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Abstract

Epigenetics are thought to play a major role in the carcinogenesis of multiple sporadic colorectal cancers (CRC). Previous
studies have suggested concordant DNA hypermethylation between tumor pairs. However, only a few methylation markers
have been analyzed. This study was aimed at describing the epigenetic signature of multiple CRC using a genome-scale
DNA methylation profiling. We analyzed 12 patients with synchronous CRC and 29 age-, sex-, and tumor location-paired
patients with solitary tumors from the EPICOLON II cohort. DNA methylation profiling was performed using the Illumina
Infinium HM27 DNA methylation assay. The most significant results were validated by Methylight. Tumors samples were also
analyzed for the CpG Island Methylator Phenotype (CIMP); KRAS and BRAF mutations and mismatch repair deficiency status.
Functional annotation clustering was performed. We identified 102 CpG sites that showed significant DNA
hypermethylation in multiple tumors with respect to the solitary counterparts (difference in b value $0.1). Methylight
assays validated the results for 4 selected genes (p = 0.0002). Eight out of 12(66.6%) multiple tumors were classified as CIMP-
high, as compared to 5 out of 29(17.2%) solitary tumors (p = 0.004). Interestingly, 76 out of the 102 (74.5%) hypermethylated
CpG sites found in multiple tumors were also seen in CIMP-high tumors. Functional analysis of hypermethylated genes
found in multiple tumors showed enrichment of genes involved in different tumorigenic functions. In conclusion, multiple
CRC are associated with a distinct methylation phenotype, with a close association between tumor multiplicity and CIMP-
high. Our results may be important to unravel the underlying mechanism of tumor multiplicity.
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Introduction

Up to 10% of all colorectal cancer (CRC) patients develop more

than one tumor in the colorectum, either synchronously

(diagnosed at the same time) or metachronously (diagnosed during

follow-up) [1,2,3]. Tumor multiplicity is thought to occur because

of a common etiologic factor (genetic or environmental) and

provide a good model to examine common molecular alterations

and, more specifically, a potential field effect [4,5,6,7]. Genetics

explain only a part of the spectrum of multiple CRCs, especially

those occurring in the context of Lynch syndrome (caused by

mutations in the mismatch repair genes) [8,9,10], familial

associated polyposis (FAP) [11], MUTYH associated polyposis

(MAP) [11] and other forms of colorectal polyposis [12]. On the

other side, the concept of field defect has been proposed to explain

tumor multiplicity through a generalized cellular or molecular

disorder in the entire colorectal mucosa, causing a putative field

effect (so called ‘‘field cancerization’’) [6,7], such as in serrated

polyposis syndrome [13,14,15]. However, the definitive underlying

pathogenic mechanism of tumor multiplicity remains elusive.

In the non-hereditary scenario, previous studies have found

common molecular alteration patterns between CRC pairs and in

the normal colonic mucosa of patients with multiples colorectal

tumors, supporting a putative field defect [4,10,14,16]. In contrast

to genetic alterations, which are not commonly found in normal

mucosa from cancer patients, epigenetics are thought to play a

major role in the carcinogenesis of those individuals that develop

multiple tumors [4,5,14,17,18,19,20,21]. In this sense, it has been

suggested that synchronous CRCs are more frequently associated

with the CpG island methylator phenotype (CIMP) [4], BRAF
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Table 1. Clinical and tumor characteristics of solitary and multiple colorectal cancer patients.

