 
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