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Simple Summary: Pain is experienced by ~55% of patients who undergo anti-cancer treatment.
However, many genetic factors that are involved in the efficacy of opioid analgesics in the treatment
of cancer pain remain unidentified. The aim of our genome-wide association study (GWAS) was to
comprehensively explore genetic variations that are associated with opioid analgesic requirements in
the treatment of cancer pain. We identified several single-nucleotide polymorphisms (SNPs) that are
associated with opioid analgesic requirements, two of the most potent of which were the rs1283671
and rs1283720 SNPs in the ANGPT1 gene region, and SNPs in the SLC2A14 gene were also associated
with the phenotype. These results indicate that these SNPs in the ANGPT1 and SLC2A14 genes could
serve as markers that predict the efficacy of opioid analgesics in the treatment of cancer pain.

Abstract: Considerable individual differences have been widely observed in the sensitivity to opioids.
We conducted a genome-wide association study (GWAS) in patients with cancer pain to identify
potential candidate single-nucleotide polymorphisms (SNPs) that contribute to individual differences
in opioid analgesic requirements in pain treatment by utilizing whole-genome genotyping arrays
with more than 650,000 markers. The subjects in the GWAS were 428 patients who provided written
informed consent and underwent treatment for pain with opioid analgesics in a palliative care unit at
Higashi-Sapporo Hospital. The GWAS showed two intronic SNPs, rs1283671 and rs1283720, in the
ANGPT1 gene that encodes a secreted glycoprotein that belongs to the angiopoietin family. These two
SNPs were strongly associated with average daily opioid requirements for the treatment of pain in
both the additive and recessive models (p < 5.0000× 10−8). Several other SNPs were also significantly
associated with the phenotype. In the gene-based analysis, the association was significant for the
SLC2A14 gene in the additive model. These results indicate that these SNPs could serve as markers
that predict the efficacy of opioid analgesics in cancer pain treatment. Our findings may provide
valuable information for achieving satisfactory pain control and open new avenues for personalized
pain treatment.

Keywords: opioids; analgesics; single-nucleotide polymorphisms; genome-wide association study;
cancer pain

1. Introduction

Pain is defined by the International Association for the Study of Pain as “An unpleasant
sensory and emotional experience associated with, or resembling that associated with,
actual or potential tissue damage” [1]. Although pain is reportedly experienced by 55% of
patients who undergo anti-cancer treatment and by 66% of patients who have advanced,
metastatic, or terminal disease, many more cancer patients may potentially experience
pain according to a recent systematic review and meta-analysis [2]. The World Health
Organization recommends that any opioid may be considered for the maintenance of pain
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relief (alone or combined with nonsteroidal anti-inflammatory drugs [NSAIDs] and/or
paracetamol) in adults (including older persons) and adolescents with cancer-related pain
to achieve sustained, effective, and safe pain control, depending on clinical assessment
and pain severity [3]. However, their effects are not uniform across all patients. Patient
responses to opioid medications vary by patient, specific medication, and other factors [3–5].
Such significant variations in opioid responsiveness or sensitivity may influence analgesic
effects that are necessary to achieve sufficient pain relief, which may hinder the clinical
management of pain. Although twin studies by Angst et al. indicated that genetic effects on
the opioid-induced elevation of heat or cold-pressor pain thresholds accounted for 12–60%
of the observed response variance [6,7], many genetic factors remain to be elucidated.

To identify genetic variations, mostly single-nucleotide polymorphisms (SNPs), that
are associated with human opioid sensitivity or responsiveness and related phenotypes,
many candidate gene association studies have been conducted [8–10]. The most extensively
investigated genetic variation is the functional A118G (rs1799971) SNP in the µ-opioid recep-
tor gene, OPRM1. A recent meta-analysis indicated that G-allele carriers (AG+GG) of this
SNP required higher opioid doses for cancer pain management than AA homozygotes [11].
Genetic polymorphisms in the COMT gene, which encodes catechol-O-methyltransferase,
have also been often investigated, and SNPs in this gene were found to be associated with
responsiveness to opioids even in advanced cancer patients [12,13]. Moreover, several other
SNPs in the ABCB1, IL6, GCH1, and TAOK3 gene have also been found to be associated with
the response to opioids in patients with cancer pain using a candidate gene approach [14].

Genome-wide association studies (GWASs) focus on genetic variations in all regions of
the human genome without regard to preexisting theories about the relationship between
variations and the phenotypes of interest [15]. GWASs can also be used to investigate
genetic factors that are related to individual differences in analgesic effects of opioids.
However, only a few studies have examined human opioid responsiveness and sensitiv-
ity based on GWASs. One of these studies investigated associations between SNPs and
total morphine requirements as a quantitative trait locus in a retrospective population of
opioid-naive children (4–18 years old) who had undergone day surgery tonsillectomy and
adenoidectomy. This study identified an association between the rs795484 and rs1277441
SNPs at the TAOK3 gene locus and morphine dose [16]. Additionally, we performed a
GWAS of traits that are linked to opioid sensitivity. We chose participants who were sched-
uled to undergo aesthetic orthognathic surgery for mandibular prognathism [17] and found
that the best candidate was the rs2952768 SNP, located near the METTL21A (FAM119A) and
CREB1 gene regions [18]. A GWAS was also conducted in patients with cancer from 11 Eu-
ropean countries using a prospective cross-sectional multinational, multicenter design [19].
The rs12948783 SNP, which corresponds to chromosome 17 upstream of the RHBDF2 gene,
had the strongest association with responsiveness to opioids in this study’s patients who
received opioid treatment for moderate or severe pain [20]. However, no GWAS has yet
been conducted in populations other than of European origin, such as Asian populations.

In the present study, we conducted a GWAS in patients with cancer pain to identify
potential genetic variants that contribute to the efficacy of opioid analgesics that are used
to treat pain, reflected by analgesic requirements.

2. Materials and Methods
2.1. Patients
2.1.1. Patients Who Underwent Cancer Pain Treatment with Opioid Analgesics

We enrolled 428 adult patients (20–94 years old, 213 males and 215 females) who
suffered from various types of cancer and were hospitalized at Higashi-Sapporo Hospital
(Hokkaido, Japan) for the treatment of cancer pain in 2017–2019 and were apparently
Japanese. Higashi-Sapporo Hospital was established in 1983 as a hospital that specializes in
cancer care, particularly palliative care. Characteristics of the hospital and palliative cancer
care were detailed in previous reports [21,22]. All of the patients who were recruited in
the present study were treated with opioid analgesics, and many were also appropriately
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treated with NSAIDs and/or other supplementary analgesics for the treatment of pain.
We excluded patients who were considered to be unsuitable by their primary care doctors.
Detailed demographic and clinical data of the subjects are provided in Table 1. Peripheral
blood samples were collected from these subjects for gene analysis.