Clinico-pathological features Solitary CRC patients (n = 29) Multiple CRC patients (n = 12) p value

Age (years) 71.169.1 74.067.1 0.33

Age

,65years 6(20%) 1(8.3%) 0.65

$65years 23(79%) 11(91.7%)

Gender

Male 20(69%) 9(75%) 1

Female 9(31%) 3(25%)

Body mass index (Kg/m2)

,30 23(82%) 9(75%) 0.67

$30 5(18%) 3(25%)

Tumor location1

Proximal 6 (20.6%) 2 (16.6%) 0.57

Distal 23 (79.4%) 10 (38.4%)

Family history of CRC in any first degree relative

No 26(89.6%) 8(66.7%) 0.91

Yes 3(10.3%) 4(33.3%)

Family history of Lynch-related tumor* in any first degree
relative

No 22(75.9%) 8(66.7%) 0.39

Yes 7(24.1%) 4(33.3%)

Microsatellite instability status

Stable 25(86.2%) 12(100%) 0.4

Unstable 2(6.9%) 0(0%)

Tumor differentiation

Well or moderate 24(100%)2 11(100%)3 1

Poor - -

Mucinous tumor

No 20(83.3%)2 7(70%)4 0.394

Yes 4(16.7%) 3(30%)

TNM stage

I 4(13.8%) 2(16.7%) 0.298

II 9(31%) 6(50%)

III 11(37.9%) 1(8.3%)

IV 5(17.2%) 3(25%)

Somatic BRAF mutational status

Wild type 24 (100%)2 9 (100%)5 1

Mutated - -

Somatic KRAS mutational status

Wild type 14(58.3%)2 6(66.7%)5 1

Mutated 10(41.7%) 3(33.3%)

CIMP-high status6

Positive 5(17.2%) 8(66.7%) 0.004

Negative 24(82.8%) 4(33.3%)

* Lynch-related tumors: colorectal, endometrial, ovary, stomach, urinary tract, biliary, pancreas, brain.
1Referred to the splenic flexure;
2Referred to 24 patients;
3Referred to 11 patients;
4referred to 10 patients;
5referred to 9 patients.
6Based on Illumina Infinium DNA methylation assay.
CRC, colorectal cancer.
doi:10.1371/journal.pone.0091033.t001
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mutation and microsatellite instability [10]. Indeed, our group

compared a set of 41 pair-wise multiple and solitary CRCs and

identified hypermethylation of the MGMT2 locus and RASSF1A

gene as variables independently associated with tumor multiplicity.

Moreover, several studies have found concordant methylation

patterns in tumor pairs [4,14,17,18]. On the other hand, global

DNA hypomethylation has been linked to genomic instability and

carcinogenesis [22,23] and, recently, higher hypomethylation of

LINE-1 (a surrogate marker of global DNA methylation) in

normal colonic mucosa has been found to be a distinctive feature

of patients with synchronous CRCs [14]. All these results suggest

that shared environmental and/or genetic background may cause

concordant patterns of DNA methylation in patients with multiple

tumors. However, only a few methylation markers have been

analyzed and high throughput techniques with genome wide

capability are needed to find and better understand the underlying

epigenetic signature of multiple sporadic CRCs.

In this study we aimed at describing the underlying epigenetic

signature that differentiates multiple from solitary CRC tumors

using a genome-wide approach. For this purpose, we analyzed 12

synchronous and 29 control solitary CRCs derived from the

population-based EPICOLON-II cohort, and evaluated the

genome-scale methylation profile using the Illumina Infinium

HM27 DNA methylation assay, an approach that has not been

previously attempted.

Materials and Methods

Patients and samples
Twelve patients with synchronous CRC and 29 age-, sex-, and

tumor location-paired patients with solitary tumors were recruited

from the EPICOLON II cohort, a multicenter population-based

study performed in Spain between 2006 and 2007 [24].

Synchronous tumors were clearly separated by normal colonic

mucosa and both were invasive (at least pT1). Patients were

followed until death or March 2012, whichever came first.

Demographic, clinical and tumor-related characteristics of patients

included in the study are summarized in Table 1. Exclusion

criteria for the present study were colorectal polyposis syndromes,

Lynch syndrome, and personal history of inflammatory bowel

disease. The Institutional Ethics Committee of each participating

hospital (see Acknowledgements) approved the study, and written

informed consent was obtained from all patients.

Frozen tumor colorectal tissues were obtained at surgery from

all patients, and immediately stored at 280u until use. In patients

with multiple lesions, tissue sample was obtained from one of the

tumors (the most advanced or the largest one when multiple

tumors had the same tumor stage).

