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ABSTRACT

Enhancer elements are essential for tissue-specific
gene regulation during mammalian development.
Although these regulatory elements are often
distant from their target genes, they affect gene ex-
pression by recruiting transcription factors to
specific promoter regions. Because of this long-
range action, the annotation of enhancer element–
target promoter pairs remains elusive. Here, we
developed a novel analysis methodology that takes
advantage of Hi-C data to comprehensively identify
these interactions throughout the human genome.
To do this, we used a geometric distribution-based
model to identify DNA–DNA interaction hotspots
that contact gene promoters with high confidence.
We observed that these promoter-interacting
hotspots significantly overlap with known
enhancer-associated histone modifications and
DNase I hypersensitive sites. Thus, we defined thou-
sands of candidate enhancer elements by
incorporating these features, and found that they
have a significant propensity to be bound by p300,
an enhancer binding transcription factor.
Furthermore, we revealed that their target genes
are significantly bound by RNA Polymerase II and
demonstrate tissue-specific expression. Finally, we
uncovered that these elements are generally found
within 1 Mb of their targets, and often regulate
multiple genes. In total, our study presents a novel
high-throughput workflow for confident, genome-
wide discovery of enhancer–target promoter pairs,
which will significantly improve our understanding
of these regulatory interactions.

INTRODUCTION

While the Human Genome Project was declared complete
in 2003, many regulatory elements still remain undefined.
Enhancers are one such class of elements because true
definition of an enhancer requires identification of both
the regulatory sequence and its interacting promoter
region(s). Enhancer–target identification is further
complicated by the fact that they interact in an
orientation-independent manner, can be millions of base
pairs away from each other or even reside on different
chromosomes (1–3). Enhancer elements also have
dynamic regulatory activities under various developmen-
tal and environmental conditions. For instance, they can
activate gene expression in a tissue- and temporal-specific
manner. Thus, they affect different sets of genes in differ-
ent tissues (4) and/or play variable regulatory roles during
animal development (5,6). One well-studied example of
this dynamic property is the locus-control region (LCR)
that regulates the cluster of five human b-type globin
genes on 11p15.4 (6). These globin genes are exclusively
expressed in erythroid cells and are expressed differentially
in fetal and adult cells mediated by the LCR that is located
about 40 kb upstream.
Recent studies reveal that in eukaryotes, histone modi-

fications such as histone 3 lysine 27 acetylation (H3K27ac),
histone 3 lysine 4 mono-methylation (H3K4me1), di-
methylation (H3K4me2) and tri-methylation (H3K4me3)
can play crucial roles in the activation of enhancer
elements under different environmental conditions, cell
lineages, tissue types or developmental stages (4,7–10).
These activating histone marks tend to be present in
enhancer elements that are activated and absent when
they are repressed. Additionally, activated regulatory
elements are more likely to be located within the context
of accessible (open) chromatin where they can be bound by
transcription factors. The accessibility of specific DNA
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sequences can be determined by their sensitivity to digestion
by DNase I, with open chromatin being highly digested and
vice versa. Recently, large-scale studies of activating (e.g.
H3K27ac) histone marks and DNase I hypersensitive sites
(DHSs) such as those from the Encyclopedia of DNA
Elements (ENCODE) (11,12) have been used in various
human cell types to predict enhancer elements (9,10).
Additionally, other high-throughput studies assaying E1A
binding protein p300 and CREB binding protein interaction
sites have also been used to discover putative enhancers
(4,13,14). Although these studies can predict enhancer
elements on a large scale, they suffer from the inability to
globally identify the target gene promoters of the identified
enhancer elements.
Although the mechanism of enhancer–target promoter

interaction formation is still not well understood, it is
commonly accepted that enhancers and promoters
interact with each other through a transcription factor
protein complex (15). Based on this model, the chromo-
some conformation capture (3C) approach can be used to
identify enhancer elements as well as their target genes
simultaneously by detecting two linearly independent
DNA segments that are bound to one another via a
protein complex. One major drawback of the 3C
approach is that it requires prior knowledge of the
putative enhancer and promoter elements to allow design
of specific PCR primers, which is often unknown. To
address this limitation, a high-throughput version of 3C
was developed (Hi-C) (16) to detect genome-wide DNA–
DNA interaction events. This approach avoids multiple
PCR steps by ligating interacting DNA elements
followed by high-throughput sequencing to provide
unbiased identification of DNA–DNA interacting pairs.
Several variants have been developed by other groups to
identify the chromosome organization and regulatory sites
of the human, yeast and Drosophila melanogaster genomes
(17–20). However, these original studies focused on deter-
mining large-scale chromosomal organization, and did not
demonstrate whether the high-throughput sequencing
variant of 3C is sensitive or specific enough for prediction
of enhancer–promoter interactions.
More recently, Chepelev et al. (21) developed chromatin

