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Structural-functional lung imaging 
using a combined CT-EIT and a 
Discrete Cosine Transformation 
reconstruction method
Benjamin Schullcke1,2, Bo Gong1,2, Sabine Krueger-Ziolek1,2, Manuchehr Soleimani3, 
Ullrich Mueller-Lisse2 & Knut Moeller1

Lung EIT is a functional imaging method that utilizes electrical currents to reconstruct images 
of conductivity changes inside the thorax. This technique is radiation free and applicable at the 
bedside, but lacks of spatial resolution compared to morphological imaging methods such as X-ray 
computed tomography (CT). In this article we describe an approach for EIT image reconstruction using 
morphologic information obtained from other structural imaging modalities. This leads to recon- 
structed images of lung ventilation that can easily be superimposed with structural CT or MRI images, 
which facilitates image interpretation. The approach is based on a Discrete Cosine Transformation 
(DCT) of an image of the considered transversal thorax slice. The use of DCT enables reduction of the 
dimensionality of the reconstruction and ensures that only conductivity changes of the lungs are 
reconstructed and displayed. The DCT based approach is well suited to fuse morphological image 
information with functional lung imaging at low computational costs. Results on simulated data 
indicate that this approach preserves the morphological structures of the lungs and avoids blurring 
of the solution. Images from patient measurements reveal the capabilities of the method and 
demonstrate benefits in possible applications.

Electrical Impedance Tomography (EIT) is used to visualize the internal conductivity distribution of a domain 
from voltage measurements on the surface of the domain. In clinical context EIT is most often used to visualize 
regional ventilation of the lungs which has proven useful to reduce ventilator induced lung injury (VILI)1,2 and 
guide clinicians to set adequate PEEP levels for mechanically ventilated patients in the intensive care unit (ICU)3. 
In lung EIT an array of electrodes is attached around the patient’s chest. The electrodes are used to inject small 
alternating currents into the body and simultaneously measure the resulting voltages between pairs of electrodes. 
Usually the electrodes are attached equidistantly in a plane around the 5th intercostal space (ICS5), which seems 
to be less influenced by lung tissue shifts than more cranial or caudal positions for the electrodes4.

Compared to morphological imaging methods, such as X-ray computed tomography (CT) or magnetic res-
onance imaging (MRI), the spatial resolution of EIT is much lower (about 2–3 cm)5, whereas the temporal reso-
lution is very high (up to 50 frames/s in commercially available devices). In comparison to established methods 
for functional imaging of the lungs, such as single photon emission computed tomography (SPECT) or positron 
emission tomography (PET), EIT is very cheap. Additionally it is non-invasive, radiation free, and currently the 
only technique capable for real-time and long-term bedside monitoring of regional lung ventilation6,7.

Besides the application in the ICU, EIT has recently been used in spontaneously breathing patients, suffering 
from asthma bronchiole8, cystic fibrosis (CF)9 or chronic obstructive pulmonary disease (COPD)10. It has been 
shown in these studies, that EIT is capable to identify functional abnormalities in obstructive lung diseases. 
However, in order to obtain a comprehensive insight into the pulmonary pathophysiology it is necessary to com-
bine structural and functional data11, such as it is done in SPECT-CT or PET-CT.
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Such combined imaging modalities simplify image interpretation; e.g. image fusion of PET and CT data sub-
stitutes error-prone cognitive allocation of anomalies and therefore improves diagnostics12. Additionally, it is 
common to use information obtained from one method to improve the reconstruction or the interpretability of 
the respectively other. E.g. the attenuation correction for PET imaging is derived from CT data13 and vice versa 
the detailed anatomic information from CT imaging is used to localize accumulation of the radiotracer14.

EIT has already been validated against CT15,16, SPECT17 and PET18, confirming that it is able to measure 
regional ventilation. Basic geometric relations between organs are preserved in EIT and images roughly corre-
spond to the anatomy19.