Table 1. Demographic and clinical data of patient subjects.

Demographic Data: n Minimum Maximum Mean SD Median

Gender
male 213

female 215
Age [years] 428 20 94 71.59 12.33 72.50
Height [cm] 423 136 181 157.61 8.56 158.00
Weight [kg] 421 30 110 50.56 11.07 50.00

Diagnosis (primary
disease): n Diagnosis (primary disease): n

lung cancer 81 breast cancer 60
stomach cancer 26 pancreas cancer 25
prostate cancer 25 colon cancer 22
bladder cancer 17 rectal cancer 13

hepatocellular cancer 12 esophageal cancer 10
uterus cancer 9 ovary cancer 8

others 120

Status and side effects: absence presence

somatic pain 38 390
visceral pain 346 82

neuropathic pain 327 101
nausea 193 138

constipation 113 245

Breakdown of opioids: n morphine oxicodone fentanyl tapentadol tramadol methadone hydromorphone

Number of administered
patients 426 97 209 107 10 31 5 41

Administration of opioids: n Minimum Maximum Mean SD Median

Total dose of opioids
[mg/kg] 419 0.060241 32.407407 1.74 3.09 0.8163265

(converted to oral morphine)

Administration of other
drugs: absence presence

NSAIDs 137 291
supplementary analgesics 171 257

The study was conducted according to guidelines of the Declaration of Helsinki and
approved by the Institutional Review Board or Ethics Committee of Higashi-Sapporo
Hospital and Tokyo Metropolitan Institute of Medical Science (Tokyo, Japan). Written
informed consent was obtained from all of the patients.

2.1.2. Patient Characteristics and Clinical Data

In the patient subjects, we obtained data on surgical history, treatment history, pain
status (e.g., presence/absence of somatic pain, visceral pain, and neuropathic pain), drug
treatments, and disease status (e.g., lung cancer, breast cancer, stomach cancer, etc.; Table 1).
Some of the patients were affected by multiple diseases.

The treatment of pain was mainly conducted by administering opioid analgesics
(e.g., morphine and oxycodone; Table 1). Various types of drugs, such as NSAIDs (e.g., loxoprofen
and diclofenac) and/or other supplementary analgesics (e.g., pregabalin and dexametha-
sone), were also administered at the discretion of primary care doctors if required. To allow
intersubject comparisons of opioid analgesic doses that were required for cancer pain treat-
ment, the opioid doses were converted to equivalent doses of oral morphine as described
in Supplementary Table S1, based on previous reports with slight modification [23–25]. The
total dose of converted opioid analgesics that were administered was calculated daily, and
the total dose of analgesics was calculated as a daily average based on the amount of 5 days
of administration, 3–7 days before blood collection. This average total dose was used as the
endpoint of opioid requirements for the genetic association analysis in the present study.
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Doses of analgesics that were administered were normalized to body weight. The detailed
clinical data of the subjects are detailed in Table 1.

2.2. Whole-Genome Genotyping, Quality Control, and Gene-Based and Gene-Set Analyses
2.2.1. Whole-Genome Genotyping and Quality Control

A total of 428 DNA samples from the patients were used for genotyping. Total genomic
DNA was extracted from whole-blood samples using standard procedures. The extracted
DNA was dissolved in TE buffer (10 mM Tris-HCl and 1 mM ethylenediaminetetraacetic
acid [EDTA], pH 8.0). The DNA concentration was adjusted to 50 ng/µL for whole-genome
genotyping using a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies,
Wilmington, DE, USA).

According to the manufacturer’s recommendations, whole-genome genotyping was
performed by utilizing the Infinium Assay II with an iScan system (Illumina, San Diego,
CA, USA). Infinium Asian Screening Array-24 v. 1.0 BeadChips (one kind) were utilized to
genotype 428 patient samples (total markers: 659,184). Numerous copy number variation
markers were included in the BeadChips, but the majority of the BeadChips were for SNP
markers on the human autosome or sex chromosome.

GenomeStudio with the Genotyping v. 2.0.4 module (Illumina) was used to examine
data for samples that had their entire genomes genotyped to assess quality of the findings.
Following data cleaning, samples with genotype call rates less than 0.95 were not included
in the remaining studies. No patient samples were consequently disregarded for subse-
quent investigations (i.e., all of the 428 samples met the 0.95 quality control cutoff, and
the entire samples were considered for further association analyses). In the subsequent
association analyses, markers with genotype call frequencies less than 0.95 and “Cluster
sep” (a measure of genotype cluster separation) values less than 0.1 were not included. The
patient samples retained a total of 650,504 SNP markers after this screening step. Markers
were further filtered based on a test of Hardy–Weinberg equilibrium (HWE). Markers with
p values (df = 1) less than 0.001 were considered to be deviated in the HWE tests and thus
were excluded. Finally, the analysis only included the 648,817 SNPs that passed the full
filtration procedure.

A log quantile-quantile (QQ) p-value plot as a result of the GWAS for the entire sample
was subsequently drawn to check the pattern of the generated p-value distribution in the
association studies between the SNPs and phenotype, in which the observed p values
against the values that were expected from the null hypothesis of a uniform distribution,
calculated as –log10 (p value), were plotted for each model. All of the plots were mostly
concordant with the expected line (y = x), especially over the range of 0 < –log10 (p value)
< 2 for each model, indicating no apparent population stratification of the samples that
were used in the study (Supplementary Figure S1). Additionally, results of the GWAS
are presented as Manhattan plots, in which the –log10 (p value) for each SNP on each
chromosome was plotted simultaneously.

2.2.2. Gene-Based and Gene-Set Analyses

Gene-based and gene-set approaches were adopted with Multi-marker Analysis of
GenoMic Annotation (MAGMA) v. 1.06 [26], which is also available on the Functional
Mapping and Annotation of Genome-Wide Association Studies (FUMA GWAS) v. 1.3.9
platform [27], to better understand genetic backgrounds and molecular mechanisms that
underlie complex traits, such as opioid requirements in cancer pain treatment. To examine
the combined relationship between all genetic markers in the gene and the phenotype,
genetic marker data were aggregated to the level of full genes in the gene-based analysis.
Similarly, individual genes were compiled into groupings of genes with similar biological,
functional, or other properties for the gene-set analysis. Gene-set analysis can thus shed
light on the role that particular biological pathways or cellular processes may play in the
genetic basis of a trait [26]. In these analyses, associations were explored for genes on
autosomes 1–22 and the X chromosome, and the window of the genes to assign SNPs was
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set to 20 kb, thereby assigning SNPs within the 20 kb window of the gene (both sides) to
that gene. For the reference panel, the 1000 Genome Phase3 EAS population was selected
(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ accessed on 26 July 2022).
In the gene-set analysis, gene sets were defined using the Molecular Signatures Database
(MSigDB) v. 7.5.1 (https://www.gsea-msigdb.org/gsea/msigdb accessed on 26 September
2022) [28]. A total of 10,678 gene sets (curated gene sets: 4761, GO terms: 5917) from
MsigDB were tested. In both analyses, Bonferroni correction for multiple testing was
performed for all tested genes and gene sets. Adjusted values of p < 0.05 in the results were
considered significant.

