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Network modeling, from the ecological to the molecular scale has become an essential

tool for studying the structure, dynamics and complex behavior of living systems. Graph

representations of the relationships between biological components open up a wide

variety of methods for discovering the mechanistic and functional properties of biological

systems. Many biological networks are organized into a modular structure, so methods

to discover such modules are essential if we are to understand the biological system

as a whole. However, most of the methods used in biology to this end, have a limited

applicability, as they are very specific to the system they were developed for. Conversely,

from the statistical physics and network science perspective, graph modularity has

been theoretically studied and several methods of a very general nature have been

developed. It is our perspective that in particular for the modularity detection problem,

biology and theoretical physics/network science are less connected than they should.

The central goal of this review is to provide the necessary background and present the

most applicable and pertinent methods for community detection in a way that motivates

their further usage in biological research.

Keywords: modularity, community structure, motifs, biological networks, systems biology

1. INTRODUCTION

The field of Systems Biology has many branches that focus on studying networks. It is common
to encounter in the literature terms such as metabolic networks, transcriptional networks, protein-
protein interaction networks, etc. These networks are graph-theoretical constructs composed of
nodes and edges that aim to describe the integrated state of a biological system. Nodes represent
the elements of the system, while edges represent the relation between any two of these elements.
Depending on the scale of the biological entities at hand, a network can describe systems such
as: ecological systems where each node is a biological entity itself; an organism with nodes
being organs or groups of organs; tissues or individual cells with genes, proteins, organelles, and
metabolites interacting with each other; down even to the level of amino acids interacting to build
a protein. Networks facilitate the identification of relevant entities and interactions through the
use of theoretical and computational analysis over experimental data. These analyses aim to make
predictions, or at least detailed and accurate descriptions of the underlying biological systems.
Since one of the most common applications of complex systems in biology is the representation
of biological interactions as edges or links of a network, the connectivity or interaction structure
of such a network is of utmost importance. This structure is known as the topology of the network
and in biological systems it is usually not random. This means that who is connected to whom
is relevant, and the distribution of links is arguably related to the particular functionality of
such systems.
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In biological systems, modularity has been associated with
properties such as robustness (Aldana and Cluzel, 2003), mainly
derived from the Boolean network approach (Kauffman, 1969).
The concept of robustness is related to the ability of a system to
withstand perturbations and retain its functionality, whichever
it may be (Aldana et al., 2007). Examples of robustness in
a biological system can be observed in biochemical networks
(Barkai and Leibler, 1997; Morohashi et al., 2002), signaling
networks (Igoshin et al., 2007; Espinal et al., 2011; Espinal-
Enríquez et al., 2017) and other complex biosystems. For
instance, in prokaryotic organisms, sigma factors, despite their
structural similarity, regulate different sets of genes, but the
regulatory function of a dysfunctional sigma factor can be
reassigned to other sigma factors making the organism functional
(Torres-Sosa et al., 2012). Another example of modularity arises
when a set of genes is regulated by the same transcriptional
factor (set known as a regulon). It has been proposed that
these sets of genes can give rise to functional modules in
Pseudomonas aeruginosa (Schulz et al., 2015) and that such
modules are essential for the adaptation and survival under
challenging environments.

One goal of studying biological systems as networks is to
understand how the interconnectedness and function of each
element derives in a system-level behavior. In order to uncover
these features one can look into the design principles of the
network. This means, to try to uncover the particular patterns
present in the network’s topology, such as the ways the nodes are
connected to each other; the functional groups they belong to;
or if nodes with a particular function agglomerate in subgroups.
Topological features, of course, are only partially responsible for
the actual design principles of biological systems. Connectivity
features common of biological networks, such as the approximate
scale-free nature of their connectivity distributions, hierarchical
and modular organization, set the stage for functional features
to emerge. Such functional features are a consequence of
the underlying organizational structure of the systems, their
physiological setting and environmental constraints. Regarding
network connectivity, it is known that the organization patterns
of large complex networks are often composed of structural
sub-units often called modules or communities (Girvan and
Newman, 2002). Communities and modules in the present
context are interchangeable terms, however in this manuscript
we will use the latter term as we believe it has a similar meaning
over a large number of disciplines, with the possible exception of
the Social Sciences and Mathematics.

2. MODULARITY IN BIOLOGICAL
SYSTEMS

So what is a module? Despite there is still no consensus on
what defines a module, a generally accepted notion is that
it corresponds to a tightly interconnected set of edges in a
network. Intuitively, the density of connections inside any so-
called module (within-connections) must be significantly higher
than the density of connections with other modules (between-
connections) (Thieffry and Romero, 1999; Girvan and Newman,

2002; Clauset et al., 2004; Palla et al., 2005). Modularity has
been helpful in many biological fields and can even be useful in
exploratory research (Serban, 2020). In the following sections, we
will present and discuss the latest developments of modularity
research in biological systems as well as the necessary concepts
and formal definitions to understand and promote the usage of
several modularity detection algorithms in the biological sciences
(Didier et al., 2018; Li et al., 2019).

2.1. Emergence of Modularity
In order to perform their vital functions and at the same time
comply with changing environmental conditions, living systems
must possess a high degree of internal organization. A likely
scheme to attain such a sophisticated degree of organization
is through the coupling of diverse biological processes, which
creates the needed correlations among their internal and external
constraints to perform a certain task. This theory is known as the
networks of processes (Clarke and Mittenthal, 1992) and suggests
that modules can be thought as clusters of coupled elements that
work under certain constraints. It also states that organisms can
be studied as super-modules (e.g., networks) made up of several
interplaying modules that adapt as a whole to changes in their
environment. Under this scheme, modularity can be thought of
as a very effective way to prioritize and optimize the correct
functioning of living systems, which are undoubtedly subject to
changing environmental conditions or even to entropic decay.

The question of how modularity emerges in biological
networks has no definitive answer yet, either. It has been shown
that dynamical networks, which include temporal processes
occurring in the whole spatial structure of the network, can give
rise to modular behavior when driven by growth, duplication
and diversification. These duplication-centered dynamic models
emerge from the fact that if some parts of a system undergo
duplication, the new system will be more modular than the
original (Lorenz et al., 2011). How modularity emerges is closely
related to the question of how and why it is preserved across so
many biological systems (Kashtan and Alon, 2005; Gibson, 2016).
This question has been addressed in evolutionary/developmental
biology (evo/devo) and in molecular systems biology as a kind of
intersection point between both disciplines. It has been argued
that there is indeed a relationship between modularity and
controllability (Constantino and Daoutidis, 2019).

Despite underlying mutational mechanisms have been
proposed to explain the emergence of modularity, selection and
other evolutionary forces have also been part of this discussion
(Wagner et al., 2001, 2007; Espinosa-Soto and Wagner, 2010;
Clune et al., 2013; Friedlander et al., 2013; Banerjee et al., 2017;
Verd et al., 2019; Jaeger andMonk, 2021), as are ecological factors
such as spatial distribution and population dynamics (Gilarranz,
2020). Biological modularity arise in the contexts of dynamical
process that may even challenge compartmentalization and cause
the breakdown of modularity or its rearrangement (Valverde,
2017; Wang et al., 2021).

In the next section, we will discuss the different notions
of modularity –particularly those more closely related to
the modular organization at the molecular, functional and
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cellular levels– and their application to a wide diversity of
biological phenomena.

2.2. Applications of Network Modularity
One clear example of application of network theory in biology
is the study of Gene Regulatory Networks (GRNs) (Davidson
and Levin, 2005). These networks can be conceptualized as
control systems that drive whole-genome expression patterns
(Hernández-Lemus et al., 2019). This coordinated expression
is attained through the orchestrated expression of transcription
factors and other regulatory molecules like siRNAs, histones,
etc. The wider availability of high throughput technologies has
sprouted a new wave of modularity research in GRNs. After
the completion of the human genome project (HGP), and
following the pioneering work of Kauffman (1969) and Britten
and Davidson (1969) in the late 1960s, transcriptional regulation
module discovery has become an extremely fruitful research
field. For instance, it has been demonstrated that modularity can
emerge as a consequence of gene co-expression in GRNs; by
associating the functions of these genes and their regulators, it
has been argued that gene co-expression may confer functional
advantages to the organisms, as genes with related functions are
likely regulated in a similar manner (Solé et al., 2002; Narula
et al., 2010). Gene functionality of several genes with no prior
functional description has already been predicted (Segal et al.,
2003; Lee et al., 2004; Tanay et al., 2004). Also, by integrating
gene expression levels with the modular structure, it was possible
to build a comprehensive map of gene regulation for a whole
organism (Zhu et al., 2008).

Community structure and modularity in metabolic networks
is another important research field. Many biochemical
interventions and biotechnological applications depend on
modularity, and with the advent of synthetic biology, the use of
modules will probably escalate in the near future, driven by the
possibility to evolve engineered biological systems (Parter et al.,
2007). Modularity in metabolic networks has been extensively
explored since the pioneering work by Ravasz et al. (2002) where
through the reconstruction of 43 metabolic networks from
different organisms, they found that scale free topologies were
ubiquitous. Briefly, in these networks the probability distribution
of connections on the network (degree-distribution) follows a
power law, so that most nodes will end up with few connections
and only a few nodes will end up with many. In this case, the
studied networks had values of the scaling exponent around 2,
and an average clustering coefficients (see section 3) about an
order of magnitude larger than expected for scale free networks.
This scaling exponent around 2, suggests that these networks are
probably under a dynamical regime between that of an ordered
system and the one of a chaotic one. This regime is known as
critical and it has been observed in many different complex
systems (Shmulevich et al., 2005). Another important theoretical
contribution of this work is the introduction of the topological
overlap matrix (Ravasz et al., 2002; Cheng et al., 2019).

