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ABSTRACT The aggregation of Electronic Health Records (EHR) and personalized genetics leads to
powerful discoveries relevant to population health. Here we perform genome-wide association studies
(GWAS) and accompanying phenome-wide association studies (PheWAS) to validate phenotype-genotype
associations of BMI, and to a greater extent, severe Class 2 obesity, using comprehensive diagnostic and
clinical data from the EHR database of our cohort. Three GWASs of 500,000 variants on the Illumina platform of
6,645 Healthy Nevada participants identified several published and novel variants that affect BMI and obesity.
Each GWAS was followed with two independent PheWASs to examine associations between extensive
phenotypes (incidence of diagnoses, condition, or disease), significant SNPs, BMI, and incidence of extreme
obesity. The first GWAS examines associations with BMI in a cohort with no type 2 diabetics, focusing
exclusively on BMI. The second GWAS examines associations with BMI in a cohort that includes type 2 dia-
betics. In the second GWAS, type 2 diabetes is a comorbidity, and thus becomes a covariate in the statistical
model. The intersection of significant variants of these two studies is surprising. The third GWAS is a case vs.
control study, with cases defined as extremely obese (Class 2 or 3 obesity), and controls defined as participants
with BMI between 18.5 and 25. This last GWAS identifies strong associations with extreme obesity, including
established variants in the FTO and NEGR1 genes, as well as loci not yet linked to obesity. The PheWASs
validate published associations between BMI and extreme obesity and incidence of specific diagnoses and
conditions, yet also highlight novel links. This study emphasizes the importance of our extensive longitudinal
EHR database to validate known associations and identify putative novel links with BMI and obesity.
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The rate of obesity is growing at an alarming rate worldwide 2 fast
enough to call it an epidemic. As obesity is a risk factor for developing
typically related diseases such as type 2 diabetes mellitus (DM2),

cardiovascular disease and some cancers (Wang et al. 2011), the
situation is becoming a public health concern. The percentage of
obesity is rising nationwide, with current adult obesity rates at close
to 40%, up from 32% in 2004 (Ogden et al. 2006; Warren et al. 2018).
In Nevada, the current adult obesity rate (BMI $ 30) is 27%, an
increase from 21% in 2005 ( Warren et al. 2018). Additionally, since
2016, Nevada witnessed a significant increase in the percentage of
adults who are overweight (the current rate is 66%) (Warren et al.
2018). Studies identified several genetic factors that influence the de-
velopment of obesity with estimates on the heritability of the disease
(40%-75%) (Stunkard et al. 1986; 1990; Maes et al. 1997; Herrera and
Lindgren 2010) and 65-80% (Malis et al. 2005).

High body mass index (BMI) and DM2 are known from many
sources to be strongly related both epidemiologically and genetically
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(Kopelman 2007; Bays et al. 2007; Grarup et al. 2014; Cronin et al.
2014); however, these two conditions share very few known causative
variants (Grarup et al. 2014; Karaderi et al. 2015). This study presents
first a GWAS of BMI in a cohort without DM2, followed by a
GWAS of a cohort with DM2, to identify the differences in the genetic
mechanisms of obesity (BMI $30) without DM2 and with DM2, and
show that DM2 is indeed, an important predictor of high BMI when
included as comorbidity. Although a number of large meta-analyses
of multiple genome-wide association studies (GWASs) have detected
possible causative single nucleotide polymorphisms (SNPs) of obesity
and increased BMI (Scuteri et al. 2007; Frayling et al. 2007; Dina et al.
2007; Zeggini et al. 2007; Yanagiya et al. 2007; Hinney et al. 2007;
Hunt et al. 2008; Price et al. 2008; Grant et al. 2008; Hotta et al.
2008; Loos et al. 2008; Tan et al. 2008; Villalobos-Comparán et al.
2008; Thorleifsson et al. 2008; Willer et al. 2009; Meyre et al. 2009;
Wing et al. 2009; Liu et al. 2010; Shimaoka et al. 2010; Fawcett and
Barroso 2010; Speliotes et al. 2010; Wang et al. 2011; Prakash et al.
2011; Okada et al. 2012; Cha et al. 2012; Berndt et al. 2013; Wheeler
et al. 2013; Graff et al. 2013; Olza et al. 2013; Boender et al. 2014;
Qureshi et al. 2017; Hu --dek et al. 2018; González-Herrera et al. 2019),
none, to the best of our knowledge, have included comprehensive
GWASs on the quantitative BMI metric and on extreme obesity
case-control simultaneously, as well as investigated phenotypic associ-
ations with BMI, obesity, and significant loci identified by the GWAS.

Our study begins with the Healthy Nevada Project (HNP), a project
centered around a Northern Nevada cohort formed in 2016 and
2017 by Renown Health and the Desert Research Institute in Reno,
NV to investigate factors that may contribute to health outcomes
in Northern Nevada. Its first phase provided 10,000 individuals in
Northern Nevada with genotyping using the 23andMe platform at no
cost. Renown Health is the only tertiary care health system in the area,
and 75% of these 10,000 individuals are cross-referenced in its extensive
electronic health records (EHR) database. The Renown EHR data-
base contains 86,610 BMImeasurements for these 10,000 individuals
over twelve years, along with comprehensive disease diagnoses, (e.g.
diabetes or eating disorders) and other general conditions such as
pregnancy, allowing for precise individual phenotypic classifica-
tions and thereby leading to more robust and meaningful pheno-
type-genotype associations.

The focus of the comprehensive GWAS-PheWAS examinations of
the Healthy Nevada Project (HNP) cohort and its EHR database is two-
fold: thefirst is toestablish infrastructure toperformlarge-scalegenome-
wide and phenome-wide association investigations in alliance with
complex electronic health care records; the second is to validate well-
knownpublished variants and associationswith BMI and obesity in this
cohort, as well as to identify possibly novel genotypic and phenotypic
associations with BMI and extreme obesity.

The three GWASs identified several of the "usual suspects" for both
BMI and obesity, such as FTO and NEGR1, that were shown to have a
role in weight regulation (Scuteri et al. 2007; Frayling et al. 2007; Dina
et al. 2007; Zeggini et al. 2007; Hinney et al. 2007; Hunt et al. 2008; Price
et al. 2008; Grant et al. 2008; Hotta et al. 2008; Loos et al. 2008; Tan
et al. 2008; Villalobos-Comparán et al. 2008; Thorleifsson et al. 2008;
Willer et al. 2009; Meyre et al. 2009; Wing et al. 2009; Shimaoka et al.
2010; Fawcett and Barroso 2010; Speliotes et al. 2010; Herrera and
Lindgren 2010; Wang et al. 2011; Prakash et al. 2011; Okada et al. 2012;
Berndt et al. 2013; Wheeler et al. 2013; Graff et al. 2013; Olza et al. 2013;
Boender et al. 2014; Qureshi et al. 2017; González-Herrera et al. 2019).
However, this study also identified a number of novel BMI and obesity
associations to genes which are differentially expressed in obese patients
(Jiao et al. 2008; Pietiläinen et al. 2008; Nakajima et al. 2016).

Additionally, using linked EHR, the PheWASs examined the plei-
otropyofHNPBMI andobesity associatedSNPs:whether these variants
are linked with other endocrine ormetabolic diagnoses or conditions of
this nature. A second PheWAS identified many known phenotypes
related to BMI and obesity, especially to DM2, abnormal glucose levels,
hypertension, hyperlipidemia, sleep apnea, asthma and other less-
studied BMI-related diagnoses.

MATERIALS AND METHODS

The Renown EHR database
The Renown Health EHR system was instated in 2007 on the EPIC
system (EPIC System Corporation, Verona, Wisconsin, USA), and
currently contains lab results, diagnosis codes (ICD9 and ICD10) and
demographics of more than one million patients seen in the hospital
system since 2005.

Sample collection
Saliva as a source of DNAwas collected from 10,000 adults in Northern
Nevada as the first phase of the Healthy Nevada Project to contribute to
comprehensive population health studies in Nevada. Via a donation
from theRenownHealth Foundation, the study offered theDNAtesting
for free to any and all participants willing to sign up for the study. The
personal genetics company 23andMe, Inc. was used to genotype these
individuals using the Oragene DX OGD-500.001 saliva kit [DNA
Genotek, Ontario, Canada]. Genotypes are based on the Illumina
Human OmniExpress-24 BeadChip platform [San Diego, CA, USA],
that include approximately 570,000 SNPs.

IRB and ethics statement
This study was reviewed and approved by the University of Nevada,
Reno Institutional Review Board (IRB, project 956068-12). Participants
in the Healthy Nevada Project undergo written and informed consent
to having genetic information associated with electronic health infor-
mation in a deidentified manner. All participants were 18 years of age
orolder.Neitherresearchersnorparticipantshaveaccess to thecomplete
EHR data and cannot map participants to patient identifiers. Patient
identifiers are not incorporated into the EHR; rather, EHR and genetic
data are linked in a separate environment via a unique identifier as
approved by the IRB.