2.3. Statistical Analysis

In the association studies of patients who underwent cancer pain treatment with
opioids, the total dose of analgesics as a daily average that was calculated based on the
amount of 5 days of administration, 3–7 days before blood collection, was used as an
index of opioid sensitivity. Before the analyses, the quantitative values of total analgesic
requirements that were equivalent to oral morphine (mg/kg) were natural log-transformed
for approximation to the normal distribution according to the following formula: Value
for analyses = Ln (1 + total analgesic requirements on average per day [mg/kg]). To explore
associations between the SNPs and phenotypes, linear regression analyses were conducted,
in which total analgesic requirements as a daily average (mg/kg; log-transformed) and
genotype data for each SNP were incorporated as dependent and independent variables,
respectively. Additionally, weight and binary data on the presence/absence of neuropathic
pain were incorporated as covariables because these parameters were strongly associated
with the dependent variable in a preliminary study (data not shown). Additive, dominant,
and recessive genetic models were used for the analyses because of previously insufficient
knowledge about genetic factors that are associated with opioid sensitivity. Male genotypes
were not included in the analysis of X chromosome markers, whereas both male and female
individuals were included in the association study for autosomal markers. PLINK v. 1.07
(https://zzz.bwh.harvard.edu/plink/index.shtml accessed on 28 July 2022) [29], gPLINK
v. 2.050 [29], and Haploview v. 4.2 [30] were used to perform the statistical analyses. The
criterion for significance in the GWAS was set at p < 5 × 10−8, which is widely known to
be a conventional criterion for the level of significance in GWASs [31,32]. Additionally,
Hardy–Weinberg equilibrium was tested using Exact Tests for genotypic distributions of
SNPs that were significantly associated with the phenotype.

2.4. Additional in Silico Analysis
2.4.1. Power Analysis

G*Power 3.0.5 software (https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-
psychologie-und-arbeitspsychologie/gpower accessed on 26 September 2022) was used to
perform preliminary statistical power analyses [33]. When the type I error probability
was set at 1 × 10−7 (less than 5 × 10−8) and the sample size was 428, power assessments
for the linear regression analysis showed that the expected power (1 minus type II error
probability) was over 99.4% for a Cohen’s conventional “middle” effect size of 0.15 [34].
When Cohen’s conventional “small” effect size was 0.02, however, for the same type I error
probability and sample sizes of 428, the estimated power decreased to 0.7%. In contrast,
assuming the same type I error probability and sample sizes of 428 to obtain 80% power, the
predicted effect size was 0.0919. For effect sizes from large to moderately small but not too
small, a single analysis in the preceding study was anticipated to detect true associations
with the phenotype with 80% statistical power, although the precise effect size has not been
well understood in cases of SNPs that significantly influence opioid sensitivity.

2.4.2. Linkage Disequilibrium Analysis

Linkage disequilibrium (LD) analysis was performed using Haploview v. 4.2 [30] for a
total of 428 samples from patients who underwent cancer pain treatment with opioids for
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the locus of the ~243 kbp region that was annotated as the ANGPT1 gene and its flanking
region on chromosome 8 based on an annotation file that was provided by Illumina (San
Diego, CA, USA) to identify relationships between SNPs in the ANGPT1 gene region. The
commonly used D′ and r2 values were pairwise calculated using the genotype dataset for
each SNP to estimate the strength of LD between SNPs. Linkage disequilibrium blocks
were defined as in a previous study [35].

2.4.3. Reference of Databases

Several databases and bioinformatic tools were referenced to more thoroughly examine
the candidate SNP that may be related to human opioid analgesic sensitivity, including
the National Center for Biotechnology Information (NCBI) database (http://www.ncbi.
nlm.nih.gov accessed on 28 July 2022), Genotype-Tissue Expression (GTEx) portal (https:
//www.gtexportal.org/home/; accessed on 28 July 2022) [36], HaploReg v. 4.1 (https://
pubs.broadinstitute.org/mammals/haploreg/haploreg.php; accessed on 28 July 2022) [37],
and SNPinfo Web Server (https://snpinfo.niehs.nih.gov/; accessed on 28 July 2022) [38].
The GTEx project, an ongoing effort to create a comprehensive public resource to research
tissue-specific gene expression and regulation [36], is the basis for the GTEx portal, which
offers open access to such data as gene expression, quantitative trait loci, and histology
images. HaploReg is a tool for investigating non-coding genomic annotations at variations
in haplotype blocks, such as potential regulatory SNPs at disease-associated sites [37].
The SNPinfo Web Server is a set of web-based SNP selection tools (freely available at
https://snpinfo.niehs.nih.gov/; accessed on 28 July 2022) where investigators can specify
genes or linkage regions and select SNPs based on GWAS results, LD, and predicted
functional characteristics of both coding and non-coding SNPs [38].

3. Results
3.1. Identification of Genetic Polymorphisms Associated with Opioid Analgesic Requirements in the
Treatment of Cancer Pain by GWAS