The interactome (Sanchez et al., 1999) is a useful concept
related to Protein-protein (physical) interaction (PPI) networks,
which are also organized into functional subnetworks or
modules. An interactome is defined as a biological network,

which encompasses the complete set of molecular interactions
in a particular cell. These interactions range from physical (as
in PPI networks) to indirect, as is the case of epistatic or
gene-gene interactions, and may even include edges defined by
regulatory interactions like those of a GRN (Gómez-Romero
et al., 2020). Even if interactomes seem to be less clearly
defined than other biological networks, they may be used to
represent processes that, although not completely understood,
may be associated with some specific phenotypes. The human
disease network (HUDiNE) (Goh et al., 2007) was actually
created by using interactomes. HuDiNe, according to its creators
is a network of disorders and disease genes linked by known
disorder–gene associations. The observation that genes linked to
similar diseases present a higher likelihood of sharing physical
interactions between their products (e.g., PPI) and a higher
correlation in their expression profiles, lead to the conclusion that
such a network will likely display characteristic disorder-specific
functional modules. This fact was corroborated by analyzing the
topological structure of the HuDiNe (Goh et al., 2007). Since
the release of HUDiNE, interactomes related to disease have
been carefully curated and archived in structured databases, thus
making possible the discovery of new co-morbidities from a
molecular rather than epidemiological perspective (Menche et al.,
2015).

In the case of human diseases, modular network
decomposition has been applied to further our understanding
of the interactions driving the emergence of several complex
diseases (Sardiu et al., 2017; Tripathi et al., 2019; Lucchetta and
Pellegrini, 2020). One good example is the work of De Matos
Simoes and collaborators with cancer cells. By using a network
modularity analysis, they showed that transmembrane proteins
along with ion channel complexes and receptors play a significant
role in the pathogenesis of B-cell lymphoma. The authors based
their argument on the observation that central and peripheral
layers in the modular decomposition of the networks may play
different physiological roles. Hierarchical modular separation
may then provide clues as to cross-regulatory phenomena in
complex phenotypes. Specifically, they noted that thesemolecules
act via the communication disruption between the intracellular
regions and the peripheral regions of B cells (de Matos Simoes
et al., 2012). In pancreatic cancer, the disruption of intracellular
adhesion and cell-division cycles in the tumors were found to be
driven by clearly defined transcriptional modules (Long et al.,
2016). Also, network communities related to survival have been
found in regulatory networks from hepatocellular carcinoma
(Xu et al., 2016). Expression activity of the genes in such modules
may contribute to timely stratification and tumor staging of liver
cancer patients.

Other complex phenotypes have been dissected by analyzing
the community structure of their underlying networks. During
brain development, for example, it has been shown that the
perinatal transition leads to modular reorganization of the
brain, which is in turn associated with the development of new
functions. This modularization is also correlated with specific
gene sets whose expression are synchronously changing, as
they share transcriptional regulators (Monzón-Sandoval et al.,
2016). Similar methods have allowed the identification of
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distinctive molecular pathways that differentiate early and late-
onset temporal lobe epilepsy in children (Moreira-Filho et al.,
2015). These studies have pointed out that differentially expressed
modules in early onset epilepsy are related to neural excitability
and febrile seizures, whereas no neural excitability gene modules
were found for late onset. These findings support the hypothesis
that early onset epilepsies, even if accompanied by severe
hippocampal damage, may present compensatory effects. This
difference may set the basis for differentiated drug treatments.

Community structure in regulatory networks may also be
useful to discover potential molecular targets to treat complex
diseases (Muraro and Simmons, 2016). In coronary artery
disease, for instance, modules associated with the hypertrophic
cardiomyopathy pathway and membrane-related functions were
detected (Liu et al., 2016). These pathways, the authors suggest,
can provide a means to define a set of druggable process-
specific targets (Ashrafian et al., 2011). Transcriptional modules
associated with the response to allergens leading to seasonal
allergic rhinitis have been also identified by Shi and collaborators
(Shi et al., 2010). These modules revealed that theMAP kinase, B-
cell receptor and toll-like receptor signaling pathways are crucial
for the critical stages of allergic rhinitis. Regarding the role of
gene regulation on viral pathogenicity and how it has been shaped
by modular adaptation, it has been discussed how enhanced
redundancy leads to robustness of the infectious phenotypes
(Oliveira et al., 2013).

So far we have discussed several examples where finding
modules in biological networks lead to a better understanding
of the molecular and regulatory processes involved in certain
phenotypes and behaviors. A relevant fraction of the modularity
finding approaches used in network biology were developed
with a particular biological question in mind. The methods
thus developed were, in general, efficient to answer that kind
of questions but resulted somehow lacking generalizability. We
call these methods ad hoc, since they have been developed for a
special purpose. Most of these methods are indeed quite useful
on a case-by-case basis. However, since modularity analysis is
a relevant problem in contemporary theoretical biology, it is
desirable to have general methods, or at least methods with broad
applicability, to help lay the conceptual foundations of biological
modularity. We believe that a first step toward this aim consists
in applying the general methods developed in graph theory and
network science to biological questions and fine-tune them to
account for known biological phenomena. In the next section,
we will review several necessary concepts and useful methods
for modularity detection that come from a more theoretical
perspective. As such, these methods were developed to be useful
under any, or at least several, quite general circumstances. We
have also included a benchmark section, where we discuss how
these algorithms stand against each other in the discovery of
modules using both real and synthetic datasets. Although the
field of modularity detection in biological systems is somewhat
young, it has a long history in physics, and thus, many algorithms
are already out there making impossible to review all of them. A
later section will discuss the most relevant methods separated by
the algorithm they are based on in the hopes that the reader will
find some of them useful for their research.

3. NETWORK THEORY

In order to better understand the modularity detection methods
that will follow, we will briefly define/recall a few important
network properties. For a deeper coverage of these and several
other properties we suggest the reader to look, for instance, at the
review by Newman (2010). For an introductory lecture on the
importance of networks in biology and their main applications
besidesmodularity detection we suggest the review byGreen et al.
(2018).

3.1. Complex Networks: Concepts and
Definitions
For the sake of clarity, we will briefly introduce some well-known
definitions of network theoretical concepts.

DEFINITION 1. A network is formally defined as a graph G(V ,E)
over two sets: a set of nodes or vertices, vi ∈ V, (e.g., bio-reactants),
and a set of edges or links connecting such vertices (ei ∈ E)
(e.g., chemical reactions). The connectivity of the network is often
represented by the adjacency matrix A = Ai,j, where Ai,j 6= 0
implies an existing interaction between nodes vi and vj.

DEFINITION 2. The degree-distribution of a network refers to the
distribution of the number of connections per node, and is defined
as the number of connections a given node has to other nodes
(called the degree of the node). Thus, the degree distribution is
defined as the probability distribution of the degrees of all the nodes
of the network. This measure is often used as an indicator of the
relative importance of a particular node (Barabasi and Oltvai,
2004).

Mathematically: Let vmi be the set of vertices connected to a given
vertex (a.k.a. node) m (i.e., Ai,m 6= 0; ∀vi ∈ vmi ). We call vmi
the neighborhood of vertex m. The size, or cardinality, of this set
C(emi ) = km is called the degree or connectivity of vertex m, also
written as deg(vm).

DEFINITION 3. A Network motif is defined by a group of
connected nodes (a sub-graph) that is prevalent in a network or in
several networks. Each motif is thus associated with a particular
pattern of interconectedness between vertices, and may reflect a
framework in which particular functions are achieved efficiently.
These patterns describe arrangements of interconnection that are
present with a significantly higher frequency than in networks
where nodes are randomly connected (Milo et al., 2002).

DEFINITION 4. Intuitively, network modularity consists in

associating network nodes to different categories or subsets of the
network. Assignment is based on connectivity patterns within the
graph, rather than on some inherent node features. The formal
definition of network modularity is still controversial, but we
believe that by giving some enclosing definitions from graph
theory, we can gain a deeper understanding of this concept and
methods described below.

DEFINITION 5. Full/Overlapping partition. We may consider a
set Z of disjoint subsets of a network Z(V ,E) so that Z =
Z1 ˙⋃Z2 ˙⋃ . . . ˙⋃Zk. This is called a full partition of the network.
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If, on the other hand, we allow a non-empty intersection between

the subsets Zi
⋂

Zj 6= ∅, we have Z = Ẑ1
⋃

Ẑ2
⋃

. . .
⋃

Ẑk
which is called an overlapping partition of the network.