DNA extraction and bisulfite conversion
Frozen samples were thawed and genomic DNA was isolated

using QIAamp DNA Mini Kit (Qiagen, Valencia, CA) according

to the manufacturer’s instructions. Bisulfite treatment was carried

out on genomic DNA using the EZ DNA Methylation-Gold Kit

(Zymo Research, Orange, CA) according to the manufacturer’s

protocol.

Infinium array
We performed DNA methylation profiling from 12 synchronous

and 29 solitary CRCs using Infinium methylation assay with

HumanMethylation27 BeadChip (Illumina, San Diego, CA),

which is capable of simultaneously analyze the methylation status

of 27,578 individual CpG sites covering 14,495 protein-coding

genes and 110 miRNAs [25,26,27]. Whole genome amplification,
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labeling, hybridization and scanning were performed according to

the manufacturer’s instruction at a core facility (Centre de

Regulació Genòmica, Barcelona, Catalonia, Spain). Methylation

status was measured as the ratio of signal from a methylated probe

relative to both methylated and unmethylated probe signals.

Methylation ratios were extracted using the Methylation Module

in the Illumina Bead Studio following average normalization.

Quantitative b-value ranges from 0 (0% methylation) to 1 (100%

methylation). The p-value cut off for detected probes (different

from background measurements) was set at 0.05. We excluded

probes that were previously published to be unreliable (those

containing single-nucleotide polymorphisms (SNPs) and those

repetitive sequences that covered the targeted CpG dinucleotide)

and those that were designed for sequences on either the X or the

Y chromosome. Together, we masked data points for 7549 probes

[27]. Complete microarray dataset is available at GEO (Gene

Expression Omnibus; accession number GSE52573).

Definition of CIMP-high tumors based on the Infinium
assay

We classified tumors as CIMP-high (CIMP-H), CIMP-low

(CIMP-L) and CIMP-0 based on a 2-step panels of markers

recently described by Hinoue et al based on the Illumina Infinium

HM27 DNA methylation assay [27]. The first panel (B3GAT2,

FOXL2, KCNK13, RAB31, and SLIT1) qualifies a sample as CIMP

(High and Low) versus CIMP-0 if b-value is $0.1 in three or more

markers. The second marker panel (FAM78A, FSTL1, KCNC1,

MYODCD and SLC6A4) distinguishes CIMP-H versus CIMP-L

tumors if b-value is $0.1 in three or more markers (Table 2).

These markers have shown to display 100% sensitivity and 100%

specificity to identify CIMP-H tumors [27].

Technical validation of the Infinium assay using
Methylight

Methylight technique for quantitative analysis of methylation

was used for the technical validation of the results observed in the

Illumina Infinium assay [28]. The following strict criteria were

used to selected candidate genes for validation: 1) solitary tumor

had a b value ,0.2; and 2) multiple tumors had either a b value

.0.3 and a difference in b value $0.2; and 3) adjusted p value

,0.05; and 4) previous evidence of tumor suppressive features

based on the published literature. Following these criteria, we

selected 4 genes for technical validation (MAP1B, HTRA1,

ALOX15, TIMP3). Locus specific PCR primers and probes are

listed on Table S1 and were specifically designed for bisulfited-

converted DNA sequences and located at each gene promoter

region. Methylight was carried out as previously described, using

ALUC4 as internal control [17,28].

Evaluation of tumor mismatch repair deficiency
Tumor mismatch repair deficiency was evaluated by both

microsatellite instability (MSI) testing and immunostaining

including evaluation of MSH2, MLH1, MSH6 and PMS2 as

previously described [29]. MSI status was assessed using BAT26

and NR24 quasimonomorphic markers as previously described

[30]. Tumors were classified as MSI when either of the two

markers was unstable.