We comprehensively explored genetic variations that were associated with opioid anal-
gesic requirements per day in the treatment of cancer pain in a total of 428 patients. A total of
648,817 SNPs that met the quality control standards in the GWAS of all patients were exam-
ined for relationships with the phenotype in the additive, dominant, and recessive models.
The top 20 potential SNPs for the additive, dominant, and recessive models are shown in Ta-
bles 2–4, respectively. Significant associations were found for the rs1283671 and rs1283720
SNPs on chromosome 8 and the GSA-rs72752701 (rs72752701) SNP on chromosome 9
in the additive model (p = 3.876 × 10−11 for rs1283671, p = 4.007 × 10−11 for rs1283720,
p = 3.879 × 10−8 for GSA-rs72752701; Table 2, Figure 1a). Significant associations were also
found for the kgp11947181 (rs79524268) SNP on chromosome 6, 9:133013640 (rs2417163)
SNP on chromosome 9, and rs763315292 SNP on chromosome 10 in the dominant model
(p = 1.592 × 10−8 for kgp11947181, p = 1.730 × 10−8 for 9:133013640, p = 3.807 × 10−8 for
rs763315292; Table 3, Figure 1b). Significant associations were also found in the recessive
model for the same three SNPs as in the additive model (p = 7.698 × 10−11 for rs1283671,
p = 7.698 × 10−11 for rs1283720, p = 3.814 × 10−8 for GSA-rs72752701; Table 4, Figure 1c).
Many of the examined SNPs’ computed -log10 p values (observed p values), which are
based on the null hypothesis of a uniform distribution in the QQ plot, differed from the
predicted values (Supplementary Figure S1). The values for SNPs with significant rela-
tionships in Tables 2–4 (rs1283671 and rs1283720) and other SNPs were obviously higher
than predicted values (Supplementary Figure S1). The gene that encodes angiopoietin-1,
ANGPT1, was in the vicinity of the rs1283671 and rs1283720 SNPs (i.e., the best candidate
SNPs in the additive and recessive models). Meanwhile, the kgp11947181 SNP, the best
candidate SNP in the dominant model, was located in an intergenic region on chromosome
6 (Supplementary Figure S2b). The rs1283671 and rs1283720 SNPs were in strong LD with
each other (r2 = 0.97), although these two SNPs were not in strong LD (r2 < 0.80) with other
neighboring SNPs within and around the ANGPT1 gene (Supplementary Figure S3). As

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
https://www.gtexportal.org/home/
https://www.gtexportal.org/home/
https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
https://snpinfo.niehs.nih.gov/
https://snpinfo.niehs.nih.gov/


Cancers 2022, 14, 4692 7 of 17

shown in Tables 2 and 4, an increase in the minor allele carry in the rs1283671 and rs1283720
SNPs was associated with greater opioid analgesic requirements in cancer pain treatment.

Table 2. Top 30 candidate SNPs selected from the GWAS (additive model).

Model Rank CHR SNP Position p Related Gene
Genotype (Patients) Phenotype (Mean)

A/A A/B B/B A/A A/B B/B

Additive 1 8 rs1283671 107421459 3.876 × 10−11 * ANGPT1 5 87 327 2.375 0.873 0.703
Additive 2 8 rs1283720 107460100 4.007 × 10−11 * ANGPT1 5 89 325 2.375 0.86 0.705
Additive 3 9 GSA−rs72752701 125992274 3.879 × 10−8 * 2 50 367 3.011 0.776 0.743
Additive 4 1 rs3917744 169608752 2.485 × 10−7 SELP 2 51 366 2.832 0.778 0.744
Additive 5 12 rs11061996 1836333 2.846 × 10−7 CACNA2D4,LRTM2 2 47 370 2.774 0.714 0.752
Additive 6 3 rs61355450 117954317 0.000000294 2 36 381 2.869 0.786 0.744
Additive 6 3 rs6798512 118019819 0.000000294 2 36 381 2.869 0.786 0.744
Additive 8 12 GSA-rs117577524 30549638 3.316 × 10−7 2 27 390 2.869 0.794 0.744
Additive 9 8 rs4620259 108979439 0.000000349 5 74 340 2.175 0.828 0.722
Additive 10 16 rs74007038 6785856 5.776 × 10−7 RBFOX1 5 79 335 2.076 0.781 0.733
Additive 11 19 rs75017760 8940941 0.00000115 MUC16 2 64 353 2.883 0.708 0.755
Additive 12 13 rs9529111 66652839 0.000001648 PCDH9 19 131 269 1.426 0.672 0.752
Additive 13 1 1:118813000 118270377 0.000001653 2 39 378 2.917 0.805 0.741
Additive 14 11 rs10501687 88799011 0.000001725 GRM5 22 159 237 1.307 0.768 0.7
Additive 15 14 kgp19644675 100077596 0.000001896 EVL 5 57 357 1.927 0.851 0.727
Additive 16 10 rs10749151 114017465 0.000002292 7 105 307 1.833 0.704 0.752
Additive 17 6 rs17059990 99980179 0.0000023 MCHR2 2 65 352 2.817 0.866 0.726
Additive 18 2 2:42166453 41939313 0.00000233 C2orf91 35 162 220 1.168 0.74 0.702
Additive 19 12 rs1554080 128183013 0.00000245 5 70 344 1.814 0.701 0.754
Additive 20 2 rs11692586 134159434 0.000003951 11 102 306 1.593 0.751 0.73
Additive 21 16 rs75384045 55308868 0.000004132 3 52 364 2.242 0.85 0.732
Additive 22 18 rs117231913 79691289 0.000004475 CTDP1 3 55 361 2.421 0.693 0.754
Additive 23 3 rs73184492 189405146 0.000005259 1 53 364 3.509 0.939 0.718
Additive 24 21 rs2834573 34668083 0.000005392 2 93 324 2.646 0.696 0.764
Additive 25 6 kgp17238235 27175279 0.000006765 4 85 330 1.919 0.795 0.734
Additive 26 6 kgp3351958 122754906 0.00000681 2 36 380 2.838 0.709 0.751
Additive 27 11 rs10831496 88824823 0.000007262 GRM5 24 167 228 1.251 0.757 0.707
Additive 28 1 rs75731751 187443485 0.000007626 1 50 368 3.509 0.944 0.725
Additive 29 18 rs989644 4231203 0.000007922 DLGAP1 1 49 368 3.509 0.784 0.742
Additive 30 12 12:132932218 132355632 0.000008031 1 20 395 3.509 0.78 0.743

Model, the genetic model in which the GWAS selected candidate SNPs; CHR, chromosome number; Related gene,
the gene that is closest to the SNP location; A/A, each SNP’s minor allele is homozygous; A/B, each SNP’s major
allele is heterozygous; B/B, each SNP’s major allele is homozygous; * p < 5 × 10−8.

Table 3. Top 30 candidate SNPs selected from the GWAS (dominant model).