DEFINITION 6. Incomplete/Modular Partition. We can also
consider an incomplete partition of Z, i.e., one in which not
every vertex in V is assigned to a subset. In this case we
call M ⊂ Z a modular partition of the network, M =
M1

⋃

M2
⋃ · · ·⋃ Mk ⊂ Z. The subsets Mi (which may or

may not be overlapping) are called the modules of Z. There are
several ways in which a network can be partitioned. Here lies the
difficulty in defining modularity in complex networks: different
definitions of modularity may induce different modular partitions
of the network, which leads to different modularity measures.

DEFINITION 7. The clustering coefficient CC(i) for a particular
vertex i in a network is given by:

CC(i) = number of triangles connected to i

number of possible triangles connected to i
(1)

Here, a triangle is a set of three fully interconnected nodes. Since
0 ≤ CC(i) ≤ 1. Equation (1) can be rewritten as:

CC(i) = 2Ei

ki (ki − 1)
(2)

Where Ei is the number of triangles centered in vertex i and ki is
the degree of that vertex.

Once we have an operative definition of clustering coefficient, its
mean value is the average over all nodes i.

〈CC〉 = 1

N

N
∑

i

CC(i) (3)

〈CC〉 is a probabilistic measure of the abundance of triangles (not
necessarily triads, but also higher order motifs) in the network.

Global measures such as the 〈CC〉 are computationally cheap
(Fortunato, 2010). However, their utility is mostly restricted
to the case of hierarchic modularity scenarios (modules within
modules). Hierarchic modularity was originally defined as the
property of self similarity in the module distribution in a
large scale network, evidenced by a power-law behavior of the
clustering coefficient C(k) ∼ k−1. This relation in turns involves
the coexistence of a hierarchy of nodes with different degrees
of node-modularity –as measured by the node-specific clustering
coefficient–. In brief, under such assumptions, the higher a node
connectivity k is, the smaller its clustering coefficient, which in
the asymptotic regime gives rise to the inverse law, 1/k.

3.2. Network Models: Types and
Approaches
3.2.1. Weighted Networks

A weighted network is defined by the assignment of a weight
for each of the edges of the network. These weights are

established based on the type and strength of the interaction at
hand. Interestingly, weighted networks have proven to further
increase the reliability of the modules proposed. For instance, the
weighted overlap measure (WOM) is a similarity measure that
calculates the overlap between two sets weighted by their relative
contribution to the overall (joint set) (Smith, 1985). The WOM
has been used to define gene modules that are more cohesive
than those obtained through unweighted networks though this
is not always the case. Here a more cohesive module means
that the average value of the inter-module clustering coefficient
is higher than the average value of the network’s clustering
coefficient. Since its proposal, theWOMhas been used to recover
experimentally validated functional gene modules in cancer cells
and in yeast (Zhang and Horvath, 2005). More importantly,
it has been shown that modularity affects biological functions
as the dynamics of the whole network is determined by the
organizational patterns generated by themodules themselves. For
example, bi-stable switches, where weighted edges are essential
for bi-stability, are known to enhance regulatory feedback and
feed-forward loops, which in turn are related to the ability of
an organism to adapt to changing environments (Kashtan et al.,
2009; Gyorgy and Del Vecchio, 2014).

The functional role of regulatory modules has proved to go
beyond that of loops and motifs. By studying a transcriptional
network of myeloid cells, Alcalá-Corona and coworkers showed
that modules are consistently associated at the pathway level
to sets of biological functions (Alcalá-Corona et al., 2016).
Community structure has also proven to affect the dynamical
behavior of the network (Qi and Ge, 2006). By analyzing
simple models of gene regulation, Xu and Wang were able to
fully decompose a complex network in terms of independent
functional modules (Xu and Wang, 2010). Although clear cut
decompositions are not likely to occur in a real biological
networks due to pleiotropy, decompositions make possible to
observe modular effects in an idealized way. For instance, they
have been used to study the effects of the free scale topology
and of hierarchical modularity on the large scale structure of
GRNs (Zhan, 2007). When network structural properties are
supplemented with appropriate dynamic behavior, robustness is
enhanced (Aldana et al., 2007). This increase in robustness has
been shown to be due to the presence of large attractor basins
that lead to stable gene expression patterns (Sevim and Rikvold,
2008).

3.2.2. Multi-Level Networks

The advancement of graph theory along with interactomes gave
rise to the concept of multi-layered networks. Multi-layered
networks encompass several types of interactions and node
types. However, in this multiplex framework interactions are
integrated into different network layers and therefore more
information about the real underlying phenomena can be
retained (Didier et al., 2015). Adding extra dimensions to a graph
can make the associated mathematical analyses more intricate
and hinder the application of common topological approaches
to study modularity. Nevertheless, it has been shown that real
modules encountered in curated networks are better recovered
with modular algorithms applied to multilayered networks,
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compared with the same algorithms applied to single-layer
networks. A detailed mathematical framework for multilayer
networks—introductory, though not elementary—is found in the
comprehensive paper by De Domenico et al. (2013).

In addition to the multiple molecular levels of description
of a phenomenon, multi-layered networks can be adapted to
include multiple species which can be useful in disciplines such
as in comparative genomics. This extended approach also has
more robust scalability features than mono-layered networks
(Ritchie et al., 2016). Multi-layered networks have enforced the
development of new theoretical approaches need for discovering
modularity such as the Multiplex PageRank algorithm (Iacovacci
and Bianconi, 2016).

Another important feature of multi-layered networks is
that they allow a direct analysis of the functional features of
their subjacent modules (e.g., pathway-based strategies). This
approach is useful for studying phenotypes that are naturally
multi-layered, like those associated with genetic regulation where
multiple different sources (e.g., transcription factors, chromatin,
methylation, etc.) are responsible for the phenotype. For instance,
through the use of a multi-layered network of transcription
factors and microRNA co-targeting, along with protein-protein
interaction and gene co-expression (Cantini et al., 2015) were
able to find a set of cancer driver genes associated with the
community structure of the network.

A related issue to that of multilayer networks is multiscale
modularity. Despite highly connected nodes, or hubs, are
often labeled as the most important nodes of a network,
recent studies in the modular structure of the regulatory
networks of Escherichia coli, Saccharomyces cerevisiae, and
Staphylococcus aureus revealed an unexpected relevance for
low degree metabolites. By using flux balance analysis and
graph theoretical methods, Samal et al. (2006) were able to
discover connected clusters of low-degree metabolites. These
large clusters of low degree nodes turned out to be over-
represented in these metabolic networks so that a majority of
the essential metabolic reactions could be characterized by just a
few low degree metabolites. In this study, reactions whose fluxes
were strongly correlated formed well-defined communities in
metabolic networks of the organism. The large scale community
structure, that is, the network modules conforming relatively
large subnetworks, and the small scale modularity (partitions
of small motifs), represent a complex interplay that has been
shown to play an important role in metabolism under the
assumption of hierarchical network organization (Gao et al.,
2016). By introducing the concept of multiscale modularity, they
propose that network community structure may be defined in
several organizational levels, taking into account high and low
degree nodes.

4. MODULARITY DETECTION
ALGORITHMS

From the perspective of the statistical physics, computer science,
computational sociology, network science and complex systems
communities, there has been a significant amount of work

devoted to solve the modular partition or community detection
problem. Unlike what happened with biological networks, these
methods aimed at reaching formal and theoretically-founded
results with wide applicability. It is important to note that
there is the possible drawback of losing some interpretability
of the results in the quest for generality. However, it is our
belief that these methods will prove useful for the biological
community, as these approaches remain largely unknown and
offer complementary views of the same problem. With this in
mind, the following sections will be focused on introducing this
second perspective to the community detection problem.

Classification of community detection algorithms depends on
their approach to the graph partition problem. Although there
is a wide variety of methods and algorithms to approach the
problem of graph partitioning and networkmodularity detection,
they often fall in one of five (quite general and sometimes
overlapping) possible categories:

1. Methods based on data clustering
2. Methods based on optimization of the modular partition
3. Methods based on the spectral properties of the adjacency

matrix
4. Random walk based and other dynamical algorithm methods
5. Stochastic block models

As we will see, there are advantages, disadvantages and
limitations in all types of models. For this reason, it is wise to
consider the features, applicability and benchmark performance
before opting-in for a certain model.

4.1. Data Clustering-Based Methods
There are several methods based on measuring some significant
statistical similarity or distance over the biological data. Some
techniques have been developed to ascertain whether a set
of proposed modules adequately represents the whole set
of molecular determinants of a single disease, or closely
related diseases.

For instance, in Menche et al. (2015), a topological method
was devised in order to locate disease-related communities
within the interactome (whole set of interactions in a particular
cell). This method uses the overlap among communities of
different pathologies to predict disease-disease associations.
Although simple, this method has proved very useful and further
improvements have been made to the initial algorithm, in
particular on relation to the establishment of endo-phenotype
models as discussed in Ghiassian et al. (2015) and Ghiassian et al.
(2016).

One important limitation of clustering based methods rely on
the challenge to determine the optimal number of clusters. The
problem of an optimal number of clusters/modules is actually
an open challenge in theoretical computer science and graph
theory. Even approximate solutions often depend on the specifics
of the algorithm used. Some methods as the ones based on
spectral bisection have conditions to define an a priori number
of clusters, while other methods like those based on structural
properties, on dynamical process over the networks and those
which have a stochastic component; may determine a number of
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clusters, based on their large and local structure of the network,
an approach some consider to be more natural.