Evaluation of BRAF and KRAS mutation status
BRAF mutations at codon 600 in exon 15, and KRAS mutations

at codons 12 and 13 in exon 2 were analyzed by Methylight and

direct sequencing, respectively, as previously published [31].

Functional annotation clustering of differentially
methylated genes between multiple and solitary
colorectal cancers

We used The Database for Annotation, Visualization and

Integrated Discovery (DAVID) [32] to identify pathways relevant

to carcinogenesis based on the genes that showed significantly

differential methylation between multiple and solitary multiple

tumors (difference in b value $0.1 and p,0.05) (DAVID: http://

david.abcc.ncifcrf.gov).

Statistical analysis
Logistic regression adjusted for age, sex and tumor location was

used to evaluate the difference in DNA methylation b-values for

each probe between two independent groups. The Illumina

Infinium DNA methylation b-values were represented graphically

using a heatmap, generated by the R/Bioconductor packages.

Clinicopathological features were compared using Chi-square

(qualitative variables) and t-tests (quantitative variables). Methy-

light quantitative data (percentage methylation ratio, PMR) was

analyzed using the Mann-Whitney U test. A p-value,0.05 was

considered statistically significant. Statistical analysis and data

visualization were carried out using the R/Bioconductor software

package and SSPS software (v.15).

Results

Differential methylation between multiple and solitary
tumors

Twelve patients with multiple CRC and 29 age-, sex-, and

tumor location-paired patients with solitary tumors constituted the

basis of this study. Demographic and tumor characteristics from

patients included in this study are listed in Table 1. We used

Illumina Infinium HM27 DNA methylation assay, which assesses

the DNA methylation status of 27,578 CpG sites located at the

promoter regions of over 14,000 protein-coding genes. We

identified 102 CpG sites that showed significant DNA hyper-

methylation in multiple tumors with respect to solitary ones

(difference in b value $0.1 and p,0.05). Using more stringent

criteria (difference in b value $0,2; p,0.05), we identified 36 CpG

sites significantly hypermethylated (see detailed list of genes in

Table S2). A heatmap showing the most significantly hyper-

methylated CpG sites that differentiate multiple and solitary

tumors is shown in Figure 1. Overall, these results show that

multiple tumors are associated with a distinct methylation

phenotype, irrespective of age, sex and tumor location.

Technical validation of microarray results
In order to technically validate the results of Infinium assay we

used stringent criteria to select probes that were significantly

hypermethylated in multiple tumors compared to solitary lesions

(b value in solitary tumors ,0.2; b value .0.3 in multiple tumors;

difference in b value between multiple and solitary tumors $0.2;

and an adjusted p value,0.05). In order to select biologically

relevant CpG sites, we prioritized genes with previous evidence of

tumor suppressor features. Following these criteria, we selected

MAP1B, HTRA1, ALOX15, and TIMP3 for validation in five

paired multiple and solitary tumors. Results are shown in

Figure 2. Globally, we found a significantly higher methylation

levels in multiple tumors compared to solitary ones (overall PMR,

14% versus 2.7%, respectively; p = 0.0002). As shown in Figure 2,

all four markers showed higher levels of methylation in multiple

tumors with respect to the solitary ones, thus reinforcing the

consistency of our results.
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CIMP-high is associated with tumor multiplicity
We next analyzed the CIMP status of multiple and solitary

tumors based on the recently developed gene marker panels

defined by Hinoue et al [27]. This panel has recently shown to

outperform the Methylight-based five-marker panel described by

Weisenberger [33]. Ten out of the 12 (83%) multiple tumors and

25 out of the 29 (86.2%) solitary CRC showed hypermethylation

of three or more markers from the first panel (i.e. B3GAT2,

FOXL2, KCNK13, RAB31, and SLIT1), so they were classified as

CIMP tumors. Based on the second panel (i.e. FAM78A, FSTL1,

KCNC1, MYOCD, and SLC6A4), 8 out of the 12 (66.6%) multiple

tumors were finally classified as CIMP-H, as compared to 5 out of

the 29 (17.2%) solitary tumors (p = 0.004) (Table 2). CIMP-H

tumors displayed significant hypermethylation (difference in b
value $0.1; p value,0.05) in 301 CpG sites (109 with a difference