Processing of EHR data
Most participants hadmultiple BMI recordings across the thirteen years
ofEHR; themeannumberofBMIrecordsacross the individualswas12.2
records, with 215 the maximum number of records for the cohort. For
the 5,811 individuals with more than one recorded BMI measure,
a simple quality control step was first performed before computing
the average BMI value. More specifically, if a participant had multiple
BMI records, the coefficient of variation (CV) of the BMI values was
computed; if the CV was greater than 0.096, any outlying BMI values
greater than 1.5 standard deviations from the mean BMI for that
individual was excluded for that individual. As 10% of the multiple
BMI records presented a CV of 0.096 or greater, this threshold was
chosen. Note that the relatively small percentage of participants pre-
senting a CV of approximately 10% or greater indicates that variation
acrossmultiple records is unremarkable inmost individuals. Indeed, the
additional quality control step excluded one or more outlying BMI
records in only 106 individuals; these 701 BMI records included values
such as "2823.42" and values less than 10. Examples of outliers include
158.38 in an individual’s set of values with mean 25.3 and “2874” in an
individual with mean BMI measure of 22.4. Additionally, this quality
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control step allowed the study to include pregnant women: of
the 464 pregnant women with BMI recorded for pregnant and non-
pregnant phases, outlying pregnancy-related BMI records were easily
identified and removed. The raw BMI values and quality-controlled
average BMI values are presented in Supplementary Figure S1.

Genotyping and quality control
Genotyping was performed by 23andMe using the Illumina Infimum
DNA Human OmniExpress-24 BeadChip V4 (Illumina, San Diego,
CA).This genotypingplatformconsists of approximately 570,000 SNPs.
DNA extraction and genotyping were performed on saliva samples
by the National Genetics Institute (NG1), a CLIA licensed clinical
laboratory and a subsidiary of the Laboratory Corporation of America.

Raw genotype data were processed through a standard quality
control process (Anderson et al. 2010; Verma et al. 2016; Schlauch
et al. 2016; Verma et al. 2018; Schlauch et al. 2018). SNPs with
a minor allele frequency (MAF) less than 0.005 were removed. SNPs
that were out of Hardy Weinberg equilibrium (p-value, 1x10-6) were
also excluded. Any SNP with a call rate less than 95%was removed; any
individual with a call rate less than 95% was also excluded from further
study. There was an observable bias within the African American sub-
cohort, thus 89 African American participants were excluded from this
study. Specifically, upon plotting the first two principal components
there was a clear population stratification between the African
Americans and all other individuals who showed no other distinct
groupings. The first principal component explained 14% of the total
population stratification. Additionally, 107 patients with type I diabetes
were removed, as were 29 participants with eating disorders recorded
into their health record. After quality control, this left 500,508 high-
quality SNPs and 6,645 participants in the BMI cohort with mean
autosomal heterozygosity of 0.318. The same process yielded 5,994
participants when all individuals with DM2 diagnoses were removed.
Within the extreme obesity study, participants with BMI values be-
tween 18.5 and 25 were considered as controls, while any participant
with BMI at least 35 kg/m2 was considered a case subject. Again,
any individual with type I diabetes and recorded eating disorders was
removed. This resulted in a cohort size of 2,994 participants with
984 extreme obese cases and 2,012 lean controls with amean autosomal
heterozygosity of 0.316.

A standard principal component analysis (PCA) was performed on
the genotype data to identify principal components to correct for
population substructure. Genotype data were pruned to exclude SNPs
with high linkage disequilibrium using PLINK v1.9 (Purcell et al. 2007)
and standard pruning parameters of 50 SNPs per sliding window;
window size of five SNPs; r2=0.5 (Anderson et al. 2010). The remaining
270,160 SNPs were used to calculate the principal components. Re-
gression models were adjusted by the first four principal components,
decreasing the genomic inflation factor of all obesity and BMI traits
to l # 1.06.

Genome-wide association studies
Using PLINK, we first performed a simple linear regression of BMI vs.
genotype using the additive model (number of copies of the minor
allele) including age, gender and the first four principal components
as covariates to correct for any bias generated by the population sub-
structure. In the first BMI study, participants with DM2 were excluded.
The second BMI study included DM2-diagnosed participants and in-
cluded DM2 as a covariate in the statistical model. To test associations
between obesity and genotype, a standard case-control logistic regres-
sion was applied, adjusting for age, gender and the first four principal
components. Total phenotypic variance explained by all 500,508 SNPs

was calculated by first producing a genetic relationship matrix of
all SNPs on autosomal chromosomes in PLINK. Subsequently, a re-
stricted maximum likelihood analysis was conducted using GTCA
(Yang et al. 2011) on the relationship matrix to estimate the variance
explained by the SNPs.

Analysis of variance
The mean BMI values across genotypes presented in Supplementary
Tables S1 and S2 correlate with negative and positive effect sizes: SNPs
showing a negative effect size have a decrease inmeanBMI values across
the genotypes from left to right (homozygous in major allele, hetero-
zygous, homozygous in minor allele). The 6,645 log-transformed qual-
ity-controlled and averaged BMI measures were nearly normally
distributed. As one-wayANOVA computations are robust against even
moderate deviations of normality (Blanca et al. 2017), parametric
ANOVA methods were used to make comparisons across the geno-
types. All ANOVA F-test p-values of the significant SNPs identified
in the two BMI studies are statistically significant at the alpha=0.05
level, even after a simple Bonferroni correction (.05/27 =0.0019, and
.05/20=0.0025, respectively). Supplementary Table S3 presents the
proportion of obese cases across each genotype. A simple test of
equal proportions (Pearson’s chi-square test) is performed across
these proportions. All p-values associated with the test of equal
proportions in Supplementary Table S3 are also statistically signif-
icant at the 0.05 significance level upon a conservative Bonferroni
multiple testing adjustment (.05/34=-.0015).

Power of GWAS
The software program QUANTO (Gauderman 2002) was used to cal-
culate sample sizes to detect effect sizes in the range [0.5,1] and odds
ratios in [1,1.5] with at least 80% power under the additive model, at a
two-sided Type I error level of 5%. Using the rate of extreme obesity
(BMI $ 35 kg/m2) as 14.5% from Ogden et al. (Ogden et al. 2006),
the case-control GWAS study of approximately 1,000 cases and 2,000
controls has sufficient statistical power ($ 80%) with MAFs of 16% or
greater to detect odds ratios of 1.225 or greater. As the MAF increases,
the power to detect smaller odds ratios increases: for example, with a
MAF of 25%, our sample size was adequate to detect odds ratios of size
1.18 or higher.With a smallMAFof 8%, the powerwas also at least 80%
to detect effect sizes as small as 0.58 in the BMI GWAS cohort of 6,645.
WithMAF of 17%, power was at least 80% to detect effect sizes as small
as 0.425. LargerMAFs clearly can detect larger effect sizes with the same
sample size. Specific effect sizes and MAFs can be seen in Table 3.

Phenome-wide association study
The R package PheWAS (Carroll et al. 2014) was used to perform two
independent PheWAS analyses for each of our studies. The first exam-
ined associations between statistically significant SNPs identified in the
respective GWASs and EHR phenotypes based on ICD codes. The
second PheWAS identified associations between BMI levels or inci-
dence of obesity, respectively, and ICD-based diagnoses. ICD9 and
ICD10 codes for each individual in the cohort recorded in the Renown
EHR were aggregated via a mapping from the Center for Medicare
and Medicaid services (https://www.cms.gov/Medicare/Coding/ICD10/
2018-ICD-10-CM-and-GEMs.html). A total of 22,693 individual diag-
noses mapped to 4,769 documented ICD9 codes. ICD9 codes were
aggregated and converted into 1,814 individual phenotype groups
(“phecodes”) using the PheWAS package as described in Carroll
and Denny (Denny et al. 2013; Carroll et al. 2014). Of these, only
the phecodes that included at least 20 cases were used for downstream
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analyses, following Carroll’s protocol (Carroll et al. 2014). Age and
gender were standard covariates included in the PheWAS models.
The first type of PheWAS detected associations between statistically
significant SNPs (p,1x10-5) identified in each of the three GWASs
above and case/control status of EHR phenotypes represented by
ICD codes. Specifically, a logistic regression between the incidence
(number of cases) of each phenotype group (phecode) and the ad-
ditive genotypes of each statistically significant SNP was performed,
including age and gender as covariates. Possible associations of the
phecodes with at least 20 individuals with each previously detected
SNP were assessed. Two levels of significance were computed:
the first, on which the reported results are based, was generated
by first calculating the adjusted p-values for the multiple hypothesis
tests using the Benjamini-Hochberg false discovery rate (FDR)
(Benjamini and Hochberg 1995) and selecting the raw p-value cor-
responding to the FDR = 0.1 significance level, following Denny’s
protocol (Denny et al. 2013). This level is represented by a red line
in PheWAS images. For visual purposes only, a threshold based on
a Bonferroni correction for all possible associations made in this
analysis (p=0.05 / Nps, where Nps is the sum of the number of phec-
odes tested for each individual SNP, across all identified SNPs), is
represented by a blue line in PheWAS images.

A second PheWAS, as outlined in Carroll et al. (2014) (Carroll et al.
2014), was performed to examine associations between BMI, and
secondarily, obesity, and the phecodes. Specifically, a linear regression
between the BMImeasures and the case/control status of a phecode was
performed (with age and gender as covariates) for each phecode in-
cluding at least 20 individuals. Significance levels corresponded to the
FDR value of 0.1 and are not shown in either figure due to space
constraints. The Bonferroni corrections for the BMI study and obesity
study were 3.3x10-5 and 3.7x10-5, respectively. In Figures 4 and 6, only
phenotypes above the red line representing p = 1x10-15 are annotated
for ease of viewing.