One relevant method for disease module detection is
DIAMOND (Ghiassian et al., 2015). The theoretical ground for
DIAMOND is that in incomplete interactomes “diseases cannot
be associated with topologically dense network communities”,
rather, the statistical significance of an interaction, meaning the
weight of the link, is the relevant quantity used to characterize
suchmodules. This highlights the impact of the node/link ratio in
the establishment of interacting structure and then in biological
function. By extending the ideas of the DIAMOND/HuDiNe
approaches it is possible to analyze the relationship between
drug targets and disease-proteins through a topological proximity
measure. This measure quantifies the interactions between drugs
and disease-proteins in the human disease interactome (Guney
et al., 2016) and can be used as a proxy for therapeutic effect.
This can be useful for establishing a basis for drug screening
and repositioning and evaluation strategies. Another approach
to detect modularity in the interactome was based on identifying
joint patterns of gene expression and drug response (Chen and
Zhang, 2016). This was done to gain further insight into the
biochemical mechanisms of drug action that may drive the
development of new therapeutic targets in cancer. Interactome
modularity has allowed de novo design of therapeutic strategies
in cancer and also allowed the creation of methods for drug
repositioning analysis (Chen et al., 2016). Such methods are
aimed at detecting multi-targeted drug candidates that may
disable malignant cellular functions.

Several methods have been proposed to analyze community
structure in PPI networks. Feature selection by clustering has
been applied to real and synthetic interaction data revealing
modules with increased biological significance for E. coli and
yeast networks (Henriques and Madeira, 2016). A similar
approach was used in the NCMine method (Tadaka and
Kinoshita, 2016) which is implemented as a plug-in for the
popular network visualization and analysis suite Cytoscape
(Adamcsek et al., 2006; Su et al., 2010; van Dongen and
Abreu-Goodger, 2012) and is based on a technique called near-
clique mining that distinguishes nodes in a network as either
“core” or “peripheral” to a given subnetwork. Topological Data
analysis (TDA) has also been used to detect topological network
modules in protein interaction networks. TDA encompasses
several statistical methods like clustering and perturbation
analysis to find structure in data. By deleting protein complexes
of the S. cerevisiae INO80 protein interaction network and
performing TDA, isolated modules that contain proteins with
shared biological functions were discovered to belong to the same
module, even if they mapped to distinct locations of the network
(Sardiu et al., 2017).

Clustering using genetic algorithms has been also applied with
certain success (Ramadan et al., 2016). In brief, an objective
function is built for exclusive clustering (nodes belonging to a
unique module) and overlapping clustering (a particular node
or set of nodes can be as indicated by spectral clustering
methods, see section 4.2). This function is then optimized by a
replication/mutation/recombination genetic algorithm in order
to detect modular components of the network identified as

protein complexes. One approach to detect such modularity in
GRNs is through phylogenetic profiling. This approach is based
on the idea that the joint presence or joint absence of two traits
across various species is used to infer a meaningful biological
connection, such as involvement of two different proteins in the
same biological pathway.

As it was mentioned, sometimes approaches made use
of hybrid methods, such is the case, for instance, of the
work by Servis and Clark (2021) that perform a cluster
identification strategy by using modularity optimization to
analyze chemical heterogeneity in complex solutions. We will
abound on modularity optimization in the next subsection.

4.2. Methods Based on Modularity

Optimization
Unlike the methods based on similarity of data, most of the
methods take into account the large-scale structure of the
network itself, defined by the edges between nodes, regardless of
the source of the data (Newman, 2012). Such as the case of the
methods based on and supported by some class of Modularity
optimization (see Definition 8).

In order to categorize different modularity measures, we
must distinguish between local and global methods that quantify
and assess network modularity. Measures of local modularity
emphasize scoring specific clusters or partitions of the network.
This score considers the number of modules that are dense
or sparsely connected in a given assignment (Reichardt and
Bornholdt, 2006). The more dense connections are within a
module and the more sparse the connections are from within
a module to outside vertices, the higher the modularity score
will be. The local modularity of a network is usually given
as the score of the highest-scoring partition. Finding the
best partition and evaluating its score solves the modularity
problem completely, but it relies on comprehensive enumeration
of partitions, a problem that often carries computationally
prohibitive combinatorial burdens (Fortunato, 2010).

The case of global modularity of a network is different in the
sense that global measures usually are computed without a priori
computing the network partitions. Instead, this measure relies on
other network properties such as the average clustering coefficient
〈CC〉. The rationale is that vertices that form a module should
have adjacent neighbors, as they increase themodular density and
induce the formation of triangles in the graph.

An important family of local modularity measures is based
on the concept of edge-betweenness, a concept introduced to
generalize the node-associated betweenness centrality measure.
Edge betweenness is then defined as the number of shortest
paths between pairs of nodes that run along a given edge. The
more paths traverse pairs of nodes traversed by an edge, the
more central the edge is for the global connectivity structure
of the network (Freeman, 1977). The first algorithm that used
this concept was proposed by Girvan and Newman (Newman
and Girvan, 2004) and is a paradigmatic example of the
application of local modularity measures. The method consists
in disconnecting sets of vertices by removing edges with larger
betweenness. This algorithm was applied to several simulated
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networks as well as a number of real networks with an a
priori known modular structure with good overall performance.
More importantly, Newman and Girvan also provided a formal
measure of network modularity.

DEFINITION 8. Given a network modular partition we have the
following:

Q =
∑

i

(eii − a2i ) = Tr(E)− ||E2|| (4)

Here, eij is the matrix element –from the modularity matrix E–
whose entries are defined as the fraction of all the edges in the
network that connects nodes in the i module to the nodes in the
module j, ai =

∑

j eij. Notice that, for an arbitrary matrix X, a

norm is defined as ||X|| =∑

i

∑

j xij.

Q is called the Girvan-Newman modularity of a network
partition, or sometimes just the Modularity. Q measures the
fraction of edges in the network connecting vertices within the
same module or community (or intra-community edge ratio) and
then subtracts form this fraction its expected value in a network
with the same partition scheme over randomly connected nodes.
Q = 0 implies that the partition’s modularity is not better
than random, whereas Q = 1 is indicative of a strong
modular structure.

Modularity can also be rewritten (Clauset et al., 2004) as:

Q = 1

2m

∑

i,j

[

Aij −
kikj

2m

]

δ(Ci,Cj) (5)

Where m is the total number of edges in the network. ki is the
degree for node i. Aij is the adjacency matrix. C is an indicator
function such that Ci = Cj implies that nodes i and j belong to
the same community, δ is Kronecker’s delta function. This way,
if two nodes i andj belong to the same community δ(Ci,Cj) = 1,
otherwise δ(Ci,Cj) = 0.

There is yet another (equivalent) way to represent the
modularity Q that may result even more useful in practice
(Fortunato and Barthelemy, 2007; Porter et al., 2009):

Q =
M
∑

s=1

[

ls

L
−
(

ds

2L

)2
]

(6)

The sum, over all M modules of the partition, ls is the number
of edges inside community s. L is the number of edges in the
network and ds is the total degree of nodes in module s.

These important ideas lead to the establishment of
Community Detection as one of the foundational problems
of Network Science (Newman and Girvan, 2003; Newman,
2004a; Kovács and Barabási, 2015). Maximization of modularity
Q has been proposed as a central idea in several optimal network
partition algorithms (Clauset et al., 2004; Newman, 2004b,

2006b). However, modularity optimization, also known as Qmax

algorithms, are constrained by a resolution limit that depends
on the overall size of the network and on the interconnection
density of the modules, which may lead to failure of Qmax

methods due to sub-optimal optimization caused by the presence
of a multitude of local minima on the modularity function
(Fortunato and Barthelemy, 2007).

A related issue with respect to large networks is that
calculating the modularity score Q (see Equation 6) belongs
to the family of NP-Hard or non-deterministic polynomial-
time problems. The main characteristic of these problems is
that they cannot be solved in polynomial-time, so they are
computationally and time consuming, precluding its direct use
on extremely large networks. Several heuristic approaches have
been proposed to deal with this problem (Danon et al., 2005;
Duch and Arenas, 2005; Guimera and Amaral, 2005; Newman,
2006b; Von Luxburg, 2007; Brandes et al., 2008). One particularly
useful technique is known as the Louvain method (Blondel et al.,
2008). This approach is based on a two-step heuristic: (1) a
maximal modularity full partition is obtained by merging nodes
in order to maximize modularity through a greedy method, (2)
then a network is formed in which nodes are the modules from
the first step. This stage is continued recursively until no further
improvement in modularity can be obtained.

A whole new family of methods was developed after the
introduction of the modularity measure Q. Most of these
methods aimed to maximize either Q itself or some proper
function of Q under the rationale that if one is able to find a
partition that maximizes Q, the induced community structure
would be optimal. In this family we can find the original works
by Newman (2004b) as well as later refinements of his method,
either by himself (Clauset et al., 2004; Newman, 2006b) or by
others (Guimera et al., 2004; Duch and Arenas, 2005; Blondel
et al., 2008; De Leo et al., 2013). However, since maximization
of the Q-measure has a resolution limit that depends on
the size of the network and the degree of interconnection
between the modules, the method is not fail-safe (Fortunato
and Barthelemy, 2007; Lancichinetti and Fortunato, 2011).
Some recent implementations, however, have been developed to
improve the results obtained under Q-optimization as is the case
of the works by Medus and Dorso (2009), Khadivi et al. (2011),
Gong et al. (2011), and (Bettinelli et al., 2012).