in b value $0.2; p value,0.05). A heatmap showing the most

significant CpG sites that differentiate CIMP-H and CIMP-L/0

tumors is shown in Figure 3. A detailed list with CIMP-H

hypermethylated CpG sites is shown in Table S3. Interestingly,

76 out of the 102 hypermethylated CpG sites in multiple tumors

were also seen to be hypermethylated in CIMP-H tumors

(Figure 4). There were no BRAF mutations in any tumor. Our

results show a close association between tumor multiplicity and

CIMP, irrespective of age, sex and tumor location. This

Figure 1. Heatmap showing the 90 most significantly hypermethylated CpG sites that differentiate multiple CRCs (n = 12) with
respect to solitary tumors (n = 29) based on the Infinium DNA methylation data. The DNA methylation b-values are represented by using a
color scale from red (high DNA methylation) to green (low DNA methylation). Rows represent probes and columns represent tumor samples. Clinical
and molecular features (group, gender, tumor location, CIMP-H and KRAS mutational status) are represented above the heatmap with horizontal bars.
doi:10.1371/journal.pone.0091033.g001
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observation is in agreement with a previous larger study in which

tumors were classified using Methylight-based markers [4], thus

reinforcing the field-defect theory.

Association between KRAS mutations and
hypermethylation

KRAS mutations have been associated to a methylation

phenotype called CIMP-low, in which hypermethylation of a

reduced number of CIMP-defining loci occur [27]. We sought to

investigate the methylation profile associated with KRAS mutant

tumors and its association with tumor multiplicity. We found that

KRAS mutant tumors were represented in both multiple and

solitary tumors (33.3% versus 43.4%, respectively; p = 0.7)

(Figure 1). Interestingly, we found that KRAS mutant tumors

showed a distinct methylation profile compared to KRAS wild-type

tumors. We identified 189 CpG sites that showed significant DNA

hypermethylation in KRAS mutant CRCs with respect to KRAS

wild-type tumors (difference in b value $0.1 and p,0.05). Using

more stringent criteria (difference in b value $0,2; p,0.05), we

identified 92 CpG sites significantly hypermethylated. A detailed

list with KRAS-associated hypermethylated CpG sites is shown in

Table S4 and Figure S1. The percentage of CIMP-H did not

differ between KRAS mutant and wild-type tumors (23% versus

35%, respectively; p = 0.7). Similarly, the percentage of CIMP-low

did not differ between KRAS mutant and wild-type tumors (69.2%

versus 55%, respectively; p = 0.485). Overall, although we found

that KRAS mutated tumors display a distinct methylation profiles,

there was association with neither tumor multiplicity nor CIMP

status.

Functional analysis of differential methylation observed
in multiple colorectal cancer

We performed a enrichment analysis on the 102 hypermethy-

lated probes observed in multiple tumors (b value .0,1; p,0.05)

using the Database for Annotation, Visualization and Integrated

Discovery tool in order to find a functional correlation in any

carcinogenic pathway involved in carcinogenesis. This functional

analysis showed the presence and enrichment of genes involved in

different tumorigenic functions: cell motion (12 genes), cell

migration (7 genes), pathways in cancer (8 genes), cell motility (7

genes), regulation of cell proliferation (11 genes), transcription

factor activity (14 genes), and transcription regulation (17 genes)

(Table 3). Full list of functional annotation clustering of

differentially methylated genes is shown in Table S5.

Discussion

In this study we examined for the first time the genome-scale

DNA methylation profile of tumor tissues from patients with

multiple and solitary CRC recruited from a population-based

cohort. We found that tumor multiplicity is associated with a

distinct methylation profile, regardless of age, sex or tumor

location. Compared with solitary tumors, multiple CRCs showed

significant hypermethylation at specific CpG sites and, interest-

ingly, there was a strong association with the CIMP-H described

for CRC. Functional analysis of differentially methylated CpG

sites in multiple tumors showed enrichment of genes involved in

different tumorigenic functions. Results from the methylation

profiling were successfully validated by quantitative PCR assays.