DATA AVAILABILITY

EHR data
EHR data for the Healthy Nevada cohort are subject to HIPAA and
otherprivacyandcompliance restrictions.Meanquality-controlledBMI
values for the 6,645 individuals are available in Supplementary Table S6.
Supplemental material available at figshare: https://doi.org/10.25387/
g3.8266430.

Genotype data
The data that support the findings of this study are available from
23andMe but restrictions apply to the availability of these data, which
were used under license for the current study, and thus are not publicly
available. The data are, however, available for qualified researchers upon
reasonable request and with permission of the Institute for Health
Innovation and 23andMe. Researchers who would like to obtain the
raw genotype data related to this studywill be presentedwith a data user
agreement, which requires that the participants will not be re-identified
and no data will be shared between researchers or uploaded onto
public domains. Due to the public nature of this article, and genetic
privacy requirements, the Institute for Health Innovation and
23andMe require that the statistics for only 10,000 SNPs be made
publicly available. This is the amount of data considered to be
insufficient to enable a reidentification attack. The statistical sum-
mary results of the top 10,000 SNPs for the 23andMe data are
available here: www.dri.edu/HealthyNVProjectGenetics. All col-
umn definitions are listed in Table 1.

The IHI collaborates with scientific researchers on an individual
basis. Examples of restrictions that will be considered in requests to data
access include but are not limited to:

1. Whether the request comes from an academic institution in good
standing and will collaborate with the Institute for Health Inno-
vation to protect the privacy of the participants and the security of
the data requested

2. Type and amount of data requested
3. Feasibility of the research suggested
4. Amount of resource allocation for the IHI and Renown Hospital

required to support the collaboration

Any correspondence and data availability requests should
be addressed to Joe Grzymski at (joeg@dri.edu) or Craig Kugler
(craig.kugler@dri.edu).

PheWAS results
Summarized counts of each ICD classification (ICD-9 and ICD-10) and
phenotype group (phecode) are presented in Supplementary Table S7.

Institutional review board
This study was reviewed and approved by the University of Nevada,
Reno Institutional Review Board (IRB, project 956068-12).

RESULTS

Characteristics of cohort
10,000 participants were genotyped of which 6,870 participants were
linked to RenownHospital electronic health records with the covariates
requiredtoconduct this study: ageatconsent,gender, ethnicityandBMI.
We removed 225 participants based on the exclusion criteria as stated in
our methods. Our final cohort characteristics of the 6,645 individuals
are described in Table 2, which illustrates themakeup of the cohort with
respect to gender, age, ethnic origin, and standardized value of BMI
after removal of outliers using our custom algorithm. For the extreme
obesity (Class 2 and 3) case vs. control study, the normal (healthy)
control range consisted of BMI values between 18.5 and 25 kg/m2,
while the case obese values were any BMI $ 35 kg/m2 (Hruby and

n■ Table 1 Column Identifiers for GWAS Results

Column name Definition

CHR Chromosome
SNP Individual SNP identifier
BP Location of SNP on relative chromosome
A1 Alternative Allele
TEST Selected statistical test – ADD represents the

additive effect
NMISS Indicates the number of observations –

non-missing genotypes
BETA The effect size for this variant, defined per copy

of the A1 allele
SE The standard error of the effect size
LE Lower end of the 95% confidence interval for

the effect size
UE Upper end of the 95% confidence interval for

the effect size
STAT The value of the test statistic
P The p-value for the association test

Table describing the column headers for the results file of our genome-wide
associations. This summary results file only lists the top 10,000 SNPs in order to
prevent a re-identification attack.
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Hu 2014). The number of participants in each range is displayed in
Table 2.

GWAS of BMI in the healthy Nevada cohort
Using quality-controlled BMI values, two separate GWASs were
performed to find genotypic associations with BMI using PLINK. In
the first association study, all individuals diagnosed with DM2
were excluded to focus on the association between the genotype
and BMI under the additive model with adjustments for gender,
age and the first four principal components (PC1-PC4). The sec-
ond association analysis included all DM2-diagnosed individuals
and added DM2 as a covariate to the model, again using the ad-
ditive model with adjustments for gender, age, diabetes status, and
PC1-PC4. Genomic inflation coefficients (lambda) were computed
for the two separate cohorts: 1.06 for the association without DM
as a covariate, and 1.06 for the association where DM is a covariate.
Any SNP with association p-value of p , 1x10-5 was considered a
statistically significant association, based on the standard of the
NHGRI-EBI Catalog of published genome-wide association stud-
ies [https://www.ebi.ac.uk/gwas/docs/methods/criteria], as well as
obesity studies performed by Frayling et al. (Frayling et al. 2007).
Genetic variance in the BMI study with DM2 cases removed was
15.78%; genetic variance was 17.49% in the BMI study with DM2
cases included.

The first GWAS was performed on 5,994 total participants without
DM2 and identified 20 SNPs across seven chromosomes at statistical
significance defined by p,1x10-5 (Table 3). The majority of these
mapped to the FTO gene on chromosome 16, while two SNPs mapped
to TDH on chromosome 8 (Supplementary Figure S2). Of the 20 SNPs,
15 were shown to be associated with BMI in previous publications
(Scuteri et al. 2007; Frayling et al. 2007; Dina et al. 2007; Zeggini
et al. 2007; Yanagiya et al. 2007; Hinney et al. 2007; Hunt et al. 2008;
Price et al. 2008; Grant et al. 2008; Hotta et al. 2008; Loos et al. 2008;
Tan et al. 2008; Villalobos-Comparán et al. 2008; Thorleifsson et al.
2008; Willer et al. 2009; Meyre et al. 2009; Wing et al. 2009; Liu
et al. 2010; Shimaoka et al. 2010; Fawcett and Barroso 2010; Speliotes
et al. 2010; Wang et al. 2011; Prakash et al. 2011; Okada et al. 2012;
Cha et al. 2012; Berndt et al. 2013;Wheeler et al. 2013; Graff et al. 2013;
Olza et al. 2013; Boender et al. 2014; Qureshi et al. 2017; Hu--dek et al.
2018; González-Herrera et al. 2019). A large majority of the SNPs
(17/20) lie within noncoding regions of genes and are intronic in na-
ture. It is interesting to note that our strongest associations lie within
the FTO gene (p , 3.5x10-6). Results are presented in Table 3: BMI
without DM2 lists the significant associations of our cohort that exclude

all DM2 diagnoses. BMI with DM2 presents significant associations
with BMI in the cohort that includes participants with a DM2 diagno-
sis. Effect sizes (and their standard deviations) are presented as change
in BMI per each copy of the minor allele. Raw per-SNP p-values are
presented.

Statistical analysis with PLINK demonstrated that DM2 is a signif-
icant predictor of BMI, with the p-value of its coefficient consistently
less than p , 2x10-16 in each per-SNP linear regression. The entire
cohort includes 6,645 participants: of those, 651 have a diagnosis of
DM2 in their twelve-year medical history. A GWAS applied to this
larger cohort identified 27 statistically significant SNPs across seven
chromosomes associated with BMI at p,1x10-5 (Figure 1). Further-
more, 77% of the SNPs in this second GWAS (21/27) were previ-
ously associated with BMI in previous research studies (Scuteri et al.
2007; Frayling et al. 2007; Dina et al. 2007; Zeggini et al. 2007;
Yanagiya et al. 2007; Hinney et al. 2007; Hunt et al. 2008; Price
et al. 2008; Grant et al. 2008; Hotta et al. 2008; Loos et al. 2008;
Tan et al. 2008; Villalobos-Comparán et al. 2008; Thorleifsson et al.
2008; Willer et al. 2009; Meyre et al. 2009; Wing et al. 2009; Liu et al.
2010; Shimaoka et al. 2010; Fawcett and Barroso 2010; Speliotes
et al. 2010; Wang et al. 2011; Prakash et al. 2011; Okada et al.
2012; Cha et al. 2012; Berndt et al. 2013; Wheeler et al. 2013;
Graff et al. 2013; Olza et al. 2013; Boender et al. 2014;
Christensen et al. 2015; Nakajima et al. 2016; Thomsen et al.
2016; Qureshi et al. 2017; Hu --dek et al. 2018; González-Herrera
et al. 2019). With the addition of DM2 as a covariate, the GWAS
identified several additional SNPs on chromosome 8, as well as
SNPs on chromosomes 17 and 19. These additional SNPs were pre-
viously linked to BMI and obesity in other studies (Christensen et al.
2015; Nakajima et al. 2016; Thomsen et al. 2016). Manhattan plots
for the two BMI GWAS studies are presented in Figure 1 and Sup-
plementary Figure S2, with the linear associations results presented
in Table 3.

The SNP on chromosome 17 is of particular interest, as it has the
largest effect of any SNP identified in our study (b=0.90). It is also
the rarest SNP tested in our cohort with minor allele frequency
(MAF) 8.17%. The median MAF across the strongest associative
SNPs in both studies is 40%, which demonstrates that most of the
SNPs are common and thus result in relatively moderate indi-
vidual effect sizes. Most of the SNPs lie within noncoding
intronic regions; this is of interest as although noncoding SNPs
do not alter the amino acid sequence of the translated protein,
they may be linked to disease, as several previous studies show
that polymorphisms within introns can affect intron splicing

n■ Table 2 Cohort Characteristics

Association with BMI Measures Association with Obesity

Cohort Size 6,645 2,996
Age (years) 50.91 6 15.97 48.91 6 15.96
Male (%) 2145 (32.28) 747 (24.93)
African American (%) 0 (0) 0 (0)
Asian (%) 157 (2.36) 84 (2.80)
Caucasian (%) 5,945 (89.47) 2653 (88.55)
Latino (%) 173 (2.60) 81 (2.70)
Native American (%) 40 (0.60) 18 (0.60)
Pacific Islander (%) 13 (0.20) 4 (0.13)
Unknown (%) 317 (4.77) 156 (5.21)
DM2 651 (9.8) 246 (8.2)
Quality-Controlled BMI 28.58 6 6.41 22.57 6 1.64 (Control), N=2,012 40.15 6 4.99 (Cases), N=984

Table of cohort characteristics. Continuous variables are presented as mean 6 SD; categorical variables are presented as counts and percentages. All values were
standardized by using a custom algorithm to remove outliers. BMI has the units of kg/m2.
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as well as transcriptional and translational efficiency (Lalonde
et al. 2011).