interaction analysis using paired-end tag sequencing
(ChIA-PET), which is a strategy that combines 3C with
ChIP-seq, for an enhancer associated histone modification
(H3K4me2) to identify intra-chromosomal enhancer–
promoter interactions (22). This led to the successful iden-
tification of only intra-chromosomal enhancer–promoter
interactions that were associated with a specific histone
modification (H3K4me2). Another recent study applied
the variant 3C method [carbon-copy chromosome con-
formation capture (5C)] to identify �100 enhancers and
their specific target genes by designing �6000 primers
along the ENCODE pilot project regions (23). Although
none of these previous studies were at the genome-wide
scale, they have demonstrated that datasets produced by
the 3C method can be used for genome-wide identification
of enhancer–target promoter interactions.
Here, we revisit the original Hi-C experimental data

with the goal of identifying enhancer–target gene inter-
actions on a genome-wide scale for humans. To do this,

we developed a new analysis framework for Hi-C experi-
ments that integrates multiple genome-wide enhancer-
defining datasets to identify enhancer–target gene pairs.
Using this approach, we identified thousands of high-con-
fidence enhancer–target promoter interactions in two dif-
ferent human cell types. We validated these interaction
pairs by demonstrating our putative enhancer elements
are highly correlated with known p300 binding sites, and
their target gene promoters are enriched in RNA
Polymerase II (Pol II) binding. Furthermore, we found
that the predicted enhancer elements are conserved in
the mammalian lineage, and their target genes are
expressed in a highly cell type–specific manner. In total,
our pipeline has allowed the first robust and genome-wide
discovery of thousands of novel enhancer–promoter inter-
actions in the human genome.

MATERIALS AND METHODS

Hi-C data from two human cell types

To comprehensively identify putative enhancer–target
promoter interactions in the human genome, we first
downloaded the original genomic alignments for the
paired-end Hi-C sequencing data from two different
human cell lines, a lymphoblastoid (GM06990) and a
chronic myelogenous leukemia (K562) cell line (GEO ac-
cession number GSE18199). After an initial analysis, we
found that the overlap of extended hotspots (defined
below) between biological replicates of the GM/HindIII
sample is 50.6% (P< 2.2e–16, chi-square test).
Furthermore, the sequencing reads from these same
samples were also combined in the original Hi-C study.
Therefore, to more comprehensively identify DNA–DNA
interacting pairs, mapped reads from biological replicates
of the GM/HindIII sample were merged to single datasets.
In total, we looked at the interacting patterns for three
different sample sets from the original Hi-C study:
GM06990 cells with HindIII (GM/HindIII), GM06990
with NcoI (GM/NcoI) and K562 with HindIII (K562/
HindIII) digestion.

Identifying statistically significant DNA interacting
hotspots from Hi-C datasets

We first identified significant clusters in the Hi-C data
using a geometric distribution-based model (24). To do
this, we assembled all mapped reads for a given dataset
(GM/HindIII, GM/NcoI or K562/HindIII) into consecu-
tive contigs (made up of overlapping reads) for each
nuclear chromosome, without initially considering the
read pairing information for these libraries. This
approach allowed us to determine the gap regions
between the identified contigs. These gap lengths should
follow a geometric distribution:

PðXi ¼ kÞ ¼ ð1� piÞ
k�1pi

PðXi � kÞ ¼ 1� ð1� piÞ
k

where Xi and pi are the gap lengths and the probability
of a position covered by any read on chromosome i,
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respectively. Accordingly, we fit the gap lengths to a geo-
metric distribution for each chromosome (Supplementary
Figure S1) and estimated pi based on the mean gap length.
We then grouped contigs into clusters by merging nearby
contigs based on the gap distances between them.
Specifically, contigs were merged into significant clusters
if they are closer to each other than the 5% quantile
according to the fitted geometric distribution.

Next, we identified high-confidence DNA interacting
hotspots by fitting cluster lengths to an additional geomet-
ric distribution for each nuclear chromosome
(Supplementary Figure S2), where the Xi value is based
specifically on cluster length and the pi value is the
emission probability based on the mean cluster length
calculated for the Hi-C data for chromosome i. Only the
significant clusters (�99% quantile) identified with this
second geometric distribution-based test were retained
and defined as DNA interacting hotspots. It is worth
noting that we did not take into account the Hi-C inter-
action data for these hotspots during this analysis step,
but only looked for interacting partners during our
analysis to identify those hotspots that are putative
enhancer elements (see below). We also analyzed DNA
interacting hotpots identified using the quantiles of 98
and 99.9%, and the results of these analyses are presented
in Supplementary Figures S4 and S5, respectively.