4.3. Spectral Graph Theory
Another family of algorithms is based on Spectral graph theory,
which uses the analysis of the eigenvalues of the adjacency matrix
or the Laplacian matrix of a graph. It consists in a transformation
of the set of nodes into a set of points in a space whose coordinates
are elements of eigenvectors, then the set of points can be
clustered via standard techniques (Fortunato, 2010). The change
of representation induced by the eigenvectors makes the cluster
properties much more evident (Donath and Hoffman, 1972;
Fiedler, 1973).

The analysis of the spectrum of the Laplacian matrix

L, is the most used approach in spectral clustering. This
matrix can be derived from the adjacency matrix A of
a network and it is constructed by reversing the signs
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of the non-diagonal entries and replacing the diagonal
entries with the degree of the corresponding node (See
Figure 1).

The Laplacian matrix can be written in block-diagonal form,
that is, the nodes can be ordered in such a way that the
Laplacian displays k square blocks along the diagonal, with some
entries different from zero, and all other elements vanish. Each
block is the Laplacian of the corresponding subgraph, so it
has the trivial eigenvector E1 with components (1, 1, 1, ..., 1, 1).
Therefore, there are k degenerate eigenvectors with equal non-
vanishing components in correspondence with the nodes of a
block, whereas all other components are zero. In this way, from
the components of the eigenvectors, it is possible to identify the
connected components of the graph, and then based on this
property, it is possible to find highly connected groups of nodes
and the expected number of modules in which the network may
be partitioned.

Since the values of the eigenvector components are close
for nodes in the same community, it is possible to use them
as coordinates, such that vertices turn into points in a metric
space. So, for M eigenvectors, the nodes can embed in an M-
dimensional space. Thus, modules appear as groups of points
well-separated from each other (Donetti and Muñoz, 2004).
Also, it is possible to use the Laplacian matrix property, in
which, if the graph has g connected components, the largest g
eigenvalues are equal to 1, with eigenvectors characterized by
having equal-valued components for nodes belonging to the same
component. Thus, the modules can be found by inspecting the
components of the eigenvectors with eigenvalue 1 (Capocci et al.,
2005).

Furthermore, in the context of Spectral clustering, there is
a remarkable relationship introduced by Newman (Newman,
2006b), between Modularity optimization and the spectral
properties of the adjacency matrix known as Spectral
optimization. We can rewrite the Q optimization in terms
of finding the spectrum of a particular matrix as we will
see below.

Starting from Equation (5), it is possible to define the
modularity matrix Bij as:

B = Bij =
(

Aij −
kikj

2m

)

Now, let us suppose a particular a partition of a network into just
twomodules. Thus we can assign to each node, a quantity si, such
as:

si =
{

+1, if a node i belongs to group 1

−1, if vertex i belongs to group 2

Thus, Q can conveniently be written in matrix form:

Q = 1

4m

∑

ij

Bijsisj =
1

4m
EsTBEs (7)

where Es is a column vector whose elements are si.

Then, in order to optimize this form of Q it is possible
to perform the so-called relaxation method (that is, allowing
its entries to take continuous values and retaining the norm
of the vector), which is one of the standard methods for the
approximate solution of vector optimization problems such as
this one. Thus, by differentiating and imposing the constraint
|s| = √

n or equivalently:

∑

i

s2i = n

The modularity maximization problem is now straightforward.
We now have a maximization problem with this norm as a
constraint, or equivalently, (n − ∑

i s
2
i ) = 0. This is done

by introducing a Lagrange multiplier λ, and taking the partial
derivative with respect to the components of the vector (one at
a time) of the following expression:

∂

∂si=k,j=k





∑

i

∑

j

Bijsisj + λ

(

n−
∑

i

s2i

)



 = 0 (8)

to obtain:





∑

i

Biksi +
∑

j

Bkjsj − 2λsk



 = 0 (9)

which leads to:
∑

j

Bkjsj − λsk = 0

∑

j

Bkjsj = λsk

for all k.
Which is in a matrix form an eigenvalue problem for the

modularity matrix:

BEs = λEs (10)

The value of λ that maximizes Q is the largest possible one, that
is the dominant eigenvalue of the matrix B.

It is worth mentioning, that similarly to this approach, the
spectral bisection method (Barnes, 1982), uses the spectrum of
the Laplacian matrix, to find partitions of a graph by dividing
it recursively into two groups. Every partition of a graph with
n nodes in two groups can be represented by an index vector Es,
whose component si is +1 if a node i is in one group and a1 if it
is in the other group. Then the cut size R of the partition of the
graph in the two groups can be written as:

R = 1

4
EsTLEs (11)

Finally, theModularity optimization approach can be extended to
a more than two modules, by writing an additional contribution
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FIGURE 1 | The Laplacian Matrix of a network. Panel (A) presents a small undirected network; Panel (B) shows the Adjacency Matrix A describing the network

connectivity of the network in (A); Panel (C) shows the definition of the Laplacian Matrix of a Network and panel (D) shows the Laplacian Matrix L of the network in

(A). The bold numbers represent the degree of node i, whenever i=j. This figure is intended for illustrative purposes, no actual results are presented.

1Q to the modularity upon further dividing a group g of size ng
in two as:

1Q = 1

4m

∑

i,j∈g



Bij − δij

∑

k∈g
Bik



 sisj (12)

1Q = 1

4m
EsTB(g)Es (13)

where δij is Kronecker’s δ, and B
(g) is the ng × ng matrix with

elements indexed by the labels i, j of nodes within group g.
Because Equation (13) has the same form as Equation (7) it
is possible to apply the spectral approach to this generalized
modularity matrix, just as before, to maximize 1Q.

In addition, themodularity matrix B also has always the trivial
eigenvector E1 with eigenvalue zero (like the Laplacian matrix),
because the sum of the elements of each row/column of the
matrix vanishes. Thus, it is also possible to optimize modularity

on bipartitions via spectral bisection, by replacing the Laplacian
matrix with the modularity matrix (Newman, 2006a,b).

4.4. Random Walk Based Models
The use of random walks to find modules on a network is based
on the somehow intuitive premise that a random walker moving
on the network will spent more time inside modules—due to
the high density of edges, thus many possible trajectories—than
hoping from one module to another. A first approach to this
problem was addressed by Zhou (2003) who used random walks
to define a distance between pairs of nodes, assuming that there
is a high likelihood that closer nodes—under this measure of
distance—belong to the same module. Such distance was used to
define global and local attractor nodes used to detect modules, i.e.,
minimal distance subnetworks. A different but related approach
was taken by Pons and Latapy (2006) on a method called
Walktrap. Here, distance is calculated via the probability that
a random walk moves from one module to another on a fixed
number of steps, then grouping nodes via hierarchical clustering.
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A method based on the application of the Markov property
of node-to-node walks called Markov Cluster algorithm (MCL)
was developed by Van Dongen (2001). MCL simulates a
diffusive process in the network. A stochastic matrix is obtained
by dividing every entry of the adjacency matrix Aij by the
corresponding degree of node i. This stochastic matrix is used to
calculate transition probabilities on a Markov random field. This
method is quite elegant and comparatively easy to implement,
however, its large computational complexity makes it difficult to
apply in practice for real (large) networks (even in sparse cases).

As already mentioned, for large sparse networks also the
standard versions of spectral based algorithms are suboptimal,
in the sense that in some cases these fail to detect communities
even when other algorithms such as belief propagation can do so.
Efforts to improve these spectral theory methods have been made
by resorting again to random walk dynamics, mainly through
implementing non-backtracking random walks (the random
walker cannot move backwards) over the network (Krzakala
et al., 2013; Newman, 2013; Zhang and Newman, 2015). Other
methods in the literature are built on ideas borrowed from
non-linear dynamic processes, such as spin-coupling models
with nearest neighbor interaction (Reichardt and Bornholdt,
2004), synchronized oscillators (Arenas et al., 2006; Arenas and
Diaz-Guilera, 2007), as well as generalized random walks (Van
Dongen, 2001; Zhou and Lipowsky, 2004; Pons and Latapy,
2005). Among this plethora of models, INFOMAP has been
shown to be quite reliable and computationally efficient (Rosvall
and Bergstrom, 2007, 2008).

The INFOMAP algorithm is founded on a clever combination
of randomwalk dynamics and information theory. Themain idea
is to reach optimal compression of the information needed to
describe the diffusion process of a set of random walkers. This
is achieved by using the random walk itself as a proxy for the
diffusion process via a sequential enumeration algorithm and the
use of tools of information theory and computational linguistics.

In a nutshell, the approach is quite similar to the way we
imprint location information on geographic maps of cities: you
can map a large number of close-to-each-other streets into a
neighborhood (“a module,” with its own description) and a series
of close-by neighborhoods into a town. The larger the scale of
these urban modules, the smaller the total amount of information
needed for their description. In a similar way, the INFOMAP
algorithm looks up for the minimal description length for the
modular partition of a network. The best partition is the one that
can be described with the minimal information.