The objective of this work is to fuse morphological and functional information to improve interpretability of 
EIT images. We propose a novel approach to include detailed prior information about the contour of the thorax 
as well as the shape of the lungs in the image reconstruction process. This can be regarded as ‘patient specific 
EIT imaging’, where resulting images can easily be superimposed with CT data and thus improve readability for 
clinicians. Morphological changes can be directly correlated with changes in ventilation distribution or other 
functional images derived from EIT. It is demonstrated in simulations and measurements on patients how advan-
tages of both imaging modalities (CT and EIT) can be combined to improve the potential utility of functional 
lung image in clinical applications.

Methods
Classical approach for image reconstruction. The EIT reconstruction problem is ill-posed, arbitrarily 
small perturbation in the boundary voltages may create arbitrarily large perturbations of the solution, i.e. the con-
ductivity distribution20. Therefore, to obtain useful estimates of conductivity distribution a regularization scheme 
is needed21. Additionally the EIT problem is non-linear, which means that boundary voltages are non-linearly 
related to internal conductivities22.

Several reconstruction methods for EIT imaging have been developed, all showing one or the other advantage. 
Most of them have been developed for special purposes, e.g. absolute EIT imaging23, compensation of motion 
artifacts24, compensation for faulty electrodes25, 3D imaging26, methods considering temporal correlation to 
reduce image noise27 or utilizing Kalman filter approaches to track fast changes in conductivity distribution28. 
Other algorithms are based on expert defined figures of merit29 or on eigenimages from CT data as training 
sets30. Blurring of reconstructed images is prevented in approaches using the level set method31 or Total Variation 
Regularization32. Constantly increasing computational power and parallel computing allow fast reconstruction of 
nonlinear EIT33 and direct methods, such as the d-bar algorithm34.

The below described one-step Gauss-Newton method represents a broad group of structurally similar 
algorithms for image reconstruction, that have been widely applied in EIT29,35. We therefore use this ‘classical’ 
approach for both: a) to demonstrate the benefits of the overall approach of direct structure integration into EIT 
reconstruction and b) to relate the outcome to generally accepted standard EIT modalities.

A common method to estimate the conductivity from voltage measurements on the boundary is to discretize 
the domain into a finite element model (FEM) of nelem piecewise constant regions. Rather constructing absolute 
values of conductivity most of the clinical EIT research uses time-difference EIT, where the change in conductiv-
ity distribution x =  σ −  σbaseline between two times is calculated from voltage changes y =  v −  vbaseline. The vectors 
σbaseline and vbaseline denote the conductivity and boundary voltage at an appropriately chosen baseline; vectors σ 
and v contain the conductivity and voltages at another time. In practice it is common to set the baseline at func-
tional residual capacity (FRC) or for mechanically ventilated patients at positive end-expiratory pressure (PEEP). 
Since this conductivity distribution is usually not known it is common to set σbaseline =  1, which may lead to sig-
nificant errors. It is recommended to consider the conductivity distribution obtained e.g. from CT or MRI images 
to improve image quality36. In normalized time-difference EIT the difference in measured voltage y is normalized, 
such that = −y v v v( )/i i i

baseline
i
baseline, where the index i denotes the i-th element of the vectors, respectively. In 

the remainder of this paper we use normalized values for voltage change.
The classical approach for reconstruction of conductivity distribution in difference EIT is

λ= − +ˆ Fx x y Rxargmin{ ( ) }
(1)j

j

x
2
2 2

where x̂ is the reconstructed conductivity change. The non-linear forward model F(x) maps changes in conduc-
tivity distribution to voltage changes at the electrodes. For small changes in conductivity the change in boundary 
voltage can be approximated by a linear mapping such that ≈F x Jx( )  which leads to

≈ +y Jx n (2)

where n is the noise of the measurement system and J is the Jacobian. Each element of J relates a small voltage 
change at the i-th position on the measurement vector y to a conductivity change of the j-th FEM element and is 
calculated as:

=
∂

∂
σ

J
y
x (3)

i j
i

j
,
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The Jacobian J is depending on the linearization point σbaseline. To avoid errors caused by an assumed homoge-
neous distribution σbaseline we considered different conductivities for lung tissue and remaining tissue, throughout 
this paper. This is described in more detail below. The Jacobian J does as well depend on the current stimulation 
pattern. In this paper we use the adjacent current stimulation pattern, which applies current and measures 
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voltages between neighboring pairs of electrodes. For nelec electrodes this results in nmeas =  nelec · (nelec −  3) voltage 
measurements (of which 

n
2

meas  are independent) for every frame and thus ∈ ×J n nmeas elem.
Thus, the linearized problem is formulated as:

λ= − +x̂ Jx y Rxargmin{ }
(4)j

j

x
2
2 2

The first term is often called the ‘data fidelity term’, the second term is called ‘regularization term’ and adds, 
depending on the choice of R, penalties to reconstructed conductivity distributions. The level of regularization 
is controlled with the scalar value λ. The norm of the regularization term is specified with j. Mathematically the 
‘regularization term’ is used to replace the ill-posed problem by a nearby well-posed37.

There are numerous publications about the choice of R, which can be regarded as a way of implementing prior 
knowledge into the solution. Most of these approaches penalize the solution such that a given structure of the 
solution is obtained. This leads to small, smooth or slowly changing solutions x̂38. In this paper we either use the 
Tikhonov prior RTik =  I, which leads to solutions with smaller norms, or the Laplace prior RLP

39, to penalizes 
non-smooth solutions.

If the l2-norm is used for the regularization term of equation (4) the estimated change in conductivity x̂ can be 
calculated in a closed form

λ= + =−x̂ J J R J y By( ) (5)T T2 1

Matrix B is called ‘reconstruction matrix’ which maps voltage changes y to changes in conductivity distribu-
tion x̂. In real-time systems B is usually pre-calculated, e.g. during startup of the device. The reconstruction of x̂ 
is thus realized as a trivial matrix multiplication, which is one of the reasons for real-time capability of EIT.

Introduction to Discrete Cosine Transformation (DCT). The Discrete Cosine Transformation (DCT) is 
an established method in image processing. A popular application is the JPEG image compression, where images 
are converted to a frequency-domain representation. The idea of DCT is to represent a signal as a weighted sum of 
basis functions, whereas the basis functions are cosine functions with different frequencies p and q in x-direction 
and y-direction, respectively. For a two dimensional image A with M rows and N columns the DCT is defined as 
follows:
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The resulting matrix V contains the DCT coefficients. A lossy compression of the image A can be recon-
structed using only a subset of the DCT coefficients.

∑ ∑α α π π
= ⋅

+
⋅

+∼ ∼

=

−

=

−
A V m p

M
n q

N
cos (2 1)

2
cos (2 1)

2 (7)
m n

p

M

q

N

p q p q,
0

1

0

1

,

where ∼V is a matrix of the same size as V but contains only few nonzero elements (e.g. the k-largest elements of V).
Figure 1 is an example of a DCT with a relatively high compression ratio of 96%. Figure 1 (left) shows the 

original image (256 ×  256 pixels), Fig. 1 (right) is a reconstruction with the 50 lowest frequency components in 
each direction, which means that ∼V contains zero values for row and column indices greater than 50.

Dimensionality reduction using DCT and implementation of prior knowledge. The idea of this 
paper is to represent the solution of the inverse problem in terms of cosine basis functions. Only a subset of DCT 
coefficients is considered for reconstruction, which reduces the dimensionality of the problem. We only need to 
solve for the coefficients of cosine basis functions instead of all elements in the FEM mesh. This reduction of 
dimensionality is achieved by multiplying the Jacobian ∈ ×J n nmeas elem by a matrix ∈ ×K n nelem DCT, where nDCT is 
the number of DCT coefficients used for reconstruction and nDCT ≪  nelem. In this paper we use the same number 
of frequencies for the x-direction nX_DCT and y-direction nY_DCT such that = = =_ _n n n 15X DCT Y DCT DCT , 
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which means that only nDCT =  225 DCT coefficients are reconstructed. This is substantially less than the number 
of elements in typical FEM meshes.