Compensating for restriction enzyme fragmentation bias
and identifying bona fide DNA interacting hotspots

In Hi-C, the resulting sequencing reads are enriched for
regions of the genome near or at the restriction enzyme
(RE) sites used in the experiment (as also indicated by
our motif analysis; see corresponding Results section)
rather than the actual enhancer–target interaction site.
Thus, the actual interaction site could be at any location
between two restriction sites that are thousands of base
pairs apart. To address this bias, we examined the distri-
bution of the distances between adjacent restriction sites
within the human genome, which was then fitted to a
poisson distribution:

PðX ¼ kÞ ¼ �ke��=k!

where X is based on the distances between adjacent
restriction sites, and parameter � is the mean of the
distances along the genome (Supplementary Figure S3).
Based on the estimated parameter �, we extended the
boundaries of DNA interacting hotspots in both direc-
tions from the midpoint of each hotspot to the length
of the 95% quantile (�3 kb) of the fitted poisson distribu-
tion. This extension makes it much more likely that we
are covering the actual DNA–DNA interaction sites,
which are linked to the closest RE site by the nature of
the Hi-C protocol. The resulting regions were referred
to as extended hotspots.

Identification of candidate enhancer elements enriched in
activating histone modifications

We began selecting for candidate enhancer elements (CEEs)
by focusing on the extended hotspots that (i) had at least

one of its interacting regions overlapping a protein-coding
gene promoter and (ii) the particular CEE–promoter inter-
action was supported by >1 paired-end sequencing read in
the corresponding Hi-C dataset. We then determined the
overlap (see below for description of enrichment analyses)
between these promoter-interacting extended hotspots and
the four activating histone marks (H3K4me1, H3K4me2,
H3K4me3 and H3K27ac) that are known to be associated
with enhancer elements in the human genome (4,7–10). We
also examined the overlap of these promoter-interacting
extended hotspots with H3K27me3, a heterochromatic
histone modification (23) that is not enriched at enhancer
elements. To further select for CEEs that are likely bona
fide enhancer elements, we only maintained promoter-
interacting extended hotspots containing known enhancer-
related histone modifications that are also enriched in
DHSs. Thus, CEEs are defined as highly confident
promoter-interacting extended hotspots enriched in known
enhancer-related histone modifications and DHSs. For
these enrichment analyses, the histone modification and
DHS data was downloaded from the UCSC ENCODE pro-
duction phase (hg18 assembly) (24,25). It is of note that we
used the lymphoblastoid cell line (GM12878) and chronic
myelogenous leukemia (K562) from the ENCODE project
in our study, as they are the most closely related cell lines to
those used in the original Hi-C study (GM06990 and K562).
As a control, we generated 1000 sets of the same number of
extended hotspots randomly selected from the human
genome (random extended hotspots), and used them as a
background to evaluate the significance of enrichment for
all subsequent analyses.

Enrichment analyses

All enrichment analyses for CEEs and their target pro-
moters (e.g. p300 binding) were performed by computing
the enrichment index (ERI) as a ratio of the two
proportions:

ERI Að Þ ¼ C Að Þ=P Að Þ

whereA is the set of intervals for a particular histone modi-
fication or other genomic feature (e.g. DHS, p300 binding
or Pol II binding) determined using ENCODEChIP-seq or
DNase-seq experiments (26). C(A) is the total length in
base pairs of CEEs (or interacting promoter hotspots if
we are examining target promoter characteristics) that
overlap with A, and P(A) is the mean of total lengths
that overlap with A from 1000 random control sets (see
above). It is worth noting that in enrichment analyses for
CEEs, each permuted set is selected randomly from the
collection of all extended hotspots with the additional con-
straints that they must have similar chromosomal and
length distributions as the set of CEEs being analyzed
(28). For enrichment analyses of CEE target promoters,
each control set is selected randomly from the promoter
regions of the 21 522 non-redundant protein-coding genes
in the hg18 assembly. Thus, a high ERI for a set of CEEs or
their target promoters indicates that they tend to be over-
lapping with a particular histone modification or binding
feature when compared with all extended hotspots or non-
redundant protein-coding gene promoters, respectively.
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Characterizing p300 binding to CEEs and RNA Pol II
binding to their target promoters

We downloaded the previously identified p300 and RNA
Pol II binding sites from the UCSC ENCODE database
for GM12878 and K562 cell lines (hg18 assembly)
(25,26,29). We then calculated the ERI for p300 binding
within CEEs as well as RNA Pol II binding to CEE inter-
acting promoters as described above.