Overall, our data provide new insight into the field cancerization

effect and colorectal carcinogenesis in non-hereditary cases. This

study reveals that somatic hypermethylation plays an important

role in tumor multiplicity and may constitute an interesting

biomarker for CRC risk assessment.

Recent studies have reported a close association between

aberrant DNA methylation and tumor multiplicity

[4,14,16,17,18]. Nosho and colleagues [4] analyzed 47 patients

with synchronous CRC and 2021 solitary tumors for several

methylation markers, including 8 CIMP-specific CpG island (i.e.

CACNA1G, CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, RUNX3,

and SOCS1) and found a significant association between tumor

multiplicity and the presence of CIMP-high (35% in synchronous

tumors versus 8% in solitary tumors; p = 0.036). More important-

Figure 2. Technical validation of Infinium methylation data using Methylight assays. Four genes (MAP1B, HTRA1, ALOX15, TIMP3) were
selected based on strict criteria (b value in solitary tumors ,0.2; b value .0.3 in multiple tumors; difference in b value between multiple versus
solitary $0.2; and an adjusted p value,0.05). Box-plots display the Percentage Methylation Ratio (PMR) determined by Methylight. The lines inside
boxes denote median, and boxes mark the interval between the 25th and 75th percentiles. Black lines denote the highest and lowest PMR value. P
values for the comparison between multiple (red) and solitary (blue) tumors (Mann-Whitney test) are shown.
doi:10.1371/journal.pone.0091033.g002
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ly, the authors found concordant methylation within tumor pairs.

Similarly, Konishi and colleagues [18] analyzed the methylation

status of a limited number of makers in 57 multiple tumors and 69

solitary CRCs, and found that the methylation status of p14 and

MGMT was significantly higher in multiple tumors, showing

concordant methylation for some markers within tumors pairs of

the same colonic site. In line with these observations, we previously

showed that hypermethylation of MGMT and RASSF1A is

independently associated with tumor multiplicity [17]. In another

study, Kamiyama and colleagues [14] analyzed the methylation

status of long interspersed nucleotide element-1 (LINE-1) in

matched cancer tissue and non-cancerous colonic mucosa from

patients with single and multiple right-sided CRCs. The authors

found higher hypomethylation of LINE-1 in both tumor and

normal mucosa from patients with multiple tumors compared to

patients with solitary tumors, and more importantly, LINE-1

hypomethylation was an independent predictor for metachronous

tumors (p = 0.003). The authors suggested that LINE-1 hypo-

methylation in normal mucosa could be used as an epigenetic

predictive biomarker for multiple CRC risk. It is important to note

Figure 3. Heatmap showing the 218 most significantly hypermethylated CpG sites that differentiate CIMP-H (n = 13) and CIMP-0/L
tumors (n = 28) based on the Infinium DNA methylation data. The DNA methylation b-values are represented by using a color scale from red
(high DNA methylation) to green (low DNA methylation). Rows represent probes and columns represent tumor samples. Clinical and molecular
features (group, gender, tumor location, CIMP-H and KRAS mutational status) are represented above the heatmap with horizontal bars.
doi:10.1371/journal.pone.0091033.g003
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that LINE-1 hypomethylation has been previously found to be

inversely correlated with the CIMP phenotype, which may be in

contradiction with our and previous studies. However, the

correlation between LINE-1 hypomethylation and CIMP in

multiple tumors has not been explored in depth, and differences

in patient selection and methodology could explain these

unexpected results. Finally, other studies have hypothesized that

the genetic and epigenetic landscape of a given tumor is

determined by the location in the colon, and that similar

molecular profiles for synchronous tumors is influenced by

proximity [34,35]. Unfortunately, we could not subanalyze this

issue due to the unavailability of the second neoplasm. All these

results suggest that accumulation of aberrant DNA methylation

occurs predominantly in individuals with a propensity to develop

multiple tumors. The results of the present study not only argue in

favor of this hypothesis, but also provide new evidence about the

epigenetic landscape of patients with multiple tumors. The

underlying mechanism of the association between aberrant

methylation and multiplicity is still unknown. Some authors have

suggested an inherited predisposition in some cases [14], with the

accumulation of methylation errors during aging in a genetically

predisposed subgroup of individuals. However, this hypothesis

remains unproven and future studies are needed.