The above formulation of the DCT is expressed as:

∑ ∑ ∑ ∑α α π π
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with D(p, q) being the cosine function at frequencies p and q. To introduce prior knowledge about the shape of 
the lungs, and thus the possible conductivity distribution we generate the matrices C(p, q), which are

= ⋅C p q P D p q( , ) ( , ) (9)m n m n m n, , ,

with ∈ ×P M N  being a binary image of the lungs with

=




P if pixel belongs to lung
else

1
0m n,

The binary image of the lungs can be obtained e.g. by separating the lungs from CT data. If no CT data is 
available it might be suitable to define lung-shaped regions of possible conductivity change. Each column kj of K 
is created as follows

= T p qk C( ( , )) (10)j

where T  is the map assigning each pixel in the matrix p qC( , ) to the finite element which covers the corresponding 
pixel. The values of the index j depend on ∈  ...  p q, (0, , 14) as follows:

= = → =
= = → =
= = → =
= = → =


p q j
p q j
p q j
p q j

0; 0 1
1; 0 2
2; 0 3
3; 0 4

= = → =
= = → =
= = → =

= = → =
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p q j
p q j
p q j

p q j
p q j

0; 1 16
1; 1 17
2; 1 18

13; 14 224
14; 14 225

Please note that the number of FEM elements representing the lung tissue might be smaller than the number 
of pixels categorized as lung tissue in the matrix C(p, q). Although this means that not all elements of C(p, q) are 
used, the columns of K are still linearly independent, which means that K is a valid basis of the selected low fre-
quency subspace of the DCT representation.

For better understanding the exemplarily illustration of the result of the element-wise multiplication of a 
cosine function and a binary lung image according to equation (9) is depicted in Fig. 2 (left), according to equa-
tion (10) the matrix C(p, q) is mapped to the elements of the FEM model, which is represented by a column of 
matrix K (Fig. 2 (right)).

Each column jj of the Jacobian J describes how change in conductivity of the j-th FEM element influences the 
measured changes in boundary voltages. Hence the image reconstruction algorithm calculates a linear combina-
tion of the columns of J that best fits the measured voltage change y. Generating a new Jacobian JDCT =  J · K, where 

Figure 1. Left: Original image with 256 × 256 pixels. Right: Reconstruction using only the 50 lowest frequency 
components.
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∈ ×JDCT
n nmeas DCT leads to a different interpretation of the columns. In this case each column jDCT, j describes how 

a certain distribution of conductivity change kj influences the measured changes in boundary voltage. This results 
in a new formulation of equation (5) such that:

λ= + =−x̂ J J R J y B y( ) (11)DCT DCT
T

DCT DCT DCT
T

DCT
2 1

where ∈x̂DCT
nDCT can be interpreted as reconstruction of DCT coefficients. In other words the j-th element of 

the vector x̂DCT  explains to what extend the relative voltage change y is induced by the j-th column of K. 
Accordingly, the reconstruction matrix BDCT maps voltage changes y to DCT coefficients.

Prior knowledge about the DCT coefficients can be incorporated in RDCT. By setting = ( )( )diagRDCT h
1 2

, the 
solution of equation (11) is drawn towards an expected solution with h being the DCT coefficients of the expected 
solution, which might be obtained from CT or MRI data. Throughout this paper we set RDCT =  I, which is the 
identity matrix and thus the classical approach for Tikhonov regularization40.