Model Rank CHR SNP Position p Related Gene
Genotype (Patients) Phenotype (Mean)

A/A A/B B/B A/A A/B B/B

Dominant 1 6 kgp11947181 139582822 1.592 × 10−8 * 0 2 417 NA 3.176 0.746
Dominant 2 9 9:133013640 130251361 1.730 × 10−8 * 0 2 417 NA 3.118 0.746
Dominant 3 10 rs763315292 119912126 3.807 × 10−8 * SEC23IP 0 3 416 NA 2.62 0.744
Dominant 4 6 6:80456944 79747227 1.223 × 10−7 0 4 415 NA 2.434 0.742
Dominant 5 7 7:118263373 118623319 2.066 × 10−7 0 2 417 NA 2.953 0.747
Dominant 6 10 rs77717582 126393947 4.341 × 10−7 0 23 396 NA 1.411 0.72
Dominant 7 1 rs755431252 175365091 4.979 × 10−7 TNR 0 3 416 NA 2.677 0.744
Dominant 8 13 13:88770953 88118698 5.634 × 10−7 0 4 415 NA 2.109 0.745
Dominant 9 2 rs63751260 47403309 0.000001091 MSH2 0 2 416 NA 2.883 0.749
Dominant 10 19 rs146815072 32830639 0.000001368 SLC7A9 0 4 415 NA 2.289 0.743
Dominant 11 5 rs145778277 161311253 0.0000014 GABRB2 0 13 406 NA 1.516 0.734
Dominant 12 18 18:3452222 3452225 0.000001471 TGIF1 0 2 415 NA 2.859 0.75
Dominant 13 9 GSA-rs10967750 27166161 0.000001495 TEK 0 5 414 NA 1.993 0.743
Dominant 14 19 19:12311461 12200646 0.000001562 LOC100289333 1 9 408 2.471 1.537 0.738
Dominant 15 4 JHU_4.166326986 165405835 0.000001738 CPE 3 54 362 0.942 1.079 0.708
Dominant 16 13 13:77841745 77267610 0.000002003 MYCBP2 0 4 412 NA 2.031 0.747
Dominant 17 6 rs192596782 155305908 0.000002575 TFB1M 0 3 413 NA 2.397 0.745
Dominant 18 3 rs117341459 39630484 0.00000258 0 4 415 NA 2.144 0.744
Dominant 19 18 rs4632226 3989188 0.000002665 DLGAP1,DLGAP1-

AS4 1 27 390 0.179 1.287 0.722
Dominant 20 5 kgp5717569 172042597 0.0000033 STK10 1 31 386 2.125 1.136 0.725
Dominant 21 8 GSA-rs147608943 30052419 0.000003361 0 5 414 NA 1.955 0.743
Dominant 22 8 8:40320989 40463470 0.000003413 0 4 414 NA 2.163 0.739
Dominant 23 3 kgp2760268 26300600 0.000003538 0 3 416 NA 2.323 0.747
Dominant 24 1 kgp15630468 18045740 0.000003604 0 12 407 NA 1.479 0.737
Dominant 25 1 kgp15515856 47636211 0.000004042 0 8 411 NA 1.59 0.742
Dominant 26 3 3:40166299 40124808 0.00000439 MYRIP 0 2 415 NA 2.646 0.75
Dominant 27 3 3:40027538 39986047 0.000004617 MYRIP 0 2 417 NA 2.646 0.749
Dominant 28 3 3:149817230 150099443 0.000004786 0 4 415 NA 2.075 0.745
Dominant 29 19 19:12306462 12195647 0.000005029 LOC100289333 1 14 404 2.471 1.345 0.733
Dominant 29 19 19:12352578 12241763 0.000005029 1 14 404 2.471 1.345 0.733

Model, the genetic model in which the GWAS selected the candidate SNPs; CHR, chromosome number; Related
gene, the gene that is closest to the SNP location; A/A, each SNP’s minor allele is homozygous; A/B, each SNP’s
major allele is heterozygous; B/B, each SNP’s major allele is homozygous; NA, not available; * p < 5 × 10−8.
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Table 4. Top 30 candidate SNPs selected from the GWAS (recessive model).

Model Rank CHR SNP Position p Related Gene
Genotype (Patients) Phenotype (Mean)

A/A A/B B/B A/A A/B B/B

Recessive 1 8 rs1283671 107421459 7.698 × 10−11 * ANGPT1 5 87 327 2.375 0.873 0.703
Recessive 1 8 rs1283720 107460100 7.698 × 10−11 * ANGPT1 5 89 325 2.375 0.86 0.705
Recessive 3 9 GSA-rs72752701 125992274 3.814 × 10−8 * 2 50 367 3.011 0.776 0.743
Recessive 4 1 rs3917744 169608752 2.568 × 10−7 SELP 2 51 366 2.832 0.778 0.744
Recessive 5 12 rs11061996 1836333 2.672 × 10−7 CACNA2D4,LRTM2 2 47 370 2.774 0.714 0.752
Recessive 6 3 rs61355450 117954317 3.039 × 10−7 2 36 381 2.869 0.786 0.744
Recessive 6 3 rs6798512 118019819 3.039 × 10−7 2 36 381 2.869 0.786 0.744
Recessive 6 12 GSA-rs117577524 30549638 3.039 × 10−7 2 27 390 2.869 0.794 0.744
Recessive 9 13 rs9529111 66652839 4.469 × 10−7 PCDH9 19 131 269 1.426 0.672 0.752
Recessive 10 8 rs4620259 108979439 5.146 × 10−7 5 74 340 2.175 0.828 0.722
Recessive 11 16 rs74007038 6785856 6.499 × 10−7 RBFOX1 5 79 335 2.076 0.781 0.733
Recessive 12 19 rs75017760 8940941 0.000001066 MUC16 2 64 353 2.883 0.708 0.755
Recessive 13 1 1:118813000 118270377 0.000001725 2 39 378 2.917 0.805 0.741
Recessive 14 10 rs10749151 114017465 0.000001958 7 105 307 1.833 0.704 0.752
Recessive 15 12 rs1554080 128183013 0.000001979 5 70 344 1.814 0.701 0.754
Recessive 16 14 kgp19644675 100077596 0.000002605 EVL 5 57 357 1.927 0.851 0.727
Recessive 17 6 rs17059990 99980179 0.000003439 MCHR2 2 65 352 2.817 0.866 0.726
Recessive 18 11 rs10501687 88799011 0.000003562 GRM5 22 159 237 1.307 0.768 0.7
Recessive 19 18 rs117231913 79691289 0.000003767 CTDP1 3 55 361 2.421 0.693 0.754
Recessive 20 2 rs11692586 134159434 0.00000408 11 102 306 1.593 0.751 0.73
Recessive 21 21 rs2834573 34668083 0.000004617 2 93 324 2.646 0.696 0.764
Recessive 22 16 rs75384045 55308868 0.000005399 3 52 364 2.242 0.85 0.732
Recessive 23 2 2:42166453 41939313 0.000006107 C2orf91 35 162 220 1.168 0.74 0.702
Recessive 24 6 kgp3351958 122754906 0.00000622 2 36 380 2.838 0.709 0.751
Recessive 25 6 kgp17238235 27175279 0.000007322 4 85 330 1.919 0.795 0.734
Recessive 26 12 12:132932218 132355632 0.00000773 1 20 395 3.509 0.78 0.743
Recessive 27 3 rs73184492 189405146 0.000008219 1 53 364 3.509 0.939 0.718
Recessive 27 18 rs989644 4231203 0.000008219 DLGAP1 1 49 368 3.509 0.784 0.742
Recessive 27 19 rs112363595 56660873 0.000008219 1 18 399 3.509 0.707 0.748
Recessive 30 8 rs4734909 91861390 0.000009082 13 120 286 1.467 0.656 0.768

Model, the genetic model in which the GWAS selected the candidate SNPs; CHR, chromosome number; Related
gene, the gene that is closest to the SNP location; A/A, each SNP’s minor allele is homozygous; A/B, each SNP’s
major allele is heterozygous; B/B, each SNP’s major allele is homozygous; * p < 5 × 10−8.