Determining cell type–specific expression of CEE
target genes

We downloaded the previously published gene expression
profiles for the nine ENCODE human cell lines
(GSE26312) (30). Data were normalized by RMA
(31–33) and log2-transformed. We aggregated probeset-
level to gene-level expression values for each cell line as
follows. For each probeset, we computed the average
expression level across replicates. For each gene, we then
computed the average expression across multiple probesets
(if applicable). The gene expression profiles of the nine
ENCODE cell lines were combined into a common gene
set (13 436 genes), and between sample expression values
were normalized again to eliminate any array-specific bias
using quantile normalization (normalize.quantiles function
in R/affy package) (31). To determine if a gene has strong
tissue-specific expression in either GM12878 or K562 cells
compared with the other seven cell types, we used an
entropy-based metric (34) as follows. For each gene g, we
computed pcjg as the expression level in cell type c divided
by the sum of expression levels across all nine cell lines. The
entropy (35) for g is defined as Hg=�

P
1� c�N pcjg

log2(pcjg), where N=9 is the total number of cell types
in this study. Hg ranges between 0 (gene g is expressed in
only one cell type) and log2(N) (gene g is expressed uni-
formly in all cell types). To measure the specificity for a
particular cell type c, we computed Qgjc=Hg� log2(pcjg).
The quantity�log2(pcjg) has a range between 0 (when gene
g is only expressed in cell type c) and infinity (when gene g is
not expressed in cell type c).

Sequence motifs in CEEs

We examined the sequence motifs of the CEEs using the
HOMER software package (36), and only considered 8, 10
and 12 bp for the motif length in each sample. We used
all extended hotspots as the background when searching
for overrepresented motifs (-bg parameter in HOMER)
in an effort to reduce potential biases introduced toward
restriction sites owing to the original Hi-C protocol.
Significance levels were set as P< 0.05.

RESULTS

Identifying candidate DNA interacting sites: hotspots and
extended hotspots

We built an analysis workflow that extracts high-quality
DNA interacting sites from Hi-C datasets. Figure 1 shows
the overall workflow for identifying these DNA interact-
ing hotspots, which we analyzed further to identify
putative enhancer elements and their promoter partners.

All three samples from the original Hi-C study (16) were
used in our analyses [cell line GM06990 with REs HindIII
and NcoI, as well as cell line K562 with HindIII (referred
to as GM/HindIII, GM/NcoI and K562/HindIII, respect-
ively)]. The original Hi-C study used a 1 Mb window size
to uncover the 3D organization of human nuclear
chromosomes. However, this resolution is far too coarse
for studying regulatory elements, which requires single
nucleotide resolution. To improve resolution for our
purposes of identifying DNA interacting hotspots, we
applied our genomic distribution-based analysis for iden-
tification of these specific genomic regions (24). Briefly,
our algorithm first identifies clusters of Hi-C reads that
are closer to each other than what the background geo-
metric distribution dictates. We then labeled the resulting
clusters as hotspots if their lengths on the chromosomes
are longer than 99% of all clusters. We found that a
hotspot is on average �1 kb in length, and between
107 059 and 185 042 total hotspots were identified in
each of the three samples.

The Hi-C method dictates that sequencing reads will
start at or near the sites of the RE used in the experiment
rather than the actual DNA–DNA interaction site.
Therefore, the resolution of this method is limited to the
distance between the genomic sites of the particular RE
used for that study (Figure 2). To account for this short-
coming, we extended the length of the originally identified
DNA interacting hotspots based on the estimated length
between RE site positions on each human nuclear
chromosome, while also allowing each nucleotide of an
extended hotspot to represent the true interaction site.
We found that on average an extended hotspot is
3–3.3 kb long (Table 1), indicating that our resolution
has improved �300-fold compared with the 1Mb
window size used in the original study.

Characterization of DNA interacting extended hotspots

We classified all extended hotspots based on human
genome annotations and found that many of them are
located within protein-coding genes, functional RNAs
and tandem repeats, suggesting that some of the inter-
action hotspots may be involved in regulatory processes
(Figure 3a–c). Interestingly, we observed that extended
hotspots were located within 5–20% of total promoter
regions (defined as the 500 bp upstream of protein-coding
gene transcription start sites) of the human genome. This
led us to speculate that some of the extended hotspots
from our reanalysis of Hi-C data may actually reflect
target promoters that are interacting with enhancer
elements in the human genome.

Prediction of CEEs

To identify CEEs, we first considered extended hotspots
that interact with a protein-coding gene promoter
region(s) (defined as the 500 bp upstream of the annotated
transcription start site). As shown in Table 2, 22–62% of
the extended hotspots interact with a protein-coding gene
promoter. The variation in promoter interactions is likely
a consequence of the number of promoters that are
covered by extended hotspots, which is influenced by
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both the total sequencing depth in a particular sequencing
library and the REs and cell types used in the Hi-C
experiments. We next examined the enrichment of
promoter-interacting extended hotspots in four activating