Case-control GWAS of extreme obesity in the healthy
Nevada cohort
AcomplementaryGWASwasperformedto identifygenotype-phenotype
links in extreme obesity (BMI$ 35) versus non-obese (BMI between
18.5 and 25 kg/m2) in our cohort. This study incorporated 2996 par-
ticipants (984 extreme obese cases, 2012 non-obese controls), and
under the log-additive model with adjustments for gender, age and
the first four principal components, identified 26 SNPs across six

chromosomes that were associated with obesity at p , 1x10-5, with
approximately 70% associated with obesity and BMI in prior studies
(Figure 2). The percentage of phenotypic variance attributed to ge-
netic variation based on all the SNPs was 15.7%. The genomic in-
flation coefficient (lambda) for the obesity cohort was computed as
1.05. We also include eight SNPs found slightly above the significance
threshold in the FTO gene that are reported in several studies as
obesity-related (Ehrlich and Friedenberg 2016; West et al. 2018). In
comparison to the two quantitative-trait BMI GWASs, this study
identified several more associations around theNEGR1 gene on chro-
mosome 1. We also identified SNPs in two genes, PFKFB3 and

n■ Table 3 Statistically Significant BMI GWAS SNPs

rsID Chrom Cyto Region Associated Gene Minor Allele MAF b (SE) GWAS p-value Mutation Classification

BMI without DM2
rs1620977 chr1 p31.1 NEGR1 A 27.29 0.5819 0.125 3.30x10-6 intron
rs871122 chr5 p15.32 ADAMTS16 T 16.61 0.6837 0.1528 7.78x10-6 intron
rs4839813 chr6 q16.1 FUT9 T 9.69 0.8755 0.1876 3.13x10-6 intron
rs11774673 chr8 p23.1 NA C 48.21 0.5083 0.1119 5.69x10-6 unknown
rs2060457 chr8 p23.1 TDH T 48.58 0.5584 0.1119 6.24x10-7 intron
rs2293859 chr8 p23.1 TDH G 48.73 0.5506 0.1119 8.80x10-7 ncRNA
rs10733990 chr10 p12.1 NA A 30.53 0.5857 0.1199 1.06x10-6 unknown
rs10875969 chr12 q13.12 NCKAP5L A 42.38 0.505 0.1133 8.41x10-6 intron
rs9937053 chr16 q12.2 FTO A 40.76 0.5193 0.1133 4.69x10-6 intron
rs9930333 chr16 q12.2 FTO G 40.78 0.5161 0.113 5.08x10-6 intron
rs9940128 chr16 q12.2 FTO A 40.75 0.5272 0.1131 3.19x10-6 intron
rs1421085 chr16 q12.2 FTO C 38.43 0.5999 0.1147 1.75x10-7 intron
rs1558902 chr16 q12.2 FTO A 38.46 0.6007 0.1147 1.67x10-7 intron
rs1121980 chr16 q12.2 FTO A 40.85 0.5272 0.1128 3.03x10-6 intron
rs17817449 chr16 q12.2 FTO G 37.93 0.5562 0.1143 1.17x10-6 intron
rs8043757 chr16 q12.2 FTO T 37.98 0.5612 0.1143 9.29x10-7 intron
rs8050136 chr16 q12.2 FTO A 37.94 0.5636 0.1143 8.34x10-7 intron
rs3751812 chr16 q12.2 FTO T 37.52 0.548 0.1149 1.90x10-6 intron
rs9939609 chr16 q12.2 FTO A 38.06 0.5504 0.1143 1.50x10-6 intron
rs12149832 chr16 q12.2 FTO A 39.1 0.534 0.1142 3.01x10-6 intron
BMI with DM2
rs1776012 chr1 p31.1 NEGR1 G 47.74 -0.4848 0.1092 9.13x10-6 intron
rs11774673 chr8 p23.1 NA C 48.21 0.5149 0.1086 2.14x10-6 unknown
rs1435277 chr8 p23.1 NA C 44.39 -0.4944 0.1112 8.90x10-6 near-gene-5
rs11250129 chr8 p23.1 TDH A 48.12 0.5115 0.1089 2.67x10-6 intron
rs2060457 chr8 p23.1 TDH T 48.58 0.5802 0.1085 9.30x10-8 intron
rs2293859 chr8 p23.1 TDH G 48.73 0.5722 0.1085 1.37x10-7 ncRNA
rs2246606 chr8 p23.1 TDH G 42.95 -0.539 0.1115 1.37x10-6 intron
rs2736280 chr8 p23.1 TDH C 48.22 -0.5308 0.1098 1.36x10-6 intron
rs2572386 chr8 p23.1 FAM167A G 42.27 -0.5308 0.1115 1.96x10-6 intron
rs2948300 chr8 p23.1 NA T 49.03 0.5034 0.1099 4.70x10-6 unknown
rs12412241 chr10 p14 NA A 29.62 -0.5474 0.1171 3.01x10-6 unknown
rs11041833 chr11 p15.4 LMO1 A 41.01 -0.4841 0.1082 7.77x10-6 intron
rs9937053 chr16 q12.2 FTO A 40.76 0.5002 0.1105 6.04x10-6 intron
rs9930333 chr16 q12.2 FTO G 40.78 0.4989 0.1102 6.10x10-6 intron
rs9940128 chr16 q12.2 FTO A 40.75 0.5078 0.1102 4.18x10-6 intron
rs1421085 chr16 q12.2 FTO C 38.43 0.5616 0.1117 5.04x10-7 intron
rs1558902 chr16 q12.2 FTO A 38.46 0.5625 0.1116 4.80x10-7 intron
rs1121980 chr16 q12.2 FTO A 40.85 0.5063 0.11 4.27x10-6 intron
rs17817449 chr16 q12.2 FTO G 37.93 0.5206 0.1113 2.94x10-6 intron
rs8043757 chr16 q12.2 FTO T 37.98 0.525 0.1112 2.41x10-6 intron
rs8050136 chr16 q12.2 FTO A 37.94 0.5244 0.1112 2.47x10-6 intron
rs3751812 chr16 q12.2 FTO T 37.52 0.5119 0.1118 4.74x10-6 intron
rs9939609 chr16 q12.2 FTO A 38.06 0.513 0.1112 4.06x10-6 intron
rs12149832 chr16 q12.2 FTO A 39.1 0.5034 0.1111 5.98x10-6 intron
rs11651343 chr17 p13.3 RTN4RL1 T 8.17 0.9039 0.1974 4.75x10-6 intron
rs750456 chr19 q13.33 CABP5 C 26.19 -0.5486 0.1221 7.15x10-6 intron
rs8105198 chr19 q13.33 CABP5 G 17.18 -0.6466 0.1417 5.14x10-6 coding-synon

This table represents statistically significant associations with BMI in our cohort.
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Figure 1 Manhattan plot of GWAS results of BMI including DM2-diagnosed individuals. This study includes DM2-diagnosed individuals and the statistical
model includes DM2 as a bimodal covariate. The x-axis represents the genomic position of 500,508 SNPs. The y-axis represents -log10-transformed raw
p-values of each genotypic association. The red horizontal line indicates the significance level 1x10-5.
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CABP5, which are associated with obesity in other studies (Scuteri
et al. 2007; Jiao et al. 2008; Nakajima et al. 2016). Note that all the
mutations in the FTO gene increase the odds of obesity risk. Table 4
lists the strongest SNPs associated in our extreme obese vs. non-obese
GWAS. Effect sizes and their standard deviations are presented as
odds ratios. Raw p-values generated by the GWAS are also presented.

From our three separate GWASs, we identified fifteen different
chromosomal cytoband regions across ten chromosomes associated
with at least one BMI or obesity-related trait. All but three of those
cytoband regions contained a gene, while the remaining cytoband hits
were in noncoding regions of the genome. Approximately 70% of the
SNPs identified in this study were linked to BMI and obesity in prior
studies (Tables 3 and 4), validating our methods (Scuteri et al. 2007;
Frayling et al. 2007; Dina et al. 2007; Yanagiya et al. 2007; Hinney et al.
2007; Jiao et al. 2008; Pietiläinen et al. 2008; Grant et al. 2008; Hotta
et al. 2008; Thorleifsson et al. 2008; Joe et al. 2009; Nakajima et al. 2016;
Thomsen et al. 2016; Justice et al. 2017). The functions of the genes
which lie within the cytoband regions are outlined in Table 5.

