Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Benzylethyldimethylammonium bromide

Maciej Hodorowicz* and Katarzyna Stadnicka

Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland Correspondence e-mail: hodorowm@chemia.uj.edu.pl

Received 4 January 2008; accepted 23 January 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.065; data-to-parameter ratio = 32.6.

The crystal structure of the title compound, $C_{11}H_{18}N^+ \cdot Br^-$, has been determined as part of an ongoing study of the influence of the alkyl chain length on amphiphilic activity of quaternary ammonium salts. The title salt forms a three-dimensional network of ionic contacts through weak C-H···Br hydrogen bonds, with donor-acceptor distances in the range 3.757 (2)-3.959 (2) Å, in which methyl groups serve as donors.

Related literature

For related literature, see: Ogawa & Kuroda (1997); Hodorowicz et al. (2003, 2005); Kwolek et al. (2003); Allen et al. (1987).

Experimental

Crystal data

 $C_{11}H_{18}N^+ \cdot Br^ M_r = 244.17$ Orthorhombic, P212121 a = 6.7765 (1) Åb = 12.5827 (2) Å c = 13.9433 (2) Å

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (DENZO and SCALEPACK Otwinowski & Minor, 1997) $T_{\rm min}=0.548,\ T_{\rm max}=0.594$ (expected range = 0.516 - 0.559)

V = 1188.90 (3) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 3.42 \text{ mm}^{-1}$ T = 293 (2) K $0.20 \times 0.19 \times 0.17 \text{ mm}$

18366 measured reflections 3874 independent reflections 3483 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.041$

Refinement	
------------	--

$\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983),
with 1627 Friedel pairs
Flack parameter: 0.002 (9)

Table 1			
Hydrogen-bond	geometry	(Å,	°).

Ca1	ic	the	centroid	of	the	henzene	ring
Cgr	15	une	centrola	or	une	benzene	ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C4−H4A···Br1	0.97	2.81	3.757 (2)	164
$C2-H2A\cdots Br1^{i}$	0.96	2.96	3.850 (3)	154
$C4-H4B\cdots Br1^{i}$	0.97	2.96	3.832 (2)	151
$C3-H3B\cdots Br1^{i}$	0.97	3.08	3.950 (2)	151
$C3-H3A\cdots Br1^{ii}$	0.97	3.19	3.959 (2)	138
$C1 - H1C \cdot \cdot \cdot Br1^{iii}$	0.96	2.99	3.766 (2)	139
$C2-H2C\cdots Cg1^{ii}$	0.96	2.69	3.526	145

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x + 1, y, z; (iii) $x + \frac{1}{2}$, $-y + \frac{5}{2}$, -z + 2.

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

The authors thank the Joint X-ray Laboratory, Faculty of Chemistry, and SLAFiBS, Jagiellonian University, for making the Nonius KappaCCD diffractometer available.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2179).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435-436.
- Brandenburg, K. (2006). DIAMOND. Version 3.1d. Crystal Impact GbR, Bonn, Germany.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hodorowicz, M. A., Czapkiewicz, J. & Stadnicka, K. (2003). Acta Cryst. C59, 0547-0549
- Hodorowicz, M., Stadnicka, K. & Czapkiewicz, J. (2005). J. Colloid Interface Sci. 290, 76-82.
- Kwolek, T., Hodorowicz, M., Stadnicka, K. & Czapkiewicz, J. (2003). J. Colloid Interface Sci. 264, 14-19.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Ogawa, M. & Kuroda, K. (1997). Bull. Chem. Soc. Jpn, 70, 2593-2618.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2008). E64, o601 [doi:10.1107/S1600536808002481]

Benzylethyldimethylammonium bromide

M. Hodorowicz and K. Stadnicka

Comment

Quaternary alkylammonium salts are widely used to modify natural clay minerals into hydrophobic organo-clays which exhibit high capability to remove hydrophobic contaminants from aqueous solutions (Ogawa & Kuroda, 1997). From the systematic study of the relation between the crystal structures of chosen homologous benzyldimethylalkylammonium bromides and their cations' ability for sorption on clay minerals (Kwolek *et al.*, 2003; Hodorowicz *et al.*, 2003, 2005), it became obvious that the hydrophobic interactions are responsible for an alkyl-chain bilayer formation when the long-chain (n = 8-12) ammonium cations are adsorbed on montmorillonite (Hodorowicz *et al.*, 2005), whereas a different way of cation packing seems to dominate in the case of short-chain ammonium cations (Kwolek *et al.*, 2003). The crystal structure analysis of benzyldimethylethylammonium bromide was performed to find out the influence of molecular geometry, and the length of the alkyl chain in particular, on the packing properties of the ammonium cation and a bromide counterion (N⁺...Br⁻ = 4.439 (2) Å). The bond lengths and angles indicate the typical tetrahedral arragement of the substituents at the N atom. The molecular dimensions are comparable with the values reported in the literature (Allen *et al.*, 1987). Methyl and methylene