histone modifications known to be associated with
enhancer elements (H3K27ac, H3K4me1, H3K4me2 and
H3K4me3), and a heterochromatic histone modification
(H3K27me3) as a negative control (25,29). As expected,
we found that promoter-interacting extended hotspots are
enriched (permutation test, P< 0.001) in all four
activating histone modifications but not with H3K27me3
(Figure 4a) when compared with the random background
control. These results suggest that many of the promoter-
interacting extended hotspots are human enhancer
elements.
To further improve our confidence that we are detecting

bona fide enhancer–target gene promoter interactions, we
added an additional quality control step where we only
retain promoter-interacting extended hotspots if their
promoter interaction is supported by more than one
read (n> 1) in the sequencing results (Supplementary
Figure S6). This filtering step dramatically reduced the
number of potential enhancer elements in all three
samples. In fact, only 7.7–12.2% of the promoter-
interacting extended hotspots were retained as potential
enhancer elements (Table 2). This step likely reduced the
number of false positives in our dataset, as we found it
substantially increased the enrichment in the four
enhancer-associated activating histone modifications
(H3K27ac, H3K4me1, H3K4me2 and H3K4me3) in
the remaining promoter-interacting extended hotspots
(Figure 4b). Taken together, these results indicate that
increased read support for the promoter-extended
hotspot interactions is necessary for high-confidence iden-
tification putative enhancer elements and their targets
from Hi-C experimental data.
The final filtering step in our pipeline to identify CEEs

was to determine the enrichment of DHSs within the

Figure 2. Identification of potential enhancer elements by our novel analysis pipeline requires an extension of regions that have been termed DNA
interacting hotspots from the 3C data as depicted.

Figure 1. Genome-wide enhancer element identification workflow.
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subset of high-confidence promoter-interacting extended
hotspots (supported by >1 sequencing read) using previ-
ously published datasets (37,38). From this analysis, we
found that the set of high-confidence promoter-interacting
extended hotspots from all three original Hi-C experi-
ments were enriched (P< 0.001) in DHSs (Figure 4c).
The tendency of high-confidence promoter-interacting
extended hotspots to co-localize with DHSs provides
further evidence of the reliability of our analysis strategy
to identify bona fide enhancer element–target promoter
pairs in the human genome. In summary, the combination

of these results has led us to incorporate all three of these
analysis steps in our pipeline for genome-wide prediction
of CEEs and their interacting target promoters in the
human genome (see Supplementary Dataset 1 for the
entire list).

CEEs and their target genes are enriched in binding
activities associated with gene expression

To provide further evidence that our CEEs are bona
fide enhancer elements, we examined the enrichment of
p300 binding within these regions. We focused on p300
because it is a known enhancer-associated co-activator
that mediates the regulation of target gene expression
(39,40). We found that the CEEs from all three Hi-C
experiments were enriched (P< 0.001) in p300 binding
compared with a background control of all extended
hotspots (Figure 5a). This enrichment in p300 binding
within CEEs strongly suggests we have identified bona
fide enhancers, and by using the Hi-C data in this
analysis we also identify the gene promoter(s) that each
element can target.

Enhancer elements generally activate gene expression
through direct interaction with target promoters (40–42)

Figure 3. Functional annotation of extended hotspots for sample (a) GM/HindIII, (b) GM/NcoI and (c) K562/HindIII. Each bar (as labeled)
represents the percent of total length for each genomic feature that overlaps with extended hotspots.

Table 1. Characterization of extended hotspots

Samples GM/HindIII GM/NcoI K562/HindIII

# Raw reads (paired spots) 30 009 111 28 659 279 36 823 509
# Unique mapped pairs 18 728 707 18 891 283 21 744 849
Percentage of mapped to raw 62% 66% 59%
# Unique mapped single-end 37 457 414 37 782 566 43 489 698

# Clusters (merged by gap length) 4 973 281 5 076 539 6 247 694
Average cluster length (bp) 172.4 168.9 160.2
# Hotspots 107 059 166 990 185 042
Average hotspot length (bp) 1047.9 1007.8 964.1
# Extended hotspots 96 800 137 611 150 611
Average extended hotspot length (bp) 3065.8 3349.5 3282.1

GM=GM06990.

Table 2. Number of CEEs present after each filtering step

Filtering step GM/
HindIII

GM/
NcoI

K562/
HindIII

Promoter partners 22 818 90 200 93 109
Strong interactions
(>1 read)

1757 11 001 9955

Activating histone
mark enrichment

928 5617 5814

DNase I HS sites 823 4809 5033
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that results in increased RNA Pol II association.
Therefore, we tested whether the CEE target gene pro-
moters were enriched for Pol II binding. From this
analysis, we found that CEE target promoter regions are
>20% enriched (P< 0.001) for Pol II binding when
compared with the promoters of all other protein-coding
genes. These results suggest that transcription initiation is
increased at promoters that are in contact with the CEEs
compared with all other gene promoters in the human
genome.