Analysis of variance
The mean BMI values across genotypes presented in Supplementary
Tables S1 and S2 correlate with negative and positive effect sizes: SNPs
showing a negative effect size have a decrease inmeanBMI values across
the genotypes from left to right (homozygous in major allele, hetero-
zygous, homozygous in minor allele). Note that BMI levels increase
with the increase of the number of minor alleles, which is typical of
variants in FTO (Frayling et al. 2007). All ANOVA F-test p-values
of the significant SNPs identified in the two BMI studies are sta-
tistically significant at the alpha=0.05 level, even after a simple
Bonferroni correction (.05/27 =0.0019, and .05/20=0.0025, respec-
tively). Supplementary Table S3 presents the proportion of extremely
obese cases across each genotype. A box and whisker figure of ANOVA
results for one of the strongest associations (rs9939609) is shown in
Supplementary Figure S3.

PheWAS of BMI and obesity
Beyond the GWASs, we present here two comprehensive PheWAS
studies that follow each GWAS. The first examines pleiotropy, i.e.,
whether additional phenotypic associations exist between the statisti-
cally significant SNPs associated with BMI or obesity in our cohort.
The second investigates which EHR phenotype groups are associated
with BMI; more specifically, the analysis identifies whether the number
of individuals in an EHR phenotype group is a predictor of BMI and/or
extreme obesity.

A PheWAS tested the 20 statistically significant SNPs identified in
the first BMI GWAS (the sub-cohort with no DM2-diagnoses) for
association with 562 EHR phenotypes and resulted in no statistically
significant associationsat the falsediscovery rateof0.1 (datanot shown).
The top two associations showed that a locus on FUT9 (rs4839813)
associated with obesity, and rs1620977 on NEGR1 associated with
morbid obesity with raw p-values p=2.3x10-5 and 2.8x10-5, respectively.
The second PheWAS identified 179 EHR (phenotypic) associations of
BMI (DM2-diagnosed participants excluded) with p,2x10-2, that as-
sociates to an adjusted p-value of 0.1 (see Materials and Methods).
Included in the strongest phenotypic associations are obesity, morbid
obesity, and overweight (p,1x10-80), sleep apnea (p,1x10-45), hyper-
tension (p,1x10-40), abnormal glucose (p,1x10-25), hyperlipidemia,
asthma, GERD, osteoporosis, and others. (Data not shown).

The PheWAS of the second BMI GWAS (DM2-diagnosed individ-
uals included) examined whether 633 EHR phenotype groups contain-
ing at least 20 participants are dependent on the genotypes of the

27 statistically significant SNPs associated with BMI in our cohort
(Figure 3). Results of this PheWAS indicate that TDH and
FAMA167-AS1 are strongly associated with DM2. Variants in
the FTO gene associate with obesity and overweight phenotypes.
An association with hypertension and essential hypertension and
the locus rs12412241 on chromosome 10 was detected (p,1x10-4).
Several strong associations with FTO loci and the prostate-specific
antigen (PSA) were also found. Variants in the FTO gene also associated
with obesity at the p=3x10-4 level, and with hypercholesterolemia with
p=1x10-3 level. Significant associations (p,1.02x10-4, associated to an
adjusted p-value of 0.1, see Materials and Methods) are included in
Table 6 and illustrated in Figure 3, where the blue line represents the
Bonferroni correction of p=3x10-6. The second PheWAS examined links
between BMI and the 1,523 EHR phenotype groups containing at least
20 individuals in this cohort and showed that 301 such clinical pheno-
types groups associated with significance p,1.96x10-2. (This significance
level is associated to an adjusted p-value of 0.1, as described in the Ma-
terials andMethods) These are shown in Figure 4. Included in the highest
associations are obesity, morbid obesity, and overweight (p,1x10-100),
DM2 (p,1x10-87), hypertension ((p,1x10-82), sleep apnea (p,1x10-80),
abnormal glucose (p,1x10-53), hyperlipidemia, asthma and other respi-
ratory disorders, GERD, edema, liver disease, mood disorders, polycystic
ovaries, and others. Significant associations are presented in Supplemen-
tary Table S4 and Figure 4. Only associations at p,1x10-15 are annotated
in the image for ease of viewing. Note that a single-SNP Bonferroni
correction results in a significance level of 3.3x10-5.

We performed the same two PheWASs on the case-control GWAS.
The first PheWAS identified possible associations between 34 SNPs and
372 phenotype groups with at least 20 individuals (Figure 5). The
significance level corresponding to an FDR of 0.1 was p=3.85x10-4,
resulting in 50 significant associations. The Bonferroni correction
p-value is 4x10-6 and shown in blue (see Materials and Methods).
The strongest associations occurred between the NEGR1 and KLRB1
gene and obesity and morbid obesity and the NEGR1 gene and abnor-
mal glucose. The NEGR1 gene, along with TDH and FAM167A-AS1,
also associated with impaired fasting glucose and diabetes, respectively,
at a slightly lower, yet still significant p-values. The locus rs2948300
on chromosome 8 associated with essential hypertension. The SNP
rs1620977 on NEGR1 is linked with incidence of bronchitis. Addition-
ally, several strong associations of irritable bowel syndrome (IBS) and
digestive disorders with loci in CABP5 are shown. Results are pictured
in Figure 5 and included in Table 7.

The second PheWAS in this case-control study identified possible
links between 1,362 EHR phenotype groups with at least 20 individuals
and the incidence of extreme obesity (Figure 6). The significant thresh-
old of p=1.4x10-2 enabled an FDR of 0.1. At this significance
level, 191 significant associations were identified, including obesity
(p,1x10-134), hypertension (p,1x10-65), sleep apnea (p, 1x10-43),
abnormal glucose (p,1x10-40), hyperlipidemia, asthma, and GERD.
The high level of association with obesity validates our methods.
These associations are shown in Figure 6, with phenotypes annotated
above a significance level of 1x10-15 for ease of viewing. A line is
drawn at the significance level 1x10-15 as guidance. Results are in-
cluded in Supplementary Table S5. Note that a single-SNP Bonferroni
correction results in a significance level of 3.7x10-5.

DISCUSSION

GWAS of healthy Nevada BMI and obesity
Here we present three GWASs on participants in the Healthy Nevada
Project. The first investigates associations with BMI on subjects that do
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Figure 2 Obesity Case-Control GWAS Manhattan Plot. This cohort includes DM2-diagnosed individuals. The x-axis represents the genomic
position of 500,508 SNPs. The y-axis represents -log10-transformed raw p-values of each genotypic association. The red horizontal line indicates
the significance level 1x10-5.
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nothaveDM2diagnoses.The second identifies associationswithBMI in
which participants with DM2 are included as a comorbidity. The third
GWAS is a case-control study of extreme obesity that complements
outcomes of the first two quantitative trait studies. Each GWAS is
followed with two independent PheWASs to examine pleiotropy and
additional phenotypic associations with quantitative BMI levels and
incidence of obesity.

The first GWAS tested the association between genotype and BMI
withoutDM2, to removeDM2effects onBMI.As expected, themajority
of the resulting associations were found in SNPs that lie within the FTO
gene. This gene has been associated to BMI and obesity in several
studies and is a major focal point in obesity-related research (Scuteri
et al. 2007; Frayling et al. 2007; Dina et al. 2007; Zeggini et al. 2007;
Hinney et al. 2007; Hunt et al. 2008; Price et al. 2008; Grant et al. 2008;
Hotta et al. 2008; Loos et al. 2008; Tan et al. 2008; Villalobos-Comparán
et al. 2008; Thorleifsson et al. 2008;Willer et al. 2009; Meyre et al. 2009;
Wing et al. 2009; Shimaoka et al. 2010; Fawcett and Barroso 2010;
Wang et al. 2011; Prakash et al. 2011; Okada et al. 2012; Berndt et al.
2013; Wheeler et al. 2013; Graff et al. 2013; Olza et al. 2013; Qureshi
et al. 2017; González-Herrera et al. 2019). Moreover, the two strongest
associations in theGWASwere fromSNPs in FTO (rs1558902/ rs1421085,
p = 1.67x10-7/1.75x10-7), highlighting the overall importance of this
gene in relation to obesity. Frayling suggests that the association of
FTO SNPs with DM2 is mediated through BMI (Frayling et al. 2007).
The exact mechanism by which the FTO gene affects BMI is not

understood; however, it has been discovered that the gene product
of FTO mediates oxidative demethylation of several different RNA
species, such as mRNA, snRNA and tRNA (Jia et al. 2011; Wei et al.
2018). This indicates that protein produced from FTO likely operates
as a RNA regulatory molecule, which can affect both gene expression
as well as translation initiation and elongation (Wei et al. 2018).

Two SNPs within TDH were found to be strongly associated to
BMI. This gene codes for a nonfunctional L-threonine dehydrogenase,
lacking most of the C-terminus found in other species, and is thus
characterized as a putative pseudogene. Previous research has identified
this gene as a possible susceptibility gene for obesity (Yanagiya et al.
2007); however, relatively little is known about any functional conse-
quences of SNPs within this pseudogene. We also observed a strongly
associated locus inNEGR1, one of the first genes shown to have variants
associated to BMI (Thorleifsson et al. 2008; Willer et al. 2009; Speliotes
et al. 2010; Boender et al. 2014). This gene codes for a cell adhesion
molecule, although its function in relation to BMI is still unknown.
Previous research in mice determined that deletions of NEGR1 cause a
decrease in weight and a change in the regulation of energy balance,
implying thatNEGR1most likely functions to control the regulation of
energy balance (Lee et al. 2012; Boender et al. 2014).

