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ABSTRACT The genome sequence (7,057,619 bp; GC content, 72.07%) of a tropical marine
isolate, Nocardiopsis dassonvillei NCIM 5124, containing the biomedically and biotechnologi-
cally important gene cluster ectABC is reported here.

The genus Nocardiopsis of the order Actinomycetales was first described by Meyer in 1976
(1). The members of this genus were later included in a new family, Nocardiopsaceae (2).

Nocardiopsis species are aerophilic, Gram-positive, non-acid-fast, catalase-positive actinomy-
cetes, with colony characteristics similar to those of Nocardia and Actinomadura species (3).
Nocardiopsis spp. have been isolated from saline habitats and produce a variety of bioactive
compounds (4–7). A strain of Nocardiopsis dassonvillei isolated from oil-contaminated seawater
(deposited in the National Collection of Industrial Microorganisms, India, as NCIM 5124),
capable of degrading hydrocarbons, producing proteases, and mediating the synthesis of
gold nanoparticles, was used in this study (8–11).

The culture was grown on glucose-yeast-malt extract (GYM) agar medium and incubated
at 30°C for 48 h. DNA was extracted using the method described by Yeates et al. (12). The
modified method is as follows: a single colony was suspended in 500mL of extraction buffer
(100 mM Tris-HCl [pH 8.0], 100 mM Na2EDTA [pH 8.0]), followed by bead beating for 2 to
3 min with glass beads. Proteinase K (NitroGen, USA) was added (20 mg/mL), and the culture
was incubated at 55°C for 2 h with intermittent shaking. An aliquot (100mL) of NaCl (0.5 M)
was added, and the culture was incubated at 72°C for 30 min. DNA was extracted using phe-
nol:chloroform:isoamyl alcohol (25:24:1), washed twice with 70% ethanol, dissolved in 1,000mL
Tris-EDTA buffer (pH 8.0), analyzed by electrophoresis (0.8% agarose gel), and visualized by ethi-
dium bromide staining using a UV transilluminator.

Library preparation for Illumina was conducted using the Nextera DNA Flex library prep-
aration kit (Illumina Inc., San Diego, CA, USA). Genomic DNA was sequenced on the Illumina
MiSeq platform using paired-end (2 � 250-bp) technology with v2 Illumina chemistry (13, 14).
The genome quality was evaluated using the FastQC v0.11.9 tool (15); the raw reads were
assembled using the Unicycler v0.4.8 assembler and polished using Pilon v1.23 in the PATRIC
v3.6.12 online server (16). Genome finishing was performed using the MeDuSa Web server
(17). The quality of the assembly was checked using the tools QUAST v5.1.0rc1 (18) and
CheckM v1.2.0 (19). The genome was annotated using the NCBI Prokaryotic Genome
Annotation Pipeline (PGAP) v6.1 (20). In all, 1,001,347 reads and 483,998,405 bases were
generated, with 70% genome coverage. Default parameters were used for all software unless
otherwise noted.

The total length of the genome sequence was 7,057,619 bp; sequencing yielded 35
contigs (N50, 6,954,860 bp), with a GC content of 72.07% and 97.25% completeness. Among
the 6,390 total genes, 6,328 coding sequences and 6,130 proteins were identified. In addition,
57 tRNAs and 2 rRNAs (one 16S rRNA and one 23S rRNA) were found. The genome harbors
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genes coding for CRISPR arrays, virulence factors, transporters, drug targets, antibiotic resistance,
and ectoine biosynthesis. The genome shows the presence of the ectABC gene cluster, which is
involved in the synthesis of ectoine, a commercially valuable compatible solute (21–25).

Data availability. This whole-genome shotgun sequencing project has been deposited
at DDBJ/ENA/GenBank under the accession number JALPTI000000000. The version described
in this paper is version JALPTI000000000.1. The associated BioProject and Sequence Read
Archive accession numbers are PRJNA818875 and SRR19025777.
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