The result x̂DCT can now be used to reconstruct an image ∈ ×H M N  with the same resolution as the lung 
shape obtained from the original CT image. Therefore the matrices C(p, q) have to be multiplied with the corre-
sponding values of x̂DCT and summed element by element:

∑ ∑= ⋅
= =

_ _

ˆp q xH C( , )
(12)p

n

q

n

DCT j
0 0

,

X DCT Y DCT

where the subscript j of x̂DCT corresponds to the values of p and q as already described below equation (10).
The image H contains information about the lung shape. It is therefore a method to incorporate information 

of ventilation distribution obtained from boundary voltage measurements of an EIT device with patient specific 
physiological information about the lung shape. The cognitive allocation of ventilation distribution to lung areas 
in CT images can be replaced with the described approach and resulting images can directly be superimposed 
with CT images.

In order to be able to compare different approaches for image reconstruction we used the noise figure (NF) 
calculation41 to find values for the hyperparameter λ.

= =

mean

var
mean S

var S

y

n
y

n

( )

( )
( ( ) )

( ( ))

NF SNR
SNR

(13)

in

out

where the function S is used to map changes in voltage y or noise n to conductivity change. Depending on the 
approach used for reconstruction S is realized either as described in equation (4) or as in equation (11) and (12) if 
images are reconstructed with the DCT approach. A bisection search technique was used to find the correspond-
ing values for λ to obtain a noise figure of NF =  0.5 for all reconstructions in this article.

Data generation. Data of the boundary voltage were simulated using MATLAB R2015a (Mathworks, Natick, 
MA) and the EIDORS toolbox42. FEM meshes were generated with NETGEN43. To test the above described 
approach on artificial data we used a CT dataset of a subject (male, 68 years) to simulate boundary voltages. We 
used the adjacent current stimulation pattern because the used hardware in the subsequent part of this article 

Figure 2. Left: Representation of the matrix C with p = 0 and q = 1. Right: Visualization of the corresponding 
column k16 of K with the FEM model of the thorax.
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also runs with the adjacent current stimulation pattern, although this method for current injection and voltage 
measurement is not optimal44. The thorax shape at 5th intercostal space was derived from CT data as well as the 
shape of the lungs. Subsequently the thorax shape was used to generate a FEM mesh with 3570 elements. The 
conductivity of the elements belonging to the lungs was set to σ =  0.5, remaining elements were set to σ =  1. The 
corresponding voltage vbaseline of this conductivity distribution was simulated. Different distributions of ventila-
tion were simulated by changing the conductivity of selected elements to σ =  0.25. Again boundary voltages v 
were simulated, leading to the normalized change in voltage y. The procedure of generating different ventilation 
patterns is depicted in Fig. 3.

Four different ventilation patterns were created: a) homogeneous ventilation of complete lung, b) no venti-
lation in dorsal right lung, c) no ventilation in the most ventral and most dorsal parts of both lungs, and d) no 
ventilation in ventral left lung and dorsal right lung. Pattern a) is used to evaluate the behavior of the algorithm 
on lung-healthy subjects whereas b) describes a typical pattern e.g. of patients under general anesthesia when the 
dorsal parts of the lungs collapse and lead to atelectasis. Pattern c) represents the simultaneous occurrence of alve-
olar hyperinflation in the most ventral parts and atelectasis in the most dorsal parts of the lung which may occur 
at the same time in critically-ill patients45. Pattern d) is rarely seen in real patients and is used to demonstrate the 
capability of the described algorithm. Figure 4 (upper) shows all used ventilation patterns.

Besides the four ventilation patterns different states of atelectasis of the dorsal lungs were simulated. Overall 25 
datasets were generated, starting at 0% until 50% of the lungs in anterior-posterior direction were considered as 
collapsed. Elements belonging to collapsed lung regions were assigned to σ =  0.5, ventilated elements to σ =  0.25.

Another FEM mesh was used for the reconstruction of conductivity change to avoid the ‘inverse crime’46.