Wehypothesized that includingDM2participants (and thusDM2as
acovariate in thegeneticmodel)wouldproduceamoreparsimoniousfit,
as many studies show a relationship between diabetes and BMI. We
discovered thatdiabeteswas indeedanimportantpredictorofBMI forall

n■ Table 4 Statistically Significant Obesity GWAS SNPs

rsID Chr Cyto Region Associated Gene Minor Allele MAF Odds Ratio (SE) GWAS p-value Mutation Classification

rs1776012 chr1 p31.1 NEGR1 G 47.36 0.7365 0.05775 1.19x10-7 intron
rs9424977 chr1 p31.1 NEGR1 C 47.09 0.7411 0.05745 1.83x10-7 intron
rs1620977 chr1 p31.1 NEGR1 A 27.31 1.369 0.06213 4.21x10-7 intron
rs1870676 chr1 p31.1 NEGR1 T 46.97 0.7403 0.05773 1.90x10-7 intron
rs3101336 chr1 p31.1 NA T 35.93 0.7678 0.0597 9.60x10-6 unknown
rs2568958 chr1 p31.1 NA G 35.94 0.767 0.05967 8.79x10-6 unknown
rs2815752 chr1 p31.1 NA G 35.94 0.767 0.05967 8.79x10-6 unknown
rs2173676 chr5 q14.1 NA C 26.52 0.7433 0.0647 4.56x10-6 unknown
rs11774673 chr8 p23.1 NA C 48.25 1.304 0.05778 4.25x10-6 unknown
rs1435277 chr8 p23.1 NA C 44.28 0.7419 0.05898 4.15x10-7 near-gene-5
rs11250129 chr8 p23.1 TDH A 48.26 1.314 0.05796 2.49x10-6 intron
rs2060457 chr8 p23.1 TDH T 48.76 1.379 0.05797 2.88x10-8 intron
rs2293859 chr8 p23.1 TDH G 48.81 1.375 0.05798 4.06x10-8 ncRNA
rs2246606 chr8 p23.1 TDH G 42.76 0.7357 0.05905 2.01x10-7 intron
rs2736280 chr8 p23.1 TDH C 48.23 0.727 0.05863 5.41x10-8 intron
rs2572386 chr8 p23.1 FAM167A G 41.91 0.7378 0.05941 3.07x10-7 intron
rs1435282 chr8 p23.1 FAM167A A 45.57 0.7631 0.05786 2.95x10-6 intron
rs2948300 chr8 p23.1 NA T 49.06 1.325 0.05809 1.30x10-6 unknown
rs2953802 chr8 p23.1 NA A 42 1.318 0.05734 1.47x10-6 unknown
rs435581 chr8 p23.1 NA A 45.19 0.7609 0.05802 2.50x10-6 unknown
rs680951 chr10 p15.1 PFKFB3 G 33.83 0.7614 0.06116 8.26x10-6 intron
rs666595 chr10 p15.1 PFKFB3 A 31.47 0.7537 0.06256 6.22x10-6 intron
rs2058426 chr12 p13.31 NA A 49.67 0.7798 0.05614 9.40x10-6 near-gene-3
rs2241005 chr12 p13.31 KLRB1 C 49.98 0.7768 0.05608 6.65x10-6 intron
rs1421085 chr16 q12.2 FTO C 38.18 1.28 0.05766 1.90x10-5 intron
rs1558902 chr16 q12.2 FTO A 38.21 1.281 0.0576 1.72x10-5 intron
rs17817449 chr16 q12.2 FTO G 37.63 1.261 0.05732 5.15x10-5 intron
rs8043757 chr16 q12.2 FTO T 37.66 1.264 0.05733 4.42x10-5 intron
rs8050136 chr16 q12.2 FTO A 37.66 1.263 0.05733 4.72x10-5 intron
rs3751812 chr16 q12.2 FTO T 37.27 1.26 0.05764 6.13x10-5 intron
rs9939609 chr16 q12.2 FTO A 37.83 1.254 0.05737 7.79x10-5 intron
rs2267770 chr16 p13.2 GRIN2A T 41.01 0.7859 0.0575 2.79x10-5 intron
rs750456 chr19 q13.33 CABP5 C 26.1 0.7405 0.06615 5.58x10-6 intron
rs8105198 chr19 q13.33 CABP5 G 16.77 0.7026 0.07836 6.67x10-6 coding-synon

This table presents statistically significant associations with extreme obesity in the case-control study.
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500,000 regressions performed (p, 2x10-16 for every SNP), regardless
of age, gender or genotype. Furthermore, adding DM2 as a predictor in
the additive model increases the significance of associations between
SNPs in the TDH gene and BMI; five out the top eight most significant
associations fall within this gene (Table 3). It is clear that incidence of
DM2 in our cohort affects the genetic association of BMI. Specifically,
when DM2 patients are excluded in our cohort, there are two associ-
ations within TDH. When DM2 participants are included, we observe
five associations with the TDH gene. This indicates, along with the BMI
PheWAS results, that not only does TDH influence BMI measure-
ments, it also has an association with DM2.

It is rare for SNPs to be effectors of two separate diseases, even those
as intertwined as BMI and DM2 (Grarup et al. 2014). A possible ex-
planation why TDH has not been previously associated with DM2 is
due to a lack of statistical power to observe the small risk increasesTDH
may impose on DM2 (Grarup et al. 2014). Nonetheless, the increased
rate of DM2 diagnosis worldwide makes this an interesting candidate
gene. How the SNPs in the TDH pseudogene may influence either BMI
or DM2 is unknown, as evidence supporting the association between
TDH and BMI/DM2 is scant; however, previous research has discov-
ered that not all pseudogenes are "junk"DNA. Some of these genes can
be actively transcribed to produce short interfering RNAs (siRNAs),
which can regulate gene expression (Pink et al. 2011). In certain cases,
they can even competitively bind micro-RNAs (miRNAs), which can
attenuate repression of cellular mRNA (An et al. 2016). Additionally,
the expression of pseudogene transcripts tends to be tissue-specific.
Given that the greatest expression of TDH transcripts is found in the
pancreas (Fagerberg et al. 2014), one might speculate that TDH affects
the production of insulin and/or digestive enzymes. If true, this may
account for our observation where TDH influences BMI measure-
ments, and is associated with DM2. Given the strong associations be-
tween TDH SNPs and DM2, as well as potential regulatory functions
of pseudogenes, we believe it is essential that future studies focus on
determining the function of the TDH pseudogene in a tissue-specific
context. Although studies using genetically modified mice with a TDH

polymorphism and proteomics analysis of their pancreatic tissue would
be straight-forward, to the best of our knowledge, no such studies have
been reported. We see this as a possible future direction.

Adding DM2 as a covariate into the statistical model also identified
two additional genes that may influence BMI: RTN4RL1 and CABP5.
RTN4RL1 is a gene that codes for a cell surface receptor and was pre-
viously found to be upregulated approximately 2-fold when exposed to
bone morophogenetic protein 4 (BMP4), a protein that is increased in
diabetic animals and may reduce insulin secretion (Christensen et al.
2015). This implies that the effects of RTN4RL1 on BMI may be sec-
ondary to its main effect on diabetes. Moreover, this gene has also been
listed as a potential candidate gene for DM2 in previous GWAS
(Thomsen et al. 2016). The gene CABP5, which codes for a calcium
binding protein that has role in calcium mediated cellular signal trans-
duction (Haeseleer et al. 2002) may have a more direct effect on BMI.
It was previously discovered as part of a group of several genes that
were upregulated in obese individuals, although its exact function rel-
ative to obesity is still unknown (Nakajima et al. 2016).

A case-control association study examining the effects between
genetics and the risk of extreme obesity (BMI $ 35 kg/m2) was the
final GWAS we conducted. It has been determined by the World
Health Organization (WHO) that more than 1.9 billion adults are
overweight and over 650 million are obese. Moreover, obesity is asso-
ciated with several other chronic diseases, such as cardiovascular dis-
ease, DM2 and cancer, all of which could lead to premature death
(Kopelman 2007). Overall, our obesity results consist of many of the
same SNPs and genes found to be associated with BMI. However, the
obesity results did demonstrate an increase in the genetic associations at
the significance level of p,1x10-5 in and very close to the NEGR1 gene
compared to previous BMI associations. Previous studies using genet-
icallymodifiedmicewithNEGR1 deficiency orNEGR1-loss-of-function
support a role for NEGR1 in the control of body weight; however, the
mechanism of its involvement is not clear (Lee et al. 2012). Contra-
dictory with anticipated results, these mutant mice display a small but
steady reduction of body mass. Notwithstanding, these studies do

Figure 3 PheWAS results between BMI-significant SNPs and EHR Phenotypes. This figure shows the results of individual logistic regressions
between incidence of 633 phenotype groups (phecodes) and the genotypes of 27 SNPs found to have statistically significant associations with
BMI in a cohort with DM2 patients. Each point represents the p-value of one SNP and one of 633 phecodes with at least 20 cases assigned to it.
The horizontal red line represents the significance level p=1.02x10-4, and the blue line represents the Bonferroni correction of p=3x10-6.
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suggest that loss of NEGR1 function in the mouse models has a
negative effect on body mass as well as lean mass, supporting the
possibility that NEGR1 may contribute to a change body mass. It is
also important to note that animal models are a representation of
human physiology but not necessarily a precise depiction.