In brief, the description length is a measure of the complexity
of a given process. By using the description length is possible to
characterize the trajectory of a random walk (or the trajectories
for an ensemble of random walkers), in the form of the
map equation:

L(M) = qxH(Q)+
m
∑

i=1

qxH(Pi) (14)

Here, L(M) is the description length of an ensemble of random
walkers moving through a given modular partition M. The first
term qxH(Q) represents the average number of bits needed

to describe the movements from nodes in one module of the
partition to nodes in another module, whereas the second
term represents the information for the intramodule walks.
Since by the coding theorem (Knuth, 1985), the information
needed to characterize inside module walks is smaller, a minimal
description length implies that most of the time walkers move
inside modules of a given partition, thus optimizing modularity,
allowing however for the presence of a number of intermodule
hops. This method uses a greedy algorithm, so it can be applied
quite efficiently even to large networks, directed or undirected.
There are also INFOMAP implementations to find hierarchic
modular structure (Rosvall and Bergstrom, 2011) and overlapped
modules (Esquivel and Rosvall, 2011).

4.5. Stochastic Block Models
Statistical inference provides a powerful set of methodological
tools useful in modularity detection. The usual way to proceed is
by adjusting a generative network model to the experimental data.
A stochastic block model (SBM) is by far, the most used model to
generate networks with a modular structure. The essentials of the
SBM are as follows:

The stochastic block model generates a number n of vertices
of the network; the algorithm makes a partition of the vertex
set {1, . . . , n}{1, . . . , n} into q disjoint subsets C1, . . . ,Cq i.e.,
the modules. By starting with a symmetric q× q matrix P
containing edge probabilities for all the possible connections.
These probabilities must be known a priori. Then the SBM is
generated by randomly sampling this edge set as follows: any
two vertices u ∈ Ci and v ∈ Cj are connected by an edge with
probability Pij.

Modularity detection works out by optimizing the
unnormalized log-likelihood that a given partition g of a
graph G in q modules will be reproduced by the SBM (Karrer
and Newman, 2011).

L(G|g) =
q
∑

i,j=1

eij log

(

eij

ninj

)

(15)

Here L(G|g) is the log-likelihood for a partition g of a given
networkG to be produced by the standard SBM. eij is the number
of edges connecting module i with module j of the partition, and
ni, nj are the number of nodes in modules i and j respectively.
The sum includes the case i = j. The strongest drawback of the
method is that it requires a priori knowledge of the number q
of modules in which the network has to be partitioned, although
this limitation has been recently overcome by using a Bayesian
formulation (Peixoto, 2018).

General SBM models (i.e., non-Bayesian) have been
demonstrated to be formally equivalent to modularity
optimization approaches that do not usually require a fixed
number of modules for the partition (Newman, 2013). Despite
this and the fact that maximum likelihood exact estimation is an
NP problem—so all solutions are approximate—SBMmodels are
still popular in statistics and machine learning algorithms.

As we have discussed in this section, topology based methods
for modularity detection are robust, general and intelligible. They
can also be benchmarked with experimentally available modular
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partitions. Such validation uses robust statistics, such as the ones
given by normalized mutual information measures. The strength
of these methods is that they do not rely a priori on any non-
topological information, as they are based on the (weighted or
un-weighted, directed or un-directed) connectivity as given by
adjacency matrices. This is the basis of their generality and broad
applicability, in particular to complex biological problems.

The fact that these methods do not need any prior
knowledge—aside from the connectivity structure—does not
preclude us to incorporate such information when available,
to enhance our intuition and empower our predictions when
applied to real large scale biological networks. For this reason
we strongly believe that the popularization of these approaches
within the computational and systems biology research settings
will prove to be highly beneficial for both, the construction of
more general approaches to study modularity in biology and for
the further development of analytic methodologies in the theory
of complex networks.

5. BENCHMARKING AND PERFORMANCE
TESTS

Whenever several methods perform a similar task, benchmarking
becomes necessary. However, as described in Tripathi et al.
(2016), a large heterogeneity among different community
structure discovery methods is often found. As many of the
available methods for module discovery have been developed as
ad-hoc solutions, they often lack reliability when applied to other
biological systems. Also, the intrinsic complexity of biological
modularity makes it hard for a single method to describe all types
of modules correctly. Nevertheless, in the following section we
will show how by resorting to theoretically sound and rigorous
methods of comparison that do not rely on the specifics of a
given biological system, one can attain precise measurements of
performance for any module detection method.

5.1. Testing Performance and Scoring
Measurements
Benchmarking community detection algorithms using real
biological networks is not optimal, as it is not clear what the ideal
partition is. However, real networks such as the social network of
bottle-nose dolphins from Doubtful Sound (New Zealand) built
and studied by Lusseau (2007), as well as the network of college
football teams obtained by Girvan and Newman (Girvan and
Newman, 2002) have been used for this purpose. Real biological
network communities (also called ground-truth communities)
are often inferred from non-topological studies carried out by
network curators, which based on experimental observations
(e.g., protein-protein interactions) define the network itself. As
these methods rely only on observed data, it is possible that
the resulting network is either incomplete or has spurious
interactions. So how can one find these modules and relate them
to particular functionalities, especially when such functionalities
are unknown? One general approach is to use random network
methods to test if the community or modular structure in
our networks is valid and significant (Sah et al., 2014). One

common approach consists in generating network models that
satisfy the constraints imposed by the real networks (such
as the connectivity, the number of nodes, etc.) and keep a
graph structure that is as random as possible. These network
realizations allow the use of a large set of tools already available
to analyze the topology of random networks. In particular, they
are useful for creating null-models that serve as a baseline to
which we can compare the significance of our partition model.
As such null models have been established, they can be used
to test biological functional hypotheses. This generation of null
models serves directly to generate scoring metrics that allow the
comparison and selection of the best network partitions. These
null-model networks may be generated synthetically, and this
way we could test to what extent the algorithm is able to found
the a-priori known communities.

There are two classic and widely used performance tests
for community detection algorithms: the GN and the LFR
(Fortunato, 2010), both of which belong to a class of methods
generated under the planted l-partitionmodel (Condon and Karp,
2001).

DEFINITION 9. In the planted l-partition model a network with
n = g · l nodes, is partitioned into l groups of g nodes each. Nodes
in the same group are linked with a fixed probability pin, whereas
nodes in different groups are linked with probability pout . Each
module is then a random Erdös-Rényi network with p = pin and
if every module were a node, the whole network would also be an
Erdös-Rényi graph with p = pout .

For a subgraph representing a module or community C, the

average connectivity degree will be given as 〈k〉in = pin(g − 1)
and the average external degree would be 〈k〉out = g · pout(l − 1)
(recall that for an Erdös-Rényi graph connected with probability p,
the average degree is given as 〈k〉 = p(n − 1)). If these conditions
hold, the average degree for the whole network is

〈k〉 = pin(g − 1)+ g · pout(l− 1) (16)

This way, if 〈k〉in > 〈k〉out (i.e., if the intra-module average degree
is greater than the inter-module average degree), then the network
will have well-defined community structure. This is equivalent to
the intuitive definition of modularity, namely pin > pout .

The GN test was designed by Girvan and Newman (Girvan and
Newman, 2002) to test their community detection algorithm. It
is a particular case of the planted l-partition model where the
authors fixed l = 4 and g = 32 to get a network composed
of 128 nodes forming 4 modules with 32 nodes each and an
average degree of 〈k〉 = 16. Within this framework link-density
is adjusted by scanning the values of the average in-degree 〈k〉in
and out-degree 〈k〉out to choose specific values to change the
community structure for each network provided that 〈k〉 =
〈k〉in + 〈k〉out = 16.

Under this model it is possible to have explicit expressions for
the average in- and out- degrees, namely: 〈k〉in = pin(g − 1) =
31 pin and 〈k〉out = g · pout(l − 1) = 96 pout . By varying the
values of pin and pout it is then possible to simulate networks
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with a stronger or weaker modularity. For instance, a clearly
defined community structure is induced if pin ≃ 0.5 or larger,
whereas a value of pin ≃ 0.25 or lesser precludes the existence of
well-defined modules.

For this benchmark communities are well-defined for 〈k〉in >

8. One of the advantages of the GN test is that by varying a single
parameter in a pretty simple network it is possible to contrast
different network partition methods. In order to test a particular
method via the GN test one has to calculate a similarity measure
between the partition of the GN network as given by this method
against the natural partition of the network in four modules
of the same size. A highly used similarity measure—proposed
by Newman and Girvan (Girvan and Newman, 2002)—is the
fraction of edges correctly classified, though a more objective
measure can be the normalized mutual information between
partitions (see Equation 17) (Arenas et al., 2008).

In spite of its simplicity and mathematical rigor, the GN
test presents a couple of important shortcomings derived from
unrealistic assumptions. First, all the nodes are expected to have
the same degree. Second, all the communities must be of the same
size. Clearly real complex networks, such as those encountered in
biology, are characterized by long-tailed degree distributions or
power law-like ones, and also by heterogeneous community sizes.
Some improved versions of the GNmethod have been developed
such as the one presented in Fan et al. (2007) where different
weights are assigned to inner and outer edges, regarding their
position in the communities.