To further test if transcription is generally higher
from target genes of the CEEs, we also investigated
the enrichment of Pol II Ser2 phosphorylation, which
marks elongating Pol II, within these loci for the K562
dataset using previously published data (GSM935547).
Interestingly, we observed a 1.47-fold enrichment

(P< 0.001) in Pol II Ser2 phosphorylation within target
genes of our CEEs compared with all other protein-coding
genes. These results indicate that the CEE–target gene
interaction not only increases Pol II promoter binding,
but also effects transcription elongation.
In summary, the consistent enrichment of the CEEs in

p300 binding as well as their target genes with initiating
and elongating Pol II strongly suggests that we have
identified bona fide enhancer–target gene pairs by
reanalyzing the previous Hi-C results. We also compared
our CEEs with the enhancers predicted in the recently
published study using 5C with primers designed to the
ENCODE pilot project regions covering only �1% of
the human genome (23). We found that our CEEs
overlap significantly with these enhancer elements
compared with all extended hotspots lying within the
ENCODE pilot region as a background control
(Table 3). Thus, our method provides an important im-
provement over previous approaches for identifying
human enhancer elements because we not only identify
enhancers, but we also uncover their specific regulatory
targets on a genome-wide scale.

Characterization of CEE-target gene interactions

We found that CEEs interact with 1.17–1.62 target gene
promoters on average (Table 4), which is consistent with
recent results (23) and suggest that human enhancer
elements can interact pleiotropically. Additionally, we
found that most target gene promoters interacted with
multiple (1.17–2.36) CEEs (Table 4), suggesting the exist-
ence of enhancer redundancy in the human genome.

Figure 4. Potential enhancer elements are enriched for activating histone marks and DHSs. (a and b) Fold enrichment for activating (H3K27ac and
H3K4me1–3) and repressive (H3K27me3) histone marks with (a) all CEEs that have a promoter partner, and (b) CEEs whose promoter partner is
supported by >1 read. (c) Fold enrichment of DHSs in CEEs with a promoter interaction supported by >1 read and enriched in activating histone
marks. The three samples are marked as follows: black bars, GM/HindIII; gray bars, GM/NcoI and light gray bars, K562/HindIII. Dashed line is
expected value based on genomic control.

Figure 5. Potential enhancer elements are enriched for p300 binding,
and their target genes are highly bound by Pol II. (a) P300 binding site
enrichment in CEEs. (b) Pol II enrichment observed for the genes
targeted by CEEs. Dashed line is the expected value based on a
genomic control.
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We also determined the interaction characteristics of
CEEs and their target genes. We found that the vast
majority of these interactions are intra-chromosomal (on
the same chromosome), while fewer than 13% are
inter-chromosomal (Figure 6a) with little read support
for these latter associations (Supplementary Table S1).
Interestingly, we found that >95% of the intra-
chromosomal interactions occur within a range of 1Mb
(Figure 6b). In total, these results indicate that the
majority of the CEEs that we have identified from the
Hi-C data are in relatively close proximity to their target
promoters.

CEEs and target genes are enriched in enhancer-
associated motifs

To identify specific sequence motifs in the CEEs and their
target promoters, we further searched for overrepresented
sequences using HOMER (36). Not surprisingly, a quick
search using a random genomic background yielded the
recognition site of HindIII (AAGCTT) as top motif in the
CEEs identified in by the original GM/HindIII Hi-C ex-
periment (Table 5). These results suggest that as expected
the Hi-C experimental approach identifies DNA inter-
action sites that are localized near restriction sites in the
human genome (Figure 2). To minimize this bias for RE
sites, we performed the motif searches with a background
of all extended hotspots. As a result, we identified 38, 54
and 39 motifs from each experiment, including the binding
motifs of known enhancer-associated transcription factor
families such as Sp1, NRF1, E2F, GATA and ETS
(Supplementary Dataset S2 and Table 6). Remarkably,
we found that in all three CEE datasets, there was signifi-
cant enrichment for the binding sequence of the E26
transformation-specific (ETS) family binding

domain-containing proteins. These proteins act as tran-
scription factors that bind to specific enhancers and pro-
moters, and facilitate the assembly of transcription
machinery to initiate gene expression (43,44). Thus, our
CEEs are enriched in sequences known to bind enhancer-
specific proteins.

CEEs are conserved within vertebrates

Functional elements are often under evolutionary selec-
tion because of their cellular function(s) (45). To study if
the CEEs are under evolutionary selection, we investigated
the conservation score in these elements across the mam-
malian clade [cons44way conservation score (46)]
compared with their upstream and downstream flanking
sequences. We found that the CEEs tend to be more
conserved than their flanking regions (P< 0.05 for all
datasets) (Figure 7a). In total, these results revealed that
the CEEs that we have identified are under purifying se-
lection in the human genome, suggesting that they are
functional enhancer elements.