In this study we successfully validated by Methylight the

methylation status of 4 differentially methylated CpG sites

observed in the discovery phase of the study. Specifically, we

observed that MAPB1B, HTRA1, ALOX15, and TIMP3 were

significantly hypermethylated in multiple tumors. MAP1B (Micro-

tubule-Associated Protein 1B) has been previously shown to be

hypermethylated in CIMP-high tumors without MSI, which

mainly correspond to the group of tumors analyzed in our study

[36]. HTRA1 is a member of the HTRA (High-Temperature

Requirement Factor A) family of serine proteases and plays a

Figure 4. Overlap between significantly hypermethylated CpG
sites in multiple and CIMP-H tumors. Blue circle shows 102
hypermethylated CpG sites found in multiple versus solitary tumors and
yellow circle shows the 301 hypermethylated CpG sites in CIMP-H
versus CIMP-L/0 tumors. Remarkably, 76 out of the 102 hypermethy-
lated genes in multiple tumors were also seen to be hypermethylated in
CIMP-H tumors, and are represented as an intersection.
doi:10.1371/journal.pone.0091033.g004

Table 3. Functional annotation clustering of differentially methylated genes found in multiple versus solitary tumors based on
DAVID analysis.

Category Term Count P value Genes

GOTERM_BP_FAT GO:0006928,cell motion 12 1.66821E-05 FGF19, SMO, RET, GDF7,
ARHGEF7, UNC5A, ERBB2,
GBX2, DPYSL5, KITLG,
CXCL12, RUNX3

GOTERM_MF_FAT GO:0003700,transcription factor activity 14 0.000934574 IRX3, THRB, SOX14, SOX5,
ZNF232, SOX8, GLI3,
DLX5, GBX2, HIF3A,
TFAP2A, ALX4, RUNX3,
FOXE3

GOTERM_BP_FAT GO:0016477,cell migration 7 0.002226607 FGF19, SMO, RET,
ARHGEF7, GBX2, KITLG,
CXCL12

KEGG_PATHWAY hsa05200:Pathways in cancer 8 0.002975368 FGF19, SMO, RET, ERBB2,
WNT9B, KITLG, GLI3,
DAPK1

GOTERM_BP_FAT GO:0048870,cell motility 7 0.003771569 FGF19, SMO, RET,
ARHGEF7, GBX2, KITLG,
CXCL12

GOTERM_BP_FAT GO:0042127,regulation of cell proliferation 11 0.004572205 SMO, HRH3, CCKBR,
ERBB2, DLX5, KITLG,
PDGFC, IGFBP3, GLI3,
FOXE3, RUNX3

SP_PIR_KEYWORDS transcription regulation 17 0.009600471 IRX3, MTERF, ZNF264,
THRB, SOX14, SOX5,
ZNF232, PRDM16, SOX8,
GLI3, ZNF681, GBX2,
HIF3A, TFAP2A, ALX4,
RUNX3, FOXE3

doi:10.1371/journal.pone.0091033.t003

Methylation Phenotype of Multiple Sporadic CRC

PLOS ONE | www.plosone.org 9 March 2014 | Volume 9 | Issue 3 | e91033



protective role in various malignancies due to its tumor suppressive

properties [37,38,39]. HTRA1 has shown to be silenced through

promoter hypermethylation [38], and proposed as a potential

novel biomarker for diagnosis and prediction in several cancers.