3.2. Identification of Genes and Gene Sets Associated with Opioid Analgesic Requirements in the
Treatment of Cancer Pain by Gene-Based and Gene-Set Analyses

Considering that the effects of individual markers tend to be too weak to be detected
by comprehensive analyses, such as GWASs, that target only single polymorphisms, we
conducted gene-based and gene-set analyses, which are statistical methods that are used to
analyze multiple genetic markers simultaneously to determine their joint effect. In both
analyses, using MAGMA software [26], which was made accessible in the FUMA GWAS
platform [27], we investigated genes and gene sets that were related to the amount of
opioid analgesics that were required daily for the management of cancer pain in a total
of 428 individuals. As a result, 648,817 SNPs from the selected candidate genes and gene
sets in the additive, dominant, and recessive models were included in the analyses of all
patients. The top 20 candidate genes that were found in each genetic model by the gene-
based analysis are listed in Table 5. In the additive model, SLC2A14, the top candidate gene,
was significantly associated with the phenotype (adjusted p = 0.03722; Table 5, Figure 2a).
However, in both the dominant and recessive models, none of the genes were significantly
associated with the phenotype (Table 5, Figure 2b,c), although the association with the
SLC2A14 gene was marginally significant in the recessive model (p = 0.07384; Table 5).
The top 10 candidate gene sets that were found in each genetic model using the gene-set
analysis are listed in Supplementary Table S1. However, in none of the genetic models were
any of the gene sets significantly related to the phenotype (Supplementary Table S1).
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Table 5. Top 20 candidate genes selected from gene-based analysis.

Model Rank CHR Gene Start
Position

Gene Stop
Position Gene nSNPs Z Statistic p P a

Additive 1 12 7945108 8063744 SLC2A14 30 4.6313 1.8167 × 10−6 0.035151328 *
Additive 2 8 108241721 108530283 ANGPT1 24 4.4216 4.8995 × 10−6 0.094800426
Additive 3 12 1909433 1965918 LRTM2 19 4.1283 0.000018275 0.353602975
Additive 4 6 170131718 170201680 ERMARD 4 3.978 0.000034747 0.672319703
Additive 5 20 1141205 1186059 TMEM74B 8 3.9518 0.000038784 0.750431616
Additive 6 17 39113968 39163387 KRT40 7 3.938 0.000041089 0.795031061
Additive 7 17 19102674 19145839 AC106017.1 2 3.8561 0.000057607 1
Additive 8 7 112439202 112599971 C7orf60 5 3.8481 0.000059519 1
Additive 9 1 169538087 169619431 SELP 21 3.7461 0.000089799 1
Additive 10 17 39094669 39143144 KRT39 5 3.7175 0.00010059 1
Additive 11 17 39129686 39170385 KRTAP3-3 6 3.7019 0.00010702 1
Additive 12 1 245113007 245310466 EFCAB2 26 3.6928 0.00011092 1
Additive 13 3 50106341 50176454 RBM5 4 3.6532 0.00012949 1
Additive 14 1 60338980 60412462 CYP2J2 2 3.6525 0.00012986 1
Additive 15 1 93625476 93764287 CCDC18 6 3.6329 0.00014014 1
Additive 16 13 75838808 76076250 TBC1D4 42 3.6025 0.00015758 1
Additive 17 2 128828774 128973251 UGGT1 6 3.5918 0.00016422 1
Additive 18 5 32669176 32811819 NPR3 19 3.5168 0.00021839 1
Additive 19 1 54477347 54539177 TMEM59 3 3.5143 0.00022045 1
Additive 20 6 169837307 170122159 WDR27 15 3.4629 0.00026718 1

Dominant 1 15 41454923 41542941 EXD1 5 4.3882 5.7145 × 10−6 0.108884083
Dominant 2 1 212983483 213040991 C1orf227 5 3.9154 0.000045129 0.859887966
Dominant 3 17 28236218 28455470 EFCAB5 10 3.876 0.000053086 1
Dominant 4 20 9498036 9839689 PAK7 86 3.6046 0.00015634 1
Dominant 5 18 28936740 29014875 DSG4 17 3.548 0.00019409 1
Dominant 6 19 12253879 12320064 ZNF136 13 3.5248 0.00021191 1
Dominant 7 22 51041182 51086607 ARSA 19 3.4757 0.00025478 1
Dominant 8 16 47091614 47197908 NETO2 6 3.4494 0.00028092 1
Dominant 9 1 213011597 213092705 FLVCR1 9 3.4493 0.00028106 1
Dominant 10 5 171268553 171453877 FBXW11 21 3.4178 0.00031566 1
Dominant 11 4 93198402 93245329 RP11-9B6.1 3 3.3954 0.00034267 1
Dominant 12 5 171449077 171635390 STK10 64 3.3934 0.00034512 1
Dominant 13 13 50466842 50530626 SPRYD7 3 3.3782 0.00036482 1
Dominant 14 8 37680786 37727422 BRF2 11 3.372 0.00037312 1
Dominant 15 18 54794293 54837531 BOD1L2 15 3.3544 0.00039763 1
Dominant 16 12 116375711 116735143 MED13L 33 3.349 0.00040551 1
Dominant 17 22 51019114 51072409 MAPK8IP2 25 3.3244 0.00044301 1
Dominant 18 12 55503465 55544586 OR9K2 7 3.2881 0.00050434 1
Dominant 19 19 57301445 57372096 PEG3 14 3.2739 0.00053034 1
Dominant 20 13 77598792 77921185 MYCBP2 28 3.2397 0.00059826 1
Recessive 1 12 7945108 8063744 SLC2A14 30 4.467 3.9655 × 10−6 0.073841576
Recessive 2 8 108241721 108530283 ANGPT1 24 4.2961 8.6923 × 10−6 0.161859318
Recessive 3 12 1909433 1965918 LRTM2 19 4.2181 0.000012317 0.229354857
Recessive 4 20 1141205 1186059 TMEM74B 8 3.9541 0.000038414 0.715307094
Recessive 5 17 39113968 39163387 KRT40 7 3.9425 0.000040318 0.750761478
Recessive 6 6 170131718 170201680 ERMARD 4 3.9412 0.000040543 0.754951203
Recessive 7 17 19102674 19145839 AC106017.1 2 3.8099 0.000069518 1
Recessive 8 7 112439202 112599971 C7orf60 5 3.8012 0.000071998 1
Recessive 9 1 169538087 169619431 SELP 21 3.7878 0.000076002 1
Recessive 10 2 128828774 128973251 UGGT1 6 3.7536 0.000087158 1
Recessive 11 13 75838808 76076250 TBC1D4 42 3.7231 0.000098378 1
Recessive 12 17 39129686 39170385 KRTAP3-3 6 3.7097 0.00010375 1
Recessive 13 17 39094669 39143144 KRT39 5 3.7068 0.00010496 1
Recessive 14 3 50106341 50176454 RBM5 4 3.6936 0.00011057 1
Recessive 15 1 60338980 60412462 CYP2J2 2 3.6468 0.00013276 1
Recessive 16 16 85703690 85804735 C16orf74 11 3.5785 0.00017279 1
Recessive 17 12 1881123 2048002 CACNA2D4 41 3.5256 0.00021126 1
Recessive 18 1 93625476 93764287 CCDC18 6 3.5227 0.00021358 1
Recessive 19 3 47249516 47344941 KIF9 3 3.4581 0.00027197 1
Recessive 20 6 169837307 170122159 WDR27 15 3.454 0.00027618 1