Our extreme obesity vs. non-obese study also identified two new
genes, PFKFB3 and KLRB1, that are not yet found to be significantly
associated to BMI. The odds ratios associated with all SNPs found in
these genes were less than one, indicating that they decreased the odds
of extreme obesity risk. These results are potentially supported by
work conducted by Huo et al., who reported that mice transgenically
modified to selectively overexpress PFKFB3 in adipocytes show increases
fat deposition in their adipose tissue (Huo et al. 2012). In contrast, an
earlier study reported that transgenic mice with reduced PFKFB3 ex-
pression show exacerbated diet-induced insulin resistance (Huo et al.
2010). Kerr et al. showed that inhibition ofPFKFB3mRNA impairs basal
and insulin stimulated lipogenesis and also proposed that decreasing the
expression of PFKFB3 may inhibit adipocyte lipid storage (Kerr et al.
2019). This would support a hypothesis that polymorphisms leading to a
decrease in PFKFB3 expressionmay be protective from the development
of obesity; however, tissue-specific transcriptional studies in humans
would be required to fully support this assertion.

We also observed polymorphisms in KLRB1 correlate with a de-
crease of odds in extreme obesity risk. KLRB1 expression produces a
type II transmembrane glycoprotein also known as CD161; a member
of the C-type lectin superfamily. CD161 is expressed on the surface of
most natural killer (NK) cells and natural killer T (NKT) but also on
subsets of peripheral T cells andCD3+ thymocytes.While the biological

function of CD161 is not firmly established, it was suggested that it
serves either as a stimulatory receptor or to inhibit NK cell-mediated
cytotoxicity and cytokine production (Lanier et al. 1994). Indeed, NK
cells were shown to be upregulated in the fat of obese twins (Pietiläinen
et al. 2008); moreover, BMI andKLRB1 expressionmay be correlated in
thatKLRB1 transcription has been reported to increase as BMI increases
(Rai et al. 2014). Additionally, CD161bright CD8+ mucosal associated
invariant T (MAIT) cells play a central role in maintaining mucosal
immunity and therefore, changes in CD161 expression on these cells
may lead to alterations in mucosal immunity and gut microbiota ho-
meostasis. These changes may in turn manifest as alterations of dietary
metabolism. It is noteworthy that increases inMAIT cells are associated
with Juvenile Type 1 Diabetes and polymorphisms inKLRB1 have been
associated with ischemic heart disease (Makeeva et al. 2015), and dif-
ferential transcription of KLRB1 has been reported in DM2 and coro-
nary artery disease (Gong et al. 2017). Furthermore, another gene,
GRIN2A, that is part of the family of genes {GRIN1, GRIN2A, GRIN2B,
GRIN2C, GRIN2D, GRIN3A, and GRIN3B}, which encode proteins
that form a receptor in charge of sending chemical messages be-
tween neurons in the brain, was found to be associated to obesity in
adult women defined as metabolically healthy in Schlauch et. al
(p=1.7x10-5). (Schlauch et al. 2018).

Associations between FTO and obesity were just under genome-
wide significance levels. This is a possible indication that FTO poly-
morphisms cause small changes in BMI, rather than the wide range
differences observed between extreme obese cases and controls. None-
theless, previous research has demonstrated that a combination of
several FTOmutationswill increase the likelihood of a participant being

n■ Table 6 Statistically Significant BMI PheWAS SNPs including DM2 as a comorbidity

Phenotype Description SNP Gene b (SE) Odds Ratio PheWAS p-value N Cases Controls

250.2 Type 2 Diabetes rs2246606 TDH -0.331 0.073 0.718 6.32x10-6 5566 459 5107
796 Elevated prostate specific

antigen [PSA]
rs9937053 FTO 0.882 0.197 2.416 7.76x10-6 6293 71 6222

796 Elevated prostate specific
antigen [PSA]

rs9930333 FTO 0.881 0.197 2.413 7.88x10-6 6297 71 6226

796 Elevated prostate specific
antigen [PSA]

rs9940128 FTO 0.875 0.197 2.398 8.66x10-6 6297 71 6226

796 Elevated prostate specific
antigen [PSA]

rs1121980 FTO 0.872 0.197 2.391 9.60x10-6 6298 71 6227

250 Diabetes Mellitus rs2246606 TDH -0.318 0.072 0.728 1.14x10-5 5577 470 5107
796 Elevated prostate specific

antigen [PSA]
rs1421085 FTO 0.855 0.197 2.351 1.41x10-5 6298 71 6227

796 Elevated prostate specific
antigen [PSA]

rs1558902 FTO 0.854 0.197 2.350 1.43x10-5 6298 71 6227

278.1 Obesity rs2948300 N/A 0.199 0.047 1.221 1.90x10-5 5805 1172 4633
796 Elevated prostate specific

antigen [PSA]
rs17817449 FTO 0.823 0.196 2.277 2.75x10-5 6298 71 6227

796 Elevated prostate specific
antigen [PSA]

rs8043757 FTO 0.822 0.196 2.275 2.82x10-5 6298 71 6227

250.2 Type 2 Diabetes rs2572386 FAM167A -0.303 0.073 0.739 3.57x10-5 5564 459 5105
278 Obesity, Overweight rs2948300 N/A 0.182 0.044 1.200 3.71x10-5 5980 1347 4633
796 Elevated prostate specific

antigen [PSA]
rs8050136 FTO 0.788 0.195 2.198 5.55x10-5 6298 71 6227

796 Elevated prostate specific
antigen [PSA]

rs9939609 FTO 0.787 0.196 2.197 5.71x10-5 6298 71 6227

250.2 Type 2 Diabetes rs1435277 N/A -0.292 0.073 0.747 5.94x10-5 5554 458 5096
401 Hypertension rs12412241 N/A -0.221 0.055 0.802 6.49x10-5 6057 1385 4672
796 Elevated prostate specific

antigen [PSA]
rs3751812 FTO 0.772 0.195 2.163 7.87x10-5 6297 71 6226

250 Diabetes Mellitus rs2572386 FAM167 -0.284 0.072 0.753 8.44x10-5 5575 470 5105
401.1 Essential Hypertension rs12412241 N/A -0.216 0.056 0.806 1.02x10-4 6037 1365 4672
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classified as obese (Li et al. 2009). Speakman et al. further stated that
Frayling showed the FTO was significantly associated with diabetes
only through its association with BMI (Speakman et al. 2018).

The comprehensive series of GWASs presented here validates
associations of obesity and BMI found in previous studies, such as
the FTO andNEGR1 loci (Willer et al. 2009; Speliotes et al. 2010; Okada

et al. 2012; Locke et al. 2015). Many larger studies identify associative
loci inMC4R (Willer et al. 2009; Speliotes et al. 2010; Okada et al. 2012).
While our studies did not detect SNPs in MC4R with genome-wide
significance, they did identify associations at p=1x10-4 and p=1.7x10-4

of SNPs rs17782313 and rs571312 (Willer et al. 2009; Speliotes et al.
2010). A number of obesity case-control studies have found variations

Figure 4 PheWAS results between BMI and EHR Phenotypes. This figure illustrates the results of individual linear regression between incidence
of phenotype groups (phecodes) and the continuous BMI metric of all 6,645 individuals. Each of the 301 points represents the p-value of the
association between one of 1,523 phecodes with at least 20 cases assigned to it, and BMI. Statistical significance was assessed by using the False
Discovery Rate of 0.1, corresponding to a raw p-value of 1.96x10-2. Only associations with p , 1x10-15 are annotated for ease of viewing,
represented by a horizontal line at 15 on the y-axis.

Figure 5 PheWAS results between obesity-significant SNPs and EHR Phenotypes. This figure presents results of individual logistic regressions
between incidence of 372 phenotype groups (phecodes) and the genotypes of 34 SNPs found to be associated with extreme obesity. Each point
represents the p-value of one SNP and one of 372 phecodes with at least 20 cases assigned to it. The horizontal red line represents the
significance level p=3.85x10-4, and the blue line represents the Bonferroni correction of p=4x10-6.
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in the MC4R gene (Xi et al. 2012; Evans et al. 2014). Our case-control
study does reveal that rs17782313 in MC4R associates with obesity at
p=3x10-4. Our cohort is a controlled, regional population. The next two
stages of the Healthy Nevada Project will add between 40,000 (2019)
and 150,000 (late 2020) more Nevadans to the current cohort. With
these much larger cohort sizes, it is our hope that a stronger associate
link with MC4R will be identified.

PheWAS of healthy Nevada BMI and obesity
To the best of our knowledge, this is the first dual-PheWAS targeted at
BMI and obesity. Cronin et al. present a comprehensive PheWAS

targeted at FTO variants, which also show strong associations with
overweight and obesity phenotypes, hypertension and hyperlipidemia
(Cronin et al. 2014). Milliard et al. perform a large PheWAS study to
examine phenotypic associations with BMI that focus on the nervous-
ness phenotypes: the study identified known associations such as di-
abetes and hypertension (Millard et al. 2019).