actions of the C—H···Br⁻ type (Table 1). There are also relatively strong interactions of the C—H··· π type observed between the C2 methyl group and the π system of the benzene ring, which result in cation chains along [100] (Fig. 2). The chains are joined into layers parallel to (010) due to C—H···Br⁻ interactions (Fig. 3). The interactions are also responsible for packing of the layers along [010], as shown in Fig. 4. Each layer consists of cations inclined to the anionic layer and arranged in a zig—zag 'head-to-tail' system. The thickness of the layer is b/2. The observed architecture of the short-chain ammonium cation layers, best seen in Figs. 3 and 4, could be considered as a model for the organic cation layers intercalated into the montmorillonite structure (Kwolek *et al.*, 2003).

groups of the quaternary ammonium cation as well as C-H of the benzene ring are involved in weak intermolecular inter-

Experimental

The title compound was prepared by dissolving a 1:1 mixture of bromoethane and *N*,*N*-dimethylbenzylamine in acetone at 273 K. The solution was slowly heated to room temperature to give colourless single crystals of the title compound. Recrystallization from acetone afforded crystals suitable for X-ray measurements.

Refinement

All hydrogen atom positions were observed in a difference Fourier map. Nevertheless, in the refinement procedure the hydrogen atoms were positioned geometrically and refined using a riding model, with C—H = C—H = 0.97 Å for CH₂ groups, 0.96 Å for CH₃ groups, and 0.93 Å for aromatic CH, and with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl groups and $U_{iso}(H) = 1.2U_{eq}(C)$ for all other H atoms.

Figures

Fig. 1. *ORTEP-3* (Farrugia, 1997) drawing of the asymmetric unit with atom labels. Displacement ellipsoids of non-H atoms are drawn at the 30% probability level.

Fig. 2. Chain of benzyldimethylethylammonium cations along [100] projected onto (010). The chain is formed due to C—H $\cdots\pi$ interactions (*ORTEP-3*; Farrugia, 1997).

Fig. 3. Layers parallel to (010) and built of the ammonium cations, arranged in a zig—zag 'head-to-tail' system, are joined together through Br counterions. View along [100] (*ORTEP-3*; Farrugia, 1997).

Fig. 4. The sequence of the cationic and anionic layers along [010] in projecton onto (100) (*DIAMOND*; Brandenburg, 2006).

Benzylethyldimethylammonium bromide

Crystal data

 $C_{11}H_{18}N^+ \cdot Br^ M_r = 244.17$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab $F_{000} = 504$ $D_x = 1.364 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2258 reflections

a = 6.7765 (1) Å	$\theta = 1.0 - 31.5^{\circ}$
b = 12.5827 (2) Å	$\mu = 3.42 \text{ mm}^{-1}$
c = 13.9433 (2) Å	T = 293 (2) K
$V = 1188.90 (3) \text{ Å}^3$	Prism, colourless
Z = 4	$0.20\times0.19\times0.17~mm$

Data collection

Nonius KappaCCD diffractometer	3874 independent reflections
Radiation source: fine-focus sealed tube	3483 reflections with $I > 2\sigma(I)$
Monochromator: horizontally mounted graphite crystal	$R_{\text{int}} = 0.041$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\text{max}} = 31.5^{\circ}$
T = 293(2) K	$\theta_{\min} = 2.9^{\circ}$
φ and ω scans	$h = 0 \rightarrow 9$
Absorption correction: multi-scan (DENZO and SCALEPACK Otwinowski & Minor, 1997)	$k = 0 \rightarrow 18$
$T_{\min} = 0.548, T_{\max} = 0.594$	$l = -20 \rightarrow 20$
18366 measured reflections	

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_0^2) + (0.0247P)^2 + 0.2756P]$ where $P = (F_0^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.027$	$(\Delta/\sigma)_{\rm max} = 0.001$
$wR(F^2) = 0.065$	$\Delta \rho_{max} = 0.26 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.07	$\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$
3874 reflections	Extinction correction: SHELXL97 (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
119 parameters	Extinction coefficient: 0.045 (2)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1627 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: 0.002 (9)

Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculat-

ing *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.29436 (3)	1.294368 (16)	0.812541 (14)	0.05290 (8)
N1	0.7787 (2)	1.06178 (12)	0.85616 (10)	0.0397 (3)
C1	0.8014 (4)	1.15508 (19)	0.92125 (17)	0.0613 (5)
H1A	0.7328	1.2150	0.8947	0.074*
H1B	0.9389	1.1720	0.9279	0.074*
H1C	0.7471	1.1383	0.9830	0.074*
C2	0.8857 (3)	0.9680 (2)	0.89734 (18)	0.0578 (5)
H2A	0.8706	0.9081	0.8554	0.069*
H2B	0.8317	0.9512	0.9591	0.069*
H2C	1.0232	0.9848	0.9039	0.069*
C31	0.7883 (5)	1.1763 (3)	0.70577 (19)	0.0808 (8)
H31A	0.8569	1.1845	0.6460	0.097*
H31B	0.8025	1.2399	0.7432	0.097*
H31C	0.6509	1.1635	0.6936	0.097*
C3	0.8734 (3)	1.08411 (19)	0.75980 (15)	0.0526 (5)
H3A	1.0130	1.0972	0.7698	0.063*
H3B	0.8617	1.0210	0.7203	0.063*
C4	0.5616 (2)	1.03466 (14)	0.84108 (12)	0.0373 (3)
H4A	0.4933	1.0982	0.8197	0.045*
H4B	0.5518	0.9824	0.7902	0.045*
C41	0.4578 (2)	0.99204 (13)	0.92838 (12)	0.0368 (3)
C42	0.3755 (3)	1.05941 (16)	0.99624 (14)	0.0483 (4)
H42	0.3879	1.1326	0.9892	0.058*
C43	0.2748 (4)	1.0181 (2)	1.07459 (15)	0.0617 (5)
H43	0.2222	1.0636	1.1205	0.074*
C44	0.2528 (3)	0.9094 (2)	1.08438 (16)	0.0645 (6)
H44	0.1860	0.8817	1.1370	0.077*
C45	0.3293 (4)	0.84284 (19)	1.01657 (18)	0.0619 (6)
H45	0.3126	0.7698	1.0229	0.074*
C46	0.4319 (3)	0.88285 (15)	0.93829 (16)	0.0477 (4)
H46	0.4832	0.8367	0.8925	0.057*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.06094 (12)	0.04546 (10)	0.05230 (11)	0.00357 (9)	0.00416 (9)	0.00747 (8)
N1	0.0369 (6)	0.0416 (7)	0.0405 (6)	-0.0039 (6)	-0.0001 (6)	-0.0024 (5)
C1	0.0611 (12)	0.0599 (12)	0.0629 (12)	-0.0199 (11)	0.0056 (12)	-0.0207 (10)
C2	0.0422 (9)	0.0646 (13)	0.0667 (13)	0.0038 (9)	-0.0115 (9)	0.0112 (10)
C31	0.0638 (13)	0.106 (2)	0.0727 (15)	0.0084 (16)	0.0168 (13)	0.0409 (14)
C3	0.0452 (9)	0.0642 (12)	0.0482 (10)	-0.0012 (9)	0.0100 (8)	0.0015 (9)
C4	0.0357 (7)	0.0384 (8)	0.0378 (7)	-0.0008 (6)	-0.0014 (6)	0.0000 (6)