Model, the genetic model in which candidate genes were selected by analysis; CHR, chromosome number; nSNPs,
the number of SNPs annotated to the gene; Z Statistic, gene-based test statistic; p a, adjusted p value for multiple
testing; *, significant association after conservative Bonferroni correction.
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4. Discussion

To identify potential genetic variants that contribute to the requirements of opioid
analgesics that were used to treat cancer pain, we conducted a GWAS in patient subjects
who were diagnosed with various types of cancers (Table 1). The GWAS results suggested
that carriers of minor alleles of the rs1283671 and rs1283720 SNPs within the ANGPT1
gene region were less sensitive to opioid analgesics and thus required greater amounts
of daily opioid analgesics in cancer pain treatment (Tables 2 and 4). Our GWAS also
identified other potent SNPs that are possibly associated with opioid sensitivity, including
GSA-rs72752701 (rs72752701) in the additive and recessive models (Tables 2 and 4) and
kgp11947181 (rs79524268), 9:133013640 (rs2417163), and rs763315292 in the dominant model
(Table 3). Additionally, numerous SNPs in or near the SLC2A14 gene region collectively
increased the amount of analgesic that was required for cancer pain management (Table 5).
No relevant gene sets that may have been related to the trait were identified (Supplementary
Table S1). These findings show that in the genetic etiology of the trait, individual genes
did not properly aggregate to groups of genes that shared specific biological, functional,
or other features. Future studies with larger sample sizes are required to find candidate
gene sets that are associated with the phenotype and corroborate the significant results that
were identified in our GWAS of single SNPs and gene-set analysis.

Previous studies identified several genetic variations that are associated with pheno-
types that are related to opioid responsiveness in the treatment of cancer pain [11–14,20].
Included in those candidate genetic variations are the rs1799971, rs1319339, and rs34427887
SNPs in the OPRM1 gene, rs4680, rs4818, rs4633, rs4646316, and rs35478083 SNPs in
the COMT gene, rs1045642 SNP in the ABCB1 gene, −174G>C (rs1800795) SNP in the
IL6 gene, rs8007267, rs3783641, and rs10483639 SNPs in the GCH1 gene, rs12948783 SNP
in the RHBDF2 gene, and rs1277441 and rs795484 SNPs in the TAOK3 gene [11–14,20].
Among these SNPs, rs1799971, rs4680, rs4633, rs4646316, rs1045642, rs1800795, rs8007267,
rs3783641, rs10483639, rs12948783, and rs795484 SNPs were included in the SNP array that
was used in the present study. However, no SNPs except rs8007267 (p = 0.007411) and
rs3783641 (p = 0.006942) in the GCH1 gene were even nominally significantly associated
with opioid analgesic requirements (p > 0.05) in our association analysis results (details not
shown). The GCH1 gene encodes GTP cyclohydrolase 1, which is the first and rate-limiting
enzyme in tetrahydrobiopterin (BH4) biosynthesis. Although these two SNPs, with the
other rs10483639 SNP, were reported to be associated with opioid therapy initiation in
cancer pain patients [39], these three SNPs were not shown to be associated with the respon-
siveness to opioids itself. These results might indicate the general difficulty of replicating
results of human genetic association studies, probably because of the heterogeneity of study
designs, diagnoses of different types of cancer, pain severity, types of opioid analgesics
used, and genetic background of the subjects, among other factors.

The best candidate SNPs in the present study were rs1283671 and rs1283720, which are
found in the intronic region of the ANGPT1 gene on chromosome 8. These SNPs had the
lowest p values among the candidate SNPs. Angiopoietin-1, a secreted glycoprotein that is
a member of the angiopoietin family, is encoded by the ANGPT1 gene. Angiopoietin-1 is
an angiogenic growth factor with antipermeability and anti-inflammatory properties [40].
Chronic or uncontrolled inflammation plays an important role in many diseases [41], in-
cluding stroke [42]. When the angiopoetin-1 receptor, Tie2, becomes inactivated, important
molecular brakes are released in the endothelium, which in turn potentiate inflammation
and vascular leakage [43]. ANGPT1 mRNA is known to be broadly expressed in fat, the
lungs, the prostate, and several other tissues in humans, according to the NCBI database.
Mice that were engineered to lack angiopoietin-1 exhibited angiogenic deficits [44]. A
missense mutation (807G>T, A119S) that was identified in a family was associated with
hereditary angioedema in humans [45]. Meanwhile, angiogenesis may be protected against
by angiotensin-converting enzyme (ACE) inhibitors [46], and the inhibition of ACE activity
might prevent or even reverse hypoglycemia-associated autonomic failure (HAAF) [47].
β-endorphin has also been reported to influence the autonomic response to hypoglycemia
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via opioid receptor activation [48]. The opioid receptor antagonist naloxone improved
counterregulatory responses [49] and prevented HAAF [48] in humans. Therefore, both
the inhibition of ACE activity and antagonism of opioid receptors may protect against
angiogenesis and HAAF in humans, suggesting that angiogenesis, in which angiopoietin-1
is involved, could also be modulated by actions of opioids. Therefore, a possible expla-
nation for the present results may be that genetic variations in the ANGPT1 gene could
influence individual differences in angiogenic effects, which in turn may lead to individual
differences in opioid analgesic efficacy. However, to date, no genetic variations of the
ANGPT1 gene have been reported to be related to functions of the opioid system. The
rs1283671 and rs1283720 SNPs (i.e., the best candidate SNPs in the present study) have
not been previously reported to be associated with any phenotypes to date. Although
the rs1283671 and rs1283720 SNPs were in strong LD with each other (r2 = 0.97), these
two SNPs were not in strong LD (r2 < 0.80) with other neighboring SNPs in our data
(Supplementary Figure S3). When these SNPs were referenced in HaploReg v. 4.1 [37]
(accessed on 2 August 2022), they were in strong LD (r2 ≥ 0.80) with 20 neighboring SNPs
(data not shown). HaploReg v. 4.1 also showed that the rs1283671 and rs1283720 SNPs
could change eight and three motifs, respectively, for DNA-binding proteins. Nevertheless,
none of these SNPs were significantly associated with mRNA expression levels of any
genes in any tissues, according to the GTEx portal (accessed on 2 August 2022), suggesting
that these SNPs unlikely influence variations in opioid sensitivity among individuals by
influencing the mRNA expression of some genes.