ALOX15 (15-lipoxygenase or 15-LOX) is an inducible and highly

regulated enzyme in normal human cells that plays a key role in

the production of lipid signaling mediators. ALOX15 has recently

shown to be down-regulated in CRC and act as a tumor

suppressor by promoting various anti-tumorigenic events, includ-

ing cell differentiation and apoptosis, and inhibits chronic

inflammation, angiogenesis and metastasis [40]. Finally, Tissue

Inhibitor of Metalloproteinases-3 (TIMP-3) has found to be

silenced in several types of cancer by promoter gene hypermethy-

lation, including CRC [41,42]. Overall, our results show that

multiple tumors are associated with hypermethylation of well-

established tumor suppressor genes.

Independently of the underlying mechanism behind the strong

association between aberrant methylation and tumor multiplicity,

our results suggest that the methylation status of specific markers

could be used to stratify the risk of tumor multiplicity. Kamiyama

and colleagues recently showed that LINE-1 methylation status in

normal colonic mucosa could predict the development of

metachronous CRC with high sensitivity [14], thus representing

a clinically important prognostic biomarker for the identification

of ‘‘high-risk’’ patients. Similarly, the analysis of the methylation

status of specific markers identified in our study could be used in a

clinical scenario to identify high-risk patients and tailor the

surveillance strategy. Prospective studies specifically analyzing this

hypothesis, however, are warranted.

The main strength of this study is that we utilized a population-

based cohort of well-described CRC cases, thus minimizing the

selection bias. Moreover, we used for the first time genome-wide

methylation profiling with Illumina Infinium assay in this setting.

However, we are aware of some limitations. First, we did not

analyze DNA methylation correlation in tumor pairs due to the

design of the EPICOLON II project, in which only one tumor was

collected. Second, CIMP definition was not based on previously

described methylation markers [33]. However, there is currently

no consensus definition of CIMP tumors, and Hinoue and

colleagues [27] recently showed that a new panel based on the

Illumina Infinium DNA methylation platform outperformed the

Methylight-based five-marker panel (i.e. CACNA1G, IGF2, NEU-

ROG1, RUNX3 and SOCS1). The frequency of CIMP-high

frequency in solitary CRCs observed in our study (17%) is in

line with previous figures, which reinforces the accuracy of the new

panel proposed by Hinoue et al. Third, in our study, there were not

BRAF mutant tumors, and accordingly, the association of tumor

multiplicity with a distinct methylation phenotype refers only to

CIMP-high/BRAF wild-type tumors, which can represent up to

40% of CIMP-high tumors. Finally, as our results should be

formally considered not statistically significant when applying

multiple testing corrections, additional studies in other cohorts are

needed in order to confirm the results. However, we were able to

confirm some of the most significant hypermethylated CpG sites

by Methylight, thus reinforcing the validity of our results.

In summary, our results are consistent with the hypothesis that

tumor multiplicity is associated with a distinct pattern of aberrant

methylation. Compared with solitary tumors, multiple CRCs

display more frequently CIMP-H and hypermethylation at other

specific locus. Our results may be important to unravel the

underlying mechanism of tumor multiplicity in the non-hereditary

scenario, and provide novel potential biomarkers for identifying

high-risk patients and tailoring surveillance strategies.
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Virgı́nia Piñol, Sergi Castellvı́-Bel, Francesc Balaguer, Victoria Gonzalo,
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Argüello (local coordinator), Vicente Pons, Virginia Pertejo, Teresa Sala;

Hospital Sant Pau, Barcelona: Dolors Gonzalez (local coordinator), Eva

Roman, Teresa Ramon, Maria Poca, Ma Mar Concepción, Marta Martin,

Lourdes Pétriz; Hospital Xeral Cies, Vigo: Daniel Martinez (local

coordinator); Fundacion Publica Galega de Medicina Xenomica
(FPGMX), CIBERER, Genomic Medicine Group-University of Santiago

de Compostela, Santiago de Compostela, Galicia, Spain: Ángel Carracedo
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