supplementary materials

C41	0.0356 (7)	0.0363 (8)	0.0386 (7)	-0.0027 (6)	-0.0026 (6)	0.0018 (6)
C42	0.0509 (9)	0.0470 (10)	0.0470 (9)	-0.0018 (8)	0.0061 (8)	-0.0034 (8)
C43	0.0592 (11)	0.0815 (15)	0.0444 (9)	-0.0056 (12)	0.0091 (10)	-0.0051 (10)
C44	0.0544 (13)	0.0901 (17)	0.0489 (10)	-0.0140 (11)	-0.0012 (8)	0.0251 (11)
C45	0.0603 (13)	0.0531 (11)	0.0722 (14)	-0.0119 (10)	-0.0057 (11)	0.0228 (10)
C46	0.0484 (9)	0.0363 (8)	0.0584 (10)	-0.0033 (7)	-0.0020 (9)	0.0034 (8)
Geometric paran	neters (Å, °)					
Br1—N1		4.4393 (16)	С3—Н	3B	0.970	
N1—C1		1.492 (2)	C4—C	41	1.505	(2)
N1—C2		1.499 (3)	С4—Н	4A	0.970	
N1—C3		1.515 (2)	С4—Н	4B	0.970	
N1—C4		1.525 (2)	C41—	C42	1.387	(3)
C1—H1A		0.960	C41—	C46	1.392	(2)
C1—H1B		0.960	C42—	C43	1.389	(3)
C1—H1C		0.960	C42—1	H42	0.930	
C2—H2A		0.960	C43—	C44	1.382	(4)
C2—H2B		0.960	C43—1	H43	0.930	
C2—H2C		0.960	C44—0	C45	1.365	(4)
C31—C3		1.498 (3)	C44—]	H44	0.930	
C31—H31A		0.960	C45—	C46	1.388	(3)
C31—H31B		0.960	C45—]	H45	0.930	
C31—H31C		0.960	C46—]	H46	0.930	
С3—НЗА		0.970				
C1—N1—C2		109.66 (17)	C31—	С3—НЗА	108.5	
C1—N1—C3		110.47 (16)	N1—C	3—НЗА	108.5	
C2—N1—C3		106.30 (16)	C31—	С3—Н3В	108.5	
C1—N1—C4		111.07 (16)	N1—C	3—Н3В	108.5	
C2—N1—C4		110.08 (15)	H3A—	-C3—H3B	107.5	
C3—N1—C4		109.15 (14)	C41—	C4—N1	114.79 (13)	
C1—N1—Br1		68.95 (13)	C41—	C4—H4A	108.6	
C2—N1—Br1		158.26 (12)	N1—C	4—H4A	108.6	
C3—N1—Br1		93.99 (11)	C41—	C4—H4B	108.6	
C4—N1—Br1		54.22 (8)	(8) N1—C4—H4B 1		108.6	
N1—C1—H1A		109.5	H4A—	-C4—H4B	107.5	
N1—C1—H1B		109.5	C42—	C41—C46	119.00	0 (18)
H1A—C1—H1B		109.5	C42—	C41—C4	121.4	5 (15)
N1—C1—H1C		109.5	C46—	C41—C4	119.40	0 (16)
H1A—C1—H1C		109.5	C41—	C42—C43	120.3	(2)
H1B—C1—H1C		109.5	C41—	С42—Н42	119.8	
N1—C2—H2A		109.5	C43—	С42—Н42	119.8	
N1—C2—H2B		109.5	C44—(C43—C42	120.1	(2)
H2A—C2—H2B		109.5	C44—(С43—Н43	120.0	
N1—C2—H2C		109.5	C42—0	С43—Н43	120.0	
H2A—C2—H2C		109.5	C45—0	C44—C43	119.8	(2)
H2B—C2—H2C		109.5	C45—	С44—Н44	120.1	
C3—C31—H31A		109.5	C43—	С44—Н44	120.1	
С3—С31—Н31В		109.5	C44—	C45—C46	120.8	(2)

supplementary materials

H31A—C31—H31B	109.5	C44—C45—H45	119.6
C3—C31—H31C	109.5	C46—C45—H45	119.6
H31A—C31—H31C	109.5	C45—C46—C41	119.9 (2)
H31B-C31-H31C	109.5	C45—C46—H46	120.0
C31—C3—N1	115.22 (18)	C41—C46—H46	120.0
C1—N1—C3—C31	-60.9 (3)	N1-C4-C41-C46	-98.94 (19)
C2—N1—C3—C31	-179.8 (2)	C46—C41—C42—C43	2.2 (3)
C4—N1—C3—C31	61.5 (2)	C4—C41—C42—C43	177.88 (19)
Br1—N1—C3—C31	8.1 (2)	C41—C42—C43—C44	-1.2 (3)
C1—N1—C4—C41	-68.2 (2)	C42—C43—C44—C45	-0.4 (4)
C2—N1—C4—C41	53.4 (2)	C43—C44—C45—C46	0.9 (4)
C3—N1—C4—C41	169.73 (15)	C44—C45—C46—C41	0.1 (3)
Br1-N1-C4-C41	-109.45 (15)	C42—C41—C46—C45	-1.6 (3)
N1—C4—C41—C42	85.4 (2)	C4—C41—C46—C45	-177.40 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
C1—H1A…Br1	0.96	3.34	4.144 (3)	143
C4—H4A…Br1	0.97	2.81	3.757 (2)	164
C42—H42…Br1	0.93	3.26	3.950 (2)	132
C31—H31C···Br1	0.96	3.36	3.953 (3)	122
C2—H2A···Br1 ⁱ	0.96	2.96	3.850 (3)	154
C4—H4B…Br1 ⁱ	0.97	2.96	3.832 (2)	151
C3—H3B···Br1 ⁱ	0.97	3.08	3.950 (2)	151
C3—H3A···Br1 ⁱⁱ	0.97	3.19	3.959 (2)	138
C1—H1C···Br1 ⁱⁱⁱ	0.96	2.99	3.766 (2)	139
C2—H2C···Cg1 ⁱⁱ	0.96	2.69	3.526	145

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+3/2; (ii) *x*+1, *y*, *z*; (iii) *x*+1/2, -*y*+5/2, -*z*+2.

Fig. 1