ThePheWASperformedon the SNPassociations in this study’s BMI
cohort identified strong associations of elevated PSA levels with vari-
ants in FTO, and indicates that the number of minor alleles of these
variants is predictive of elevated PSA. This finding is in contradiction to
the reports (Bañez et al. 2007; Oh et al. 2013; Zhang et al. 2016; Bonn

n■ Table 7 Statistically Significant Obesity PheWAS SNPs

Phenotype Description SNP Gene b (SE) Odds Ratio PheWAS p-value N Cases Controls

278 Overweight, Obesity rs1620977 NEGR1 0.409 0.070 1.506 4.09x10-9 2819 640 2179
278.1 Obesity rs1620977 NEGR1 0.405 0.071 1.499 1.45x10-8 2779 600 2179
278.11 Morbid Obesity rs1620977 NEGR1 0.432 0.080 1.541 5.96x10-8 2624 445 2179
278.1 Obesity rs1776012 NEGR1 -0.326 0.067 0.722 1.18x10-6 2762 594 2168
278.1 Obesity rs1870676 NEGR1 -0.324 0.067 0.723 1.40x10-6 2757 593 2164
278.1 Obesity rs9424977 NEGR1 -0.321 0.067 0.725 1.46x10-6 2776 599 2177
278 Overweight, Obesity rs1776012 NEGR1 -0.308 0.065 0.735 2.23x10-6 2802 634 2168
278 Overweight, Obesity rs1870676 NEGR1 -0.305 0.065 0.737 2.84x10-6 2797 633 2164
278 Overweight, Obesity rs9424977 NEGR1 -0.303 0.065 0.739 2.87x10-6 2816 639 2177
250.4 Abnormal glucose rs1776012 NEGR1 -0.444 0.095 0.642 3.20x10-6 2664 272 2392
250.4 Abnormal glucose rs1870676 NEGR1 -0.444 0.096 0.642 3.58x10-6 2655 270 2385
250.4 Abnormal glucose rs9424977 NEGR1 -0.424 0.095 0.655 7.81x10-6 2674 273 2401
564 Functional digestive disorders rs750456 CABP5 0.989 0.229 2.689 1.55x10-5 2518 40 2478
278.11 Morbid Obesity rs2241005 KLRB1 -0.321 0.075 0.725 1.64x10-5 2625 445 2180
278.11 Morbid Obesity rs2058426 N/A -0.322 0.075 0.725 1.66x10-5 2621 445 2176
278.1 Obesity rs2568958 N/A -0.294 0.070 0.745 2.89x10-5 2781 601 2180
278.1 Obesity rs2815752 N/A -0.294 0.070 0.745 2.89x10-5 2781 601 2180
564.1 Irritable Bowel Syndrome rs750456 CABP5 0.992 0.238 2.697 2.98x10-5 2515 37 2478
278.11 Morbid Obesity rs1870676 NEGR1 -0.315 0.075 0.730 3.06x10-5 2605 441 2164
278.1 Obesity rs3101336 N/A -0.293 0.070 0.746 3.08x10-5 2781 601 2180
278.11 Morbid Obesity rs1776012 NEGR1 -0.315 0.076 0.730 3.14x10-5 2606 438 2168
250.2 Type 2 Diabetes rs2246606 TDH -0.468 0.115 0.626 4.98x10-5 2591 187 2404
278.1 Obesity rs2953802 N/A 0.266 0.066 1.305 5.13x10-5 2781 601 2180
278.11 Morbid Obesity rs9424977 NEGR1 -0.304 0.075 0.738 5.21x10-5 2620 443 2177
278 Overweight, Obesity rs2568958 N/A -0.274 0.068 0.760 5.88x10-5 2821 641 2180
278 Overweight, Obesity rs2815752 N/A -0.274 0.068 0.760 5.88x10-5 2821 641 2180
278 Overweight, Obesity rs3101336 N/A -0.273 0.068 0.761 6.27x10-5 2821 641 2180
250.2 Type 2 Diabetes rs2736280 TDH -0.452 0.114 0.636 7.48x10-5 2588 187 2401
250 Diabetes Mellitus rs2246606 TDH -0.447 0.114 0.639 8.11x10-5 2596 192 2404
250.2 Type 2 Diabetes rs2953802 N/A 0.431 0.110 1.539 8.90x10-5 2591 187 2404
250.4 Abnormal glucose rs2568958 N/A -0.389 0.100 0.678 1.08x10-4 2678 274 2404
250.4 Abnormal glucose rs2815752 N/A -0.389 0.100 0.678 1.08x10-4 2678 274 2404
278 Overweight, Obesity rs2241005 KLRB1 -0.247 0.064 0.781 1.11x10-4 2821 641 2180
250.4 Abnormal glucose rs3101336 N/A -0.388 0.101 0.678 1.12x10-4 2678 274 2404
278.1 Obesity rs2241005 KLRB1 -0.253 0.066 0.776 1.14x10-4 2781 601 2180
278.1 Obesity rs2058426 N/A -0.250 0.066 0.779 1.43x10-4 2777 601 2176
278 Overweight, Obesity rs2058426 N/A -0.243 0.064 0.784 1.46x10-4 2817 641 2176
250 Diabetes Mellitus rs2736280 TDH -0.426 0.112 0.653 1.48x10-4 2593 192 2401
250.41 Impaired fasting glucose rs1870676 NEGR1 -0.471 0.125 0.625 1.59x10-4 2535 150 2385
278.11 Morbid Obesity rs2953802 N/A 0.278 0.074 1.321 1.76x10-4 2625 445 2180
250 Diabetes Mellitus rs2953802 N/A 0.407 0.109 1.502 1.77x10-4 2596 192 2404
250.41 Impaired fasting glucose rs1776012 NEGR1 -0.464 0.124 0.629 1.80x10-4 2543 151 2392
401.1 Essential Hypertension rs2948300 N/A 0.282 0.078 1.326 3.02x10-4 2737 521 2216
278 Overweight, Obesity rs2953802 N/A 0.231 0.064 1.260 3.06x10-4 2821 641 2180
250.2 Type 2 Diabetes rs2572386 FAM167A -0.415 0.115 0.660 3.15x10-4 2590 187 2403
497 Bronchitis rs1620977 NEGR1 0.673 0.188 1.960 3.47x10-4 2118 60 2058
250.41 Impaired fasting glucose rs9424977 NEGR1 -0.441 0.124 0.644 3.60x10-4 2552 151 2401
278.11 Morbid Obesity rs2568958 N/A -0.283 0.079 0.753 3.66x10-4 2625 445 2180
278.11 Morbid Obesity rs2815752 N/A -0.283 0.079 0.753 3.66x10-4 2625 445 2180
278.11 Morbid Obesity rs3101336 N/A -0.282 0.080 0.754 3.85x10-4 2625 445 2180
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et al. 2016) indicating an inverse relationship between PSA levels and
BMI. However, serum levels of PSA may be elevated due to reasons
other than prostatic malignancy. Benign prostatic hyperplasia (BPH),
prostatitis (Nadler et al. 1995), ejaculation (Herschman et al. 1997), or
manipulation of the prostate gland (Chybowski et al. 1992; Crawford
et al. 1992; Tarhan et al. 2005) may cause elevated levels of serum PSA.
Our study did not control for such parameters. Our sample includes
only 71 individuals with ICD codes indicating high PSA levels, of which
a number are morbidly obese. Increased BMI is often associated with
increased age and our study population was significantly older than
the general median age of the U.S. population. Thus, it is possible
that older age contributed to increased likelihood of BPH and, sub-
sequently, elevated serum PSA, negating the reported inverse effect
of BMI on PSA levels and possibly exposing a novel association with
variants in FTO.

Many of the clinical associations observed in the PheWASs of the
HNP in relation to various degrees of increasedBMI and the presence of
obesity are part of the cluster of clinical conditions associated with
metabolic syndrome (Alberti et al. 2009). Obesity is a risk factor for
respiratory conditions such as chronic obstructive pulmonary disease
(COPD), asthma, obstructive sleep apnea and obesity hypoventilation

syndrome, and may influence the development and presentation of
these diseases (Poulain et al. 2006). Accumulation of fat tissue impairs
ventilatory function in adults (Lazarus et al. 1997) and increased BMI is
associated with a reduction in forced expiratory volume in one second
(FEV1), forced vital capacity (FVC), total lung capacity, functional re-
sidual capacity and expiratory reserve volume (Rubinstein et al. 1990;
Chinn et al. 1996; Lazarus et al. 1997; Biring et al. 1999). Peripheral
edema has long been recognized as associated with extreme obesity
(Alexander et al. 1962). In the U.K. Community Nursing Services
study, obesity was found as an independent risk factor for chronic
edema (Moffatt et al. 2019).

To the best of our knowledge, this work was the first to conduct
simultaneous and comprehensive genome-wide and phenome-wide
association studies to validate genetic associations of BMI and severe
class 2 obesity. While GWAS/PheWAS studies have been conducted in
the past, the present study leveraged a unique EHR database to identify
26 SNPs across six chromosomes associated with extreme obesity.
Moreover, while approximately 70% were associated with obesity and
BMI in prior studies, 30% are novel with respect to these metrics,
suggesting that they may be of special significance. For example, our
uniqueapproachallowedus to identify anovelpolymorphismassociated

Figure 6 PheWAS results between extreme obesity and EHR Phenotypes. This figure illustrates the results of individual linear regression between
incidence of phenotype groups (phecodes) and the incidence of extreme obesity in 2,996 individuals. Each of the 191 points represents the
p-value of the association between one of 1,362 phecodes with at least 20 cases assigned to it, and extreme obesity. Statistical significance was
assessed by using the False Discovery Rate of 0.1, corresponding to a raw p-value of 1.4x10-2. Only associations with p , 1x10-15 are annotated
for ease of viewing, represented by a horizontal line at 15 on the y-axis.
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with extreme obesity in a previously uncharacterized pseudogene that is
primarily expressed in the pancreas. Given that the pancreas serves an
essential role in converting food into fuel and regulating blood sugar,
future studies may support a critical role for these SNPs in extreme
obesity cases and may suggest targeted treatment strategies.
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