Our GWAS identified several other potent SNPs beyond rs1283671 and rs1283720 that
were significantly associated with opioid requirements in cancer pain patients, including
GSA-rs72752701 (rs72752701) in the additive and recessive models (Tables 2 and 4) and
kgp11947181 (rs79524268), 9:133013640 (rs2417163), and rs763315292 in the dominant model
(Table 3). Among these, the GSA-rs72752701, kgp11947181, and 9:133013640 SNPs are lo-
cated in intergenic regions, whereas rs763315292 is located in the SEC23 interacting protein
gene (SEC23IP) region. Although no significant expression quantitative trait loci (eQTLs)
were found for kgp11947181 and rs763315292, the GSA-rs72752701 SNP is associated with
mRNA expression of the heat shock protein family A (Hsp70) member 5 (HSPA5) gene, and
the 9:133013640 SNP is associated with mRNA expression of the hemicentin 2 (HMCN2)
and long intergenic non-protein coding RNA 963 (LINC00963) genes, according to the
GTEx portal [36]. The SEC23IP, HMCN2, and LINC00963 genes have not been previously
reported to be related to the opioid system or its receptors. In a previous quantitative
mass spectrometry proteomics study of purified synaptosomes that were isolated from
the caudate in two groups of rhesus macaques that were chronically infected with simian
immunodeficiency virus (SIV) and differed with regard to morphine treatment regimens,
the upregulation of HSPA5 was found in the SIV+morphine group, indicating an increase
in cellular stress as a result of the SIV/morphine interaction, thereby leading to central
nervous system dysfunction [50]. This previous study suggests that the expression and
function of HSPA5 could interact with the opioid system, and alterations of HSPA5 mRNA
expression through the GSA-rs72752701 SNP might influence the function of opioids.

Although none of the top 30 candidate SNPs in the additive model in the present
study included SNPs that were annotated as this gene (Table 2), the SLC2A14 gene was
significantly associated with the trait in the gene-based analysis of all patients (Table 5,
Figure 2a). The SLC2A14 gene encodes solute carrier family 2 member 14 (SLC2A14),
which is a member of the glucose transporter (GLUT) family. Members of the GLUT
family, including SLC2A14, are highly conserved integral membrane proteins that transport
hexoses, such as glucose and fructose, into all mammalian cells. However, the functional
relationship between this protein and the opioid system is unknown. SLC2A14 mRNA
is known to be highly expressed in the testis [51], followed by bone marrow, the urinary
bladder, the placenta, the gall bladder, the appendix, and the brain, according to the NCBI
database. In human genetic studies, SNPs in the SLC2A14 gene region were reported to
be associated with some diseases, including Alzheimer’s disease and inflammatory bowel
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disease [52,53]. Notably, several SNPs in the SLC2A14 gene region were also reported to
be associated with alcohol dependence at the p ≤ 10−4 level of significance [54], which
is known to be at least partly pertinent to the opioid system in its etiology [55]. Since
alcohol dependence could be caused by the rewarding effects of alcohol, in which the
opioid system is also involved, an antagonist of opioid receptors, naltrexone, is widely
used for the treatment of alcohol dependence [56]. One of the associated SNPs, rs11612319,
was also included in our GWAS and not strongly but rather modestly associated with the
phenotype (p = 4.325 × 10−4). Although the impact of this SNP on SLC2A14 function and
the opioid system remains unknown, this SNP may have some influence on both the risk
for alcohol dependence and opioid sensitivity.

One limitation of the present study was the relatively small sample size, which might
have led to an inability to detect significant associations in the gene-set analysis. Other
limitations include heterogeneity of the primary disease and the level of cancer pain. In
the present study, patients with various types of cancer were recruited, and a GWAS was
conducted in all samples. With much larger sample sizes, GWASs could be performed in
a particular subset of patients, such as only in patients with lung cancer (Table 1), which
was actually difficult in the present study because only a small number of such patients
(<100) would have been included in the GWAS. The lack of data on the level of cancer pain
in each patient in the present study also hampered the ability to conduct a GWAS only
in patients with cancer pain of relatively homogeneous severity. Notwithstanding these
limitations, the present study identified several SNPs and the SLC2A14 gene that were
significantly associated with the phenotype. Regardless of the type of cancer or severity of
cancer pain, these SNPs and this gene might commonly impact opioid sensitivity, and they
were associated with the need for opioids to treat cancer pain in analyses of whole samples.

The results of the present study suggest that the rs1283671 and rs1283720 SNPs of the
ANGPT1 gene could be clinical markers that predict analgesic requirements, in which the
minor alleles of these SNPs are possibly associated with lower opioid sensitivity and thus
greater requirements for opioid analgesics in the treatment of cancer pain. Before clinically
applying these findings, further studies should be designed to better predict analgesic
requirements, such as studies of the construction and validation of prediction formulas for
analgesic requirements, similar to previous studies [57,58], by considering the influence of
other possible candidate SNPs and non-genetic factors.

5. Conclusions

In conclusion, our GWASs discovered SNPs and a gene that were associated with
opioid analgesic requirements in the treatment of cancer pain, including the ANGPT1
rs1283671 and rs1283720 SNPs and SLC2A14 gene. Although the present results need to be
corroborated by more research with larger sample sizes, these findings indicate that these
SNPs in the ANGPT1 and SLC2A14 genes could serve as markers that predict the efficacy
of opioid analgesics in the treatment of cancer pain.
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were associated with daily opioid requirements in cancer pain treatment; Figure S3: State of linkage
disequilibrium (LD) between SNPs in the genomic region of the ANGPT1 gene; Table S1: Estimated
systemic dose equipotent to 90 mg oral morphine (mg); Table S2: Top 10 candidate gene sets selected
from gene-set analysis.
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