The fact that the planted l-partitionmodel generatesmutually-
interconnected Erdös-Renyi random graphs implies that all the
nodes will have almost the same degree and all the communities
will have exactly the same size. Of course, these two features do
not match with what is observed in real networks. To tackle this
problem, Lancichinetti et al. proposed the LFR Benchmark test
(Lancichinetti et al., 2008). The LFR test assumes that the node
degree distribution and the module size distribution follow a—
more realistic—power law behavior. Each node shares a fraction
1 − µ of its edges with nodes within its community and a
fraction µ with nodes in other communities. Hence 0 ≤ µ ≤ 1
the mixing parameter is equivalent to a normalized version of
the 〈k〉out used in the GN test. The LFR test was devised for
undirected, unweighted networks, but there are implementations
for directed, weighted graphs including the possibility to have
overlapping communities (Lancichinetti and Fortunato, 2009a).
Aside from purely computational costs, the main performance
test for network community detection algorithms must establish
a clear criterion to compare the degree of similarity between the
modules discovered (i.e., the specific partition) by an algorithm
and the real (in the test, a priori known) partition. There are
several proposals in the complex network literature as how to
measure similarity between different partitions (Meilă, 2007),
some of them based on pair recounting and group coincidence
counts (Fortunato, 2010).

Additionally, two widely used measures are the fraction of
correctly classified edges and the normalized mutual information
between partitions. The former was proposed by Girvan and
Newman to test their algorithm, but can be generalized to other
benchmark tests. The criteria for the correct classification is as

follows: Each of the modules Ai of the partition found by the
given algorithm is compared to all of the actual modules Bi,
known a priori from the real network partition. When more than
half of the nodes in one of these Ai correspond to those of a
community Bi then Ai is considered to be correctly classified
and no more comparisons between Ai and the rest of the Bis are
carried out. In the contrary case (less than half corresponding
nodes) or when the community Ai is smaller than half the size
of the given Bi, then the module is compared to the rest of the
Bi’s until exhaustion. This criterion is quite stringent since there
are cases in which one may consider that some of the nodes have
been correctly classified by the algorithm but the measure (total
node count divided by the size of the network to give a number
between 0 and 1) rules them out.

DEFINITION 10. The normalized mutual information between

partitions (NMIBP) was proposed by Danon et al. as a similarity
measure (Danon et al., 2005) built on ideas proposed by Ana and
Jain (2003), Kuncheva and Hadjitodorov (2004).

The rationale is that if two partitions are similar, very little
information is needed to infer one partition given the other. One is
able to calculate the mutual information between two partitions A
and B by building a confusion matrix N where rows correspond to
the actual modules and columns correspond to the modules found
by the given algorithm. The Nij-th element of N is the number of
nodes in a real (known a priori) community i that are also present
in the community j detected by the algorithm. Since the partitions
under comparison may have a different number of groups (the
modules or communities), N is not necessarily a square matrix.
This way the similarity between two partitions A and B is given
by the normalized mutual information measure (NMI) as follows:

NMI(A,B) =
−2

∑CA
i=1

∑CB
j=1 Nij log

(

NijN

Ni.N.j

)

∑CA
i=1 Ni. log

(

Ni.

N

)

+∑CB
j=1 N.j log

(

N.j

N

) (17)

Here, the number of actual modules (partition A) is denoted by CA,
the number of modules found by the algorithm (partition B) is CB,
the sum over the row i of the matrixN = Nij is Ni. and the sum over
column j is N.j and N is the total number of nodes. If the partitions
A and B are identical, then NMI(A,B) = 1, whereas completely
dissimilar partitions give NMI(A,B) = 0.

This measure is highly used in the performance tests for
community detection algorithms since it is highly sensitive as it
quantifies explicitly the amount of information recovered by the
algorithm from the original topological structure of the network
(Lancichinetti and Fortunato, 2009b; Lancichinetti et al., 2011;
Tripathi et al., 2016). The NMIBP measure can be used in the
GN and LFR performance tests, both in standard and overlapping
partitions (Lancichinetti and Fortunato, 2009a).

More recently there have been some other approaches that
propose new benchmarks that provide actual techniques to
determine which is the most suited algorithm in most
circumstances based on observable properties of the network
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under consideration. Also considering the use of the mixing
parameter µ and the Normalized Mutual Information measure
(NMI) (Yang et al., 2016). There are also benchmarks based
on novel methods that generate networks with topological
properties found in empirical biological networks (Sah et al.,
2014; Gilbert, 2015).

Despite the high performance of algorithms and methods
shown on the artificial networks generated by benchmarks and
its test with the µ (mixing factor), for example on the LFR test,
an open question is, whether the methods with good results
on benchmarks necessarily find meaningful modules in actual
networks (Jebabli et al., 2018; Cherifi et al., 2019).

It may happen that the community structure found by
some methods with high performance in benchmarks, does
not necessarily correspond to correct ground-truth community
structure—that is, the one based on real known node groups,
or derived from some metadata or even identified by the node
attributes—and vice versa. There could be a substantial difference
between structural communities and metadata groups (Orman
et al., 2012; Hric et al., 2014; Jebabli et al., 2018).

So, for a fair assessment of the performance of some methods,
it is necessary to have a good match between the detected
partition and the attribute-based partitioning for considering
that a method is reliable. Both tests are complementary, and we
recommend applying both of them to perform a complete and
accurate assessment of an actual community structure.

Nonetheless, to overcome these limitations, exploiting the
topological features of the so-called “community graphs” (where
the nodes are the communities and the links represent their
interactions) has been proposed to evaluate the algorithms;
in contrast with metrics defined at node level that are fairly
insensitive to the variation of the overall community structure.
Thus, if the ground-truth community structure is available, it is
possible to compare it vs. the one discovered by these algorithms
by using these clustering-based metrics as has been proposed by
some authors (Orman et al., 2012; Hric et al., 2014; Jebabli et al.,
2018; Cherifi et al., 2019), where more emphasis has been put on
the topology of the community structure.

In this direction, some modifications to the LFR benchmarks
have been proposed to make generated networks more realistic
(Orman et al., 2012). In this work, authors studied generated
networks in terms of community-centered topological properties
to evaluate some methods, they used such properties to compare
community structures to rank the tested community detection
algorithms. As well, recently da Fonseca Vieira et al. (2020) tested
some representative state-of-the-art methods for overlapping
community detection (Cherifi et al., 2019) with synthetic and
real-world benchmark Ground-Truth networks showing that,
although the methods can identify modular communities, they
often miss many structural properties of the communities.

5.2. Good Performance Methods
Commonly Applied to Biological Networks
Beyond presenting the benchmarking for the performance of the
different algorithms, it is important to point out which methods
we think are good for finding modules, given the biological

question under consideration. The question of which algorithm
is the best for biological networks is not easy to answer, it will
depend on the context of the research question and the data on
which the network is built.

However, two of these graph-theoretically-grounded, general
purpose algorithms have been widely applied in biological
networks with good and significant results, such methods
are the Louvain (Blondel et al., 2008) and Infomap (Rosvall
and Bergstrom, 2008). Both methods have good performance
and accuracy scores, as we can see from the several artificial
network bencharmking analyses (Lancichinetti et al., 2008, 2009;
Lancichinetti and Fortunato, 2009a; Sah et al., 2014; Gilbert,
2015; Yang et al., 2016), as well as in Ground-Truth networks
and also in terms of community-centered topological properties
(Orman et al., 2012; Hric et al., 2014; Jebabli et al., 2018). In
addition, both methods show good results and performance
in biological networks, even in comparison with more recent
methods (Mall et al., 2017b; Debnath et al., 2021). Furthermore,
they also have been proved as standard methods to identify
biologically meaningful modules in biological networks (Zheng
et al., 2021) and even for evaluating significant topological
differences between networks (Mall et al., 2017a). In addition,
they have been incorporated on different Bioinformatic analysis
suites and tools, as well as implemented in different programming
languages widely used today, such as R, Python, MatLab, and
C++ and incorporated into standard widely network analysis
libraries such as igraph.

The Louvain method (Blondel et al., 2008) is by far the most
widely used method in biological networks, showing significant
results and meaningful modules (Praneenararat et al., 2011) even
compared with newer methods in recent studies (Şen et al.,
2014; Bennett et al., 2015; Rahiminejad et al., 2019; Calderer
and Kuijjer, 2021). The method is indeed still widely used
nowadays, for example, in the context of SARS-COV-2 analyses
(Zheng et al., 2020). The efficiency and high performance of this
method lie on its taking into account the whole structure of the
network and searching for the best partition in an algorithmic
greedy fashion. In addition, this method has been extended and
applied to bipartite biological networks (Pesantez-Cabrera and
Kalyanaraman, 2016; Calderer and Kuijjer, 2021) as well as to
multilayer and multiplex biological networks (Mucha et al., 2010;
Didier et al., 2015; Mittal and Bhatia, 2018).