Patient data. In order to evaluate the performance of the described method we also used real measured ret-
rospective EIT data covering a clinical context. EIT data were recorded for different clinical studies on 5 patients 
(male, 66y ±  3) with different types of diseases. Informed consent was obtained from all subjects, the methods 

Figure 3. Procedure of voltage simulation for different configurations of the lungs: Thorax shape and lung 
shape were derived from CT data and used to create FEM models to simulate boundary voltages. Different 
ventilation patterns were simulated by setting selected FEM elements to σ =  0.5 for non-ventilated lung-tissue 
and σ =  0.25 for ventilated lung-tissue.
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were carried out in accordance with the approved guidelines and regulations. The studies were approved by the 
local ethics committee of Kiel University and LMU Munich. The patients were either spontaneously breath-
ing or connected to a mechanical ventilator while a PEEP step was performed. The Goe-MF II device (Viasys 
Healthcare, Höchberg, Germany) or the PulmoVista500 (Dräger Medical, Lübeck, Germany) were used to meas-
ure the boundary voltages. Data were collected at ICS5. For all patients an actual CT dataset was available which 
was used to determine the contour of the thorax and the shape of the lungs at the position of the electrodes. 
Table 1 provides an overview of the patient’s diseases and the used EIT device.

Evaluation of image quality. For the simulated ventilation patterns the pixel values of the considered 
ventilation patterns and the pixel values of the reconstructed images were compared. Since we are most interested 
in conductivity decrease we define that pixels Hm, n in the reconstructed image H with a lower value than a heuris-
tically defined threshold are classified as ‘decrease in conductivity’ (pixel set to 1). Other pixels are classified as ‘no 
change in conductivity’ (pixel set to 0). The threshold is defined with a parameter α as described below:

α
α

=





< + − ⋅
> + − ⋅

H
if H
if H

H H H
H H H

1 min (max min )
0 min (max min )m n

m n

m n
,

,

,

With this classification we are able to distinguish the fraction of pixels which correctly depict the underlying 
conductivity change and quantify the amount of correctly and incorrectly reconstructed data. The pixels are clus-
tered in four groups, where G1 and G4 correspond to correct conductivity reconstruction; G2 and G3 correspond 
to incorrect reconstruction.

•	 G1 =  Pixel correctly depicts decrease in conductivity
•	 G2 =  Pixel wrongly depicts decrease in conductivity
•	 G3 =  Pixel wrongly depicts no change in conductivity
•	 G4 =  Pixel correctly depicts no change in conductivity

Figure 4. Upper row: Patterns of conductivity change used for simulation of boundary voltages (ground truth). 
Middle row: Reconstruction of the conductivity change from simulated voltages. Lower row: Reconstructed 
conductivity changes with 25% Gaussian noise on the simulated voltages.

Patient # Disease type Type of breathing Used EIT device

1 COPD Spontaneous tidal breathing PulmoVista500

2 COPD, Lung emphysema Spontaneous tidal breathing PulmoVista500

3 Pneumonia PEEP step (0–15 cmH2O) Goe-MF II

4 Pneumonia PEEP step (0–15 cmH2O) Goe-MF II

5 COPD, Lung emphysema Spontaneous tidal breathing PulmoVista500

Table 1.  Patient overview.
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Results
DCT image reconstruction for different ventilation patterns. The performance of the DCT-
approach with four different patterns of ventilation is depicted in Fig. 4. The upper row depicts the conductivity 
change used in the simulation of boundary voltages (ground truth). No change in conductivity is shown in black. 
Tissue with a change in conductivity from σ =  0.5 to σ =  0.25, as described above, is shown in light blue. The mid-
dle row and lower row represent reconstructions using the DCT approach without noise and with 25% Gaussian 
noise added, respectively.