CEE target genes tend to display tissue-specific expression

Enhancer elements are known to function in a cell type–
specific manner (10), so the expression profiles of their
target genes are likely to display a similar pattern. To
determine whether genes targeted by CEEs exhibit this
cell type–specific tendency, we computed the Q statistic
(34) for every human gene expressed in nine ENCODE
cell types (see Methods for descriptions), and then
compared CEE target genes with all other loci in the cell
types (GM12878 or K562) most closely corresponding to
those used in the original Hi-C experiment (GM06990
or K562). We found that genes targeted by the CEEs
have significantly lower Q values, indicating that these
loci are expressed in a cell type–specific manner. This is
true for CEEs identified using all three Hi-C experiments
(P=0.01, 2.11e–05, 4.24e–16 for GM/HindIII, GM/NcoI
and K562/HindIII, respectively). In total, all of our results
suggest that we have identified thousands of bona fide
enhancer–target gene interactions. A significant amount
of future attention can now be focused on determining
the biological functions and significance of these newly
identified interactions in human cells.

DISCUSSION

The original Hi-C article suggested that this experimental
approach could identify regulatory elements with better
sequencing throughput, although this analysis was never
performed. In this study, we show that with careful

Table 4. Characteristics of enhancer–target interactions

Samples # CEEs Average CEE
interactions

# of target
promoters

Average target
promoter interactions

# of enhancer–promoter
interactions

GM/HindIII 823 1.17 820 1.17 953
GM/NcoI 4809 1.62 3444 2.27 7757
K562/HindIII 5033 1.42 3032 2.36 7104

Table 3. Comparison of the CEEs predicted using Hi-C and

enhancer predictions in 5C (27)

Hi-C 5C P value
of intersectsSamples # CEEs # Enhancers # Intersects

GMa/HindIII 19 87 1 0.1316
GMa/NcoI 37 87b 5 0.0001
K562/HindIII 137 119 9 <0.0001

# CEEs shows the number of CEEs that is overlapped with the 5C
primers along the ENCODE pilot regions.
P-value is calculated by permutation tests using the extended hotspots
that overlap the ENCODE primer sets as background.
a5C study uses GM12878; Hi-C study uses GM06990.
b5C study uses only HindIII as the RE; here we are comparing using
the GM/HindIII dataset.
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Table 6. Top 10 most enriched motifs in CEEs from the GM/NcoI library using extended hotspots as the background

Transcription factor
(DNA binding domain)

Motif P-value % of Targets % of
Background

Sp1(Zf) 1e–134 38.5 23.6

NRF1(NRF) 1e–111 15.0 6.4

ETS(ETS) 1e–69 41.6 30.3

ELF1(ETS) 1e–64 58.2 46.8

GFY-Staf 1e–54 7.5 3.1

NRF1 1e–51 19.2 12.0

YY1(Zf) 1e–45 9.1 4.61

E2F 1e–45 30.2 22.0

GFY 1e–38 10.0 5.6

GABPA(ETS) 1e–32 77.3 70.1

Figure 6. Characterization of CEE–target gene interaction distance. (a) The portion of inter- and intra-chromosomal CEE–target interactions for the
three different Hi-C samples as denoted. (b) The distance distribution of intra-chromosomal CEE–target interactions.

Table 5. Top 3 most enriched motifs for all CEEs using the whole-genome as the background sequence in the K562/

HindIII library

Motif P-value % of
Targets

% of
Background

<1e–300 87.9 55.2

<1e–258 84.5 80.7

<1e–228 60.2 55.6
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analyses and comprehensive integration of publicly avail-
able functional genomic datasets, Hi-C data can be used
to comprehensively identify enhancer–target gene inter-
actions genome-wide. We first used a geometric distribu-
tion model to identify DNA interacting hotspots instead
of using a sliding window to probe 1Mb segments of the
human genome. This change in analysis methods signifi-
cantly improved our genomic resolution (�3.3 kb or
300-fold improvement). This increase in resolution is ne-
cessary for identifying the actual sequences of regulatory
elements in the human genome. From this initial list of
DNA interacting hotspots, we focused on intergenic
sequences that interact with protein-coding gene pro-
moters, and found these elements overlap significantly
with enhancer-associated chromatin marks such as
H3K27ac and H3K4me1 that have been previously used
to identify enhancer elements (9,10). Interestingly, a recent
study by Chepelev et al. used this property by combining
Hi-C with H3K4me2 immunoprecipitation to identify
enhancer–promoter interactions (22). However, this
study focused solely on cis- interactions and did not
examine other enhancer-associated epigenetic marks.
Here, we used multiple chromatin marks as well as DHS
datasets to identify thousands of CEEs in two human cell
types with high confidence. We also uncovered that not all
epigenetic marks are equal for these purposes. Specifically,
we found that all four activating histone marks are
enriched on the putative enhancers, but they demonstrate
distinct levels of enrichment (Figure 4). In total, our
analysis pipeline incorporates data for multiple histone
modifications and DHSs, which increases confidence that
bona fide enhancer elements are truly being identified.
In addition, our analysis is unique when compared with