On the other hand, Infomap is accepted as a very well-known
method in module detection (Acharya et al., 2012) and even
as a method for comparing the performance and accuracy of
novel methods in biological networks (Lecca and Re, 2015),
and has been incorporated in some bioinformatic layouts as a
standard community detection framework (Aldecoa and Marín,
2014; Zhou and Xia, 2018; Farage et al., 2021). Moreover, has
been widely adapted and extended by its authors in several
ways to different kinds of networks and problems in community
detection, for example, hierarchical module detection (Rosvall
and Bergstrom, 2011), bipartite networks (Kheirkhahzadeh et al.,
2016) and multilayer networks (De Domenico et al., 2015). In
addition, these extensions have proved to give meaningful results
in the context of biological networks as ecological networks
(Pilosof et al., 2020; Farage et al., 2021), multiplex genetic datasets
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(Mittal and Bhatia, 2018) and breast cancer networks (Alcalá-
Corona et al., 2018a). The efficiency and high performance of
Infomap lie in how information flow in a network can reveal
the structure of it (Esquivel and Rosvall, 2011; Aslak et al., 2018;
Eriksson et al., 2021), combined with a strategy of optimizing
partitions such as the Louvain method, which make it one of the
most robust and applicable methods for all kinds of networks
and giving meaningful results (Kawamoto and Rosvall, 2015;
Emmons and Mucha, 2019).

Finally, it is worth mentioning that other three methods have
been demonstrated to be efficient and reliable in the context of
biological networks in comparison with Infomap and Louvain:
the Spinglass Method (Reichardt and Bornholdt, 2004, 2006),
OSLOM (Lancichinetti et al., 2011), and Label Propagation

approach (Garza and Schaeffer, 2019).
Thus, we can suggest as a general strategy for community

detection in biological networks to apply both Louvain and

Infomap, in addition to one of these three latter methods and

then consensing the partition by the Consensus Clustering

approach (Lancichinetti and Fortunato, 2012) to compute a
unique community structure.

6. APPLICATION EXAMPLE: COMMUNITY
DETECTION METHODS FOR CANCER
NETWORKS

Network approaches have been extensively used for instance, to
observe structural differences between cancer and non-cancer
related networks (Reyna et al., 2020; Wang et al., 2020). These
differences, often carry functional features that may help to
understand such complex phenotypes (Miecznikowski et al.,
2016; Drago-García et al., 2017; de Anda-Jáuregui et al., 2019;
Dorantes-Gilardi et al., 2020).

Finding functional modules in cancer has been a matter of
intense research. A common method to infer such modules
resorts to the so-called Weighted gene co-expression network
analysis (WGCNA) (Zhang and Horvath, 2005; Langfelder et al.,
2008). In this method, Pearson correlation is used to evaluate
pairwise gene co-expression. Such co-expression network can be
decomposed into modules by using different methods.

For instance, in Ai et al. (2020), the authors used the
dynamic tree cut method (Langfelder and Horvath, 2008)
to infer modules in a microarray-based colorectal cancer
(CRC) gene co-expression network. This method improves the
classic hierarchical clustering that sets a fixed cutoff value. A
dynamic branch cutting depending on the dendrogram shape
is implemented. With this approach, Ai and cols., found that
GUCA2A, GUCA2B, and CDH3 genes were highly correlated
with the occurrence of CRC.

Along similar lines, WGCNA was used to analyze 182 CRC
and 54 normal samples (Qiu et al., 2020). There, a k-means
clustering was used to find modules, and the hub genes from
those modules were separated into samples with high and low
expression. The authors identified that overexpression of MYL9,
MYLK, and CNN1 genes was associated with poorer outcome in
CRC patients.

In breast cancer, efforts have been made to observe modules
that may be underlying functional processes (Wilkinson and
Huberman, 2004; Zhu et al., 2008; Cantini et al., 2015). It is widely
known that breast cancer is a highly heterogeneous disease. This
heterogeneity can be traced down to the genetic level (Alcalá-
Corona et al., 2017).

Molecular subtyping provides a helpful tool to classify tumors
by identifying common patterns in their genetic expression.
One of the most used classification methods is PAM50 (Sørlie
et al., 2001). Samples are grouped based on the molecular
signature. With this method, breast cancer can be divided
into four main differentiated subtypes: Luminal A, Luminal B,
HER2+, and Basal-like. Each subtype has a different clinical and
histopathological manifestation.

Network approaches to identify modules in breast cancer
molecular subtypes has been a matter of intense research. For
instance, the infomap algorithm has been used to reveal
functional modules in HER2+ breast cancer transcriptional
network (Alcalá-Corona et al., 2018b). Additionally, it has
been observed that in the HER2+ tumors related network, a
hierarchical modular structure appears (Alcalá-Corona et al.,
2018a).

In basal-like breast cancer, network modularity has been used
to observe functional modules and discern whether or not those
modules are shared between the cancer and the non-cancer
network (de Anda-Jáuregui et al., 2019). It has been observed
that the basal breast cancer has a different distribution of module
size between cancer and non-cancer networks (de Anda-Jáuregui
et al., 2019). Additionally, those modules are composed of
different genes.

In all those cases, cancer networks are formed by small
connected same-chromosome gene components. Often, said
components coincide with modules independent of the
community detection method. However, this is not always the
case. For example, in García-Cortés et al. (2021), for Luminal A
breast cancer, an RNA-Seq-derived gene co-expression network
was decomposed into communities by using four different
methods: Fast greedy (Clauset et al., 2004), Infomap (Rosvall and
Bergstrom, 2008), Leading eigenvector (Newman, 2006b) and
Louvain (Blondel et al., 2008).

The aforementioned methods have different postulates
and different approaches to detect communities. In that
work (García-Cortés et al., 2021) it was demonstrated that,
independent of the algorithm used to detect communities,
the results were very similar in terms of the number of
detected communities and the nature of the genes observed in
each community.

Despite modules being quite similar, independently of the
method to detect them (Jaccard indexes between modules
obtained by the different methods, are larger than 0.95), the
algorithm with optimal modularity was the Louvain method.
Interestingly, Modularity is larger in the case of Luminal A
network than the healthy network, for all methods.

An additional effect observed when comparing cancer and
non-cancer derived networks, is a high proportion of same-
chromosome gene-gene interactions in cancer phenotypes. On
the other hand, healthy tissue-derived networks are composed
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of interactions between genes from any chromosome in a
homogeneous fashion. This phenomenon has been called loss
of long-distance co-expression in cancer (Espinal-Enríquez et al.,
2017). This abrupt change has been reported for different tissues
such as breast cancer (Espinal-Enríquez et al., 2017; de Anda-
Jáuregui et al., 2019), each breast cancer molecular subtype
(García-Cortés et al., 2020), clear cell renal carcinoma (Zamora-
Fuentes et al., 2020), lung adenocarcinoma and lung sqamous
cell carcinoma (Andonegui-Elguera et al., 2021). It is worth
noticing that modularity has been used as an indirect measure
of coordinated gene function (Solé et al., 2002; Segal et al., 2003;
Lee et al., 2004; Tanay et al., 2004; Zhu et al., 2008). In this
case, modules do not always represent gene function, but often
act as a proxy for spatial clustering between genes from the
same chromosome.

The studies just mentioned are just a handful instances,
illustrating how network modularity determination is a
becoming an essential approach to biological discovery.

7. CONCLUDING REMARKS

As we have already discussed, complexity in biological systems
can be understood partially by using network approaches.
Modularity is often an inherent component of complex biological
networks. However relevant, network modularity discovery (or
community detection, as is also called) is a daunting task. Its
importance in theoretical biology, to describe the emergence
of functional behaviors in biological systems, as well as its
use in understanding the underlying principles behind such
functionality make it a worthy tool in biology.

In the past years, a number of relevant approaches to this
problem have been developed in the computational and systems
biology settings. Most of these approaches, although extremely
informative are built upon Ad Hoc assumptions and are thus not
easy to generalize. Hence, they provide useful information, but
are too specific. On then other hand, the network science and
statistical physics research communities have been developing
a series of quite general modularity detection algorithms. Here
we present some of them, organized as families of methods,
depending on their methodological foundations: (i) clustering
algorithms, (ii) modularity optimization methods, (iii) methods
based on the spectral properties of adjacency matrices, (iv)
methods based on random walks and (v) methods based on
stochastic block models. These broad families of methods along
with the benchmarks that have been developed to evaluate their
performance may constitute a relevant toolbox for the analysis
of biological systems from a more general perspective. We

argue that by resorting to these methods (freed from the design
constraints typical of Ad Hocmethods) will allow to focus on the
actual biology rather than on the method’s specificities.

The problem of modularity and the discovery of functional
communities in biological networks is an important emerging
field of research. Omic high throughput technologies and
the rise of computing power as well as the development
of novel analytical algorithms have allowed the generation
of bio-molecular network models at an unprecedented pace.
This has led us with the need to develop theoretical and
computational tools to extract biologically useful (e.g., functional
ormechanistic) information from such large scalemodels. Awide
variety of biological questions that can be answered—at least
partially—by knowing the modular structure of the underlying
networks, are being added to the current research scenario in
the systems biology and genomics communities. A number of
powerful mathematical and computational schemes to deal with
modularity are also currently under development.

In the preceding review, we have discussed both, the biological
problems and the computational approaches to the problem of
modularity in complex bio-molecular networks. It is our sincere
desire that works like this will stimulate the discussion between
researchers in all the involved fields. A discussion that may in
turn strengthen the ties of collaboration and ultimately leads to
fruitful cross-fertilized scientific discoveries.
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