The fraction of correctly (clusters G1 and G4) or wrongly (clusters G2 and G3) classified pixels is visualized in 
Fig. 5. Threshold parameter was set to α =  0.65. The fraction of correctly classified pixels for the four considered 
patterns without noise is: (a) 0.91; (b) 0.99; (c) 0.91; (d) 0.96. With 25% of artificial noise these values change to: 
(a) 0.90; (b) 0.96; (c) 0.91; (d) 0.96.

Figure 5. Fraction of pixels that are correctly classified as conductivity change (G1) or no change in 
conductivity (G4). Classes G2 and G3 respectively show the amount of pixels wrongly depicting changes in 
conductivity although there is none and pixels that show no changes in conductivity although the conductivity 
has changed. Threshold parameter α =  0.65. Upper graph is calculated with no noise, in the lower graph 25% 
Gaussian noise is added.

Figure 6. Left column: Atelectasis patterns used for voltage simulations (ground truth conductivity 
change). Middle column: Reconstruction of conductivity changes using the DCT-approach. Right column: 
Reconstruction of conductivity change using the classical approach and Laplace prior.
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Simulation of atelectasis. Figure 6 shows the difference between the DCT-approach for image reconstruc-
tion compared with the classical solution using the Laplace prior for three ventilation patterns, representing 0%, 
25% and 50% of atelectasis of the dorsal lungs.

The Laplace prior in Fig. 6 (right) smoothes the reconstructed values of conductivity change, which causes a 
loss of morphological structures of the lungs. In contrast the DCT-approach in Fig. 6 (middle) utilizes the mor-
phological information form CT data and reconstructs the conductivity change onto these structures.

Computing the l1-norm of the difference of reconstructed image to the ground truth data confirms this obser-
vation, as depicted in Fig. 7. Using the DCT reconstruction results in a reduced l1-norm of image difference 
compared to the classical approach using Tikhonov prior or Laplace prior.

Patient data. Reconstructed images of conductivity change for the 5 subjects are shown in Fig. 8. The pixels 
belonging to the lung were extracted from CT values as well as the thorax shape of the considered slice.

The images use the same color scheme as in the simulations above, where white color depicts large negative 
changes in conductivity, light blue color depicts small negative changes in conductivity. Positive changes in con-
ductivity are depicted in purple, but are rarely seen during inspiration. For the purpose of illustration we do not 
depict the color scale in Fig. 8, which is different for every patient (Fig. 9).

Although we do not know the correct distribution of conductivity change, the results of Fig. 8 seem to be 
reasonable. Patient 1 did not show any abnormalities in the lung CT; hence we expect to obtain homogeneous 
ventilation distribution. The reconstructed data confirm this. Patient 2 shows areas of pulmonary emphysema in 
both ventral lungs. We therefore expect lower values of ventilation, which is confirmed by the EIT data. Patient 
3 has atelectasis in the dorsal left lung regions determined from lung CT. This can as well be seen on the recon-
structed EIT data. Also Patient 4 has atelectasis, which can be recognized in both lungs from CT images and EIT 
reconstructions. Patient 5 has pulmonary emphysema in the dorsal right lung while the left lung is hyperinflated. 
Ventilation distribution obtained with EIT confirms lower ventilation of the left lung and reveals that the upper 
left lobe shows almost no ventilation.

A superposition of conductivity change reconstructed with the proposed DCT algorithm and a CT image 
is depicted in Fig. 9 for patients 2 and 4. It can be seen in Fig. 9 (left) that both ventral lungs show no change in 
conductivity. Figure 9 (right) reveals that the most dorsal regions of both lungs show no change in conductivity, 
which strengthens the diagnosis of atelectasis.

Discussion
In this paper we present a method to incorporate patient specific structural information (e.g. CT data) in the 
reconstruction process of EIT imaging. It is demonstrated in simulations and as well in real patient data that the 
morphological structure of the lungs is preserved in the reconstructions. Blurring of the solution into non-lung 
regions is prevented and resulting images can easily be superimposed with high-resolution morphological data, 
as it is done already in combined imaging methods, such as SPECT-CT or PET-CT. This facilitates a comprehen-
sive insight into the pathophysiology of lungs, since regional information about the functional status can directly 
be correlated with the morphology of the lungs. Furthermore, the use of DCT reduces the dimensionality of 
the problem, which is computationally beneficial for large scale problems (e.g. dense mesh 3D EIT) or iterative 
reconstruction methods47.

Other approaches have been proposed earlier that use detailed and patient specific anatomical information in 
the image reconstruction. As demonstrated on simulation models it is possible to enhance the sharpness of the 
images using structural prior information, incorporating anisotropic smoothness constraints in the regulariza-
tion48 or Gaussian anisotropic filters49, relaxing the smoothness in direction of expected change. Compared to 

Figure 7. l1-norm of difference of reconstructed images and true conductivity distribution for different 
amounts of simulated atelectasis. Blue circle: DCT reconstruction, red x-marker: classical approach with 
Tikhonov prior, yellow plus-marker: classical approach with Laplace prior.
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our approach there is no explicit reduction of the dimensionality of the problem. Other approaches using a small 
number of simple fixed conductivity sets to model the physiology of the considered domain, to reduce dimen-
sionality have been described50,51. These studies use the shape of the lungs and the contour of the thorax, derived 
from CT or MRI data, to group FEM elements and assigning them the same electrical properties. The results of 
these methods for reduction of dimensionality are strongly biased52 and, contrary to our approach, inhomoge-
neities of the lungs cannot be visualized. In other articles21,53 nine different states of the lungs and the heart are 
used to generate orthonormal basis functions. However, in these methods the underlying truncated basis for the 
reconstructed conductivity is not capable to visualize more complex distributions of lung ventilation. The feasi-
bility of reduced-order models using orthogonal decomposition of conductivity and potential distributions has 
been demonstrated in simulations and tank measurements47, but no individual structural information is embed-
ded in the reconstruction. An approach that shows the capabilities of image fusion of CT and EIT data utilizing a 
coregistration algorithm is described for measurements on a phantom54. However, neither structural information 
is directly used in the EIT reconstruction nor is the dimensionality of the problem reduced.

The stability and low computational costs of linear reconstruction algorithms are reasons for their important 
role in clinical applications30. The presented DCT approach is based on the simple, but probably most often used35 
reconstruction method, which is the one-step Gauss-Newton solver. Thus it is not directly applicable to all of the 
above mentioned algorithms, e.g. the d-bar method34 or Total Variation Regularization32. However, we are confi-
dent that the DCT approach can be combined with some of the existing linear methods. As an example temporal 
one-step solvers27 could be adapted to reconstruct DCT coefficients instead of conductivity changes for every 
FEM element. In a similar way Kalman filter approaches28 could be extended to benefit from the advantages of the 
proposed approach. Furthermore, the DCT approach could easily be extended to 3D-EIT, where the reduction of 
dimensionality might facilitate real-time reconstruction with sufficient resolution.

Its radiation free operation is often mentioned as an advantage of EIT compared to other imaging techniques. 
However, in combination with structural imaging described in this paper we utilize morphological information 
of the lungs, which is usually acquired with CT. The described imaging approach is therefore not radiation-free 

Figure 8. Upper row: Lung and thorax shape of the patients used for reconstruction. Lower row: Reconstructed 
images of conductivity change based on the DCT approach.

Figure 9. Superposition of changes in conductivity distribution obtained by the described DCT approach and 
CT images in a patient with emphysema in the ventral lungs (left) and atelectasis in dorsal lungs (right). 
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per se, but need not necessarily expose patients to extra radiation dose if CTs were taken for different clinical 
purpose anyway.

As a limitation of the approach it should be mentioned that morphological changes, occurring between CT 
examination and EIT measurement, will act as a wrong prior and may lead to corrupted reconstruction. Shape 
deformations during breathing are