three other studies that were recently published.
Specifically, Lan et al. (47) integrated histone modification
data that overlapped sites enriched with reads from Hi-C
experiments for the K562 cell line, and found 12 clusters
of Hi-C sites with different combinations of histone modi-
fications. However, their analyses were limited only to
these overlapping regions and did not also interrogate

all of the other relevant datasets as we have done here.
Furthermore, their study only examined enhancer–
promoter interactions on a specific subset of the human
genome (GATA1/GATA2 target genes). In another recent
study, 5C experiments were performed to study enhancer–
promoter interactions. However, they focused entirely on
the 44 ENCODE pilot genomic regions instead of per-
forming a genome-wide analysis (23). This is because a
global study of enhancer–promoter interactions is not
feasible with the 5C protocol, as this approach requires
the design of specific primers for a select group of targeted
regions. ChIA-PET, another recently developed protocol
that detects chromosomal interactions using high-
throughput sequencing (22) was also used to study
enhancer–promoter pairs. However, as pointed out by
the developers of this method, their approach is different
from unbiased approaches like Hi-C because it requires an
antibody to a specific histone modification, protein, etc.
Thus, this method will not detect any enhancers that are
not in close proximity to the histone modification, protein,
etc. being immunoprecipitated.

Our analyses revealed that unannotated long-range and
inter-chromosomal enhancer–target gene interactions can
be detected using Hi-C data. This is in strong contrast to
previous studies of short-range enhancer–target gene
interactions, namely predicting cis-targeted genes within
a small fixed window (13) or by defining a variable but
local transcriptional domain (48) around the identified
enhancer elements. We found inter-chromosomal inter-
action to be much less frequent than both cis and trans
intra-chromosomal interactions (Figures 6a and b). This
may be because the inter-chromosomal and long-range
interactions are underestimated due to the limited
sequencing depth of the initial Hi-C experiments, or to
these being less stable and/or transient interactions.
Thus, we may identify more of these interactions with
future Hi-C experiments with much greater sequencing
depth.

We have also uncovered both one-to-one and
multiple-to-multiple CEE-target interactions (Table 4).

Figure 7. Potential enhancer elements are evolutionarily conserved, and their target genes are expressed in a cell type–specific manner. (a) The
conservation score of CEEs (black bars) compared with similarly-sized flanking regions (gray bars) from the three different Hi-C experiments
(as specified). (b) The Q statistic values for CEE target (black bars) compared with non-target (gray bars) genes from the three different
Hi-C experiments (as specified). Error bars indicate s.e.m. Differences are statistically significant (*P< 0.05, **P< 0.01 and ***P< 0.001,
Wilcoxon rank-sum test).
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These results reveal the extreme complexity of enhancer–
target promoter relationships in the human genome.
Interestingly, genes targeted by the same enhancer
element could be co-regulated, competing or activated in
different developmental stages or tissue types. Similarly,
enhancer elements that target the same gene could also be
cooperative or competing in maintaining gene expression
homeostasis or for altering expression activities of the
target gene. Comprehensive time-course studies with
high read coverage (for better sensitivity) will be necessary
to further elucidate the regulatory mechanisms behind
each enhancer–target promoter interaction.

The Hi-C protocol has an inherent limitation for
enhancer discovery as we have described (Figure 2).
Specifically, we have revealed that the data from the
Hi-C protocol actually detects RE sites around the bona
fide DNA–DNA interaction regions. While increasing the
read coverage is still essential for obtaining high-quality
enhancer–promoter interaction data, it does not solve this
particular limitation. To accommodate this lapse in reso-
lution, we had to extend the identified DNA interacting
hotspots in both directions, as we could not predict which
direction to extend based on the Hi-C sequencing data
alone. Thus, our analysis workflow is the first to allow
confident prediction of enhancer–target promoter inter-
actions from Hi-C data, and provides the framework for
future studies that will use this approach for these same
purposes.

Applying our analysis workflow to identify DNA inter-
action information from Hi-C, allows identification of
candidate enhancers and their associated target genes. In
the future, comparing datasets similar to the ones
provided here with findings from GWAS and eQTL
studies is likely to provide mechanistic insights into how
many intergenic SNPs can be associated with a certain
disease. In total, a comprehensive list of enhancer–
promoter interactions is likely to significantly improve
the resources available to future genetic studies focused
on human disease.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1, Supplementary Figures 1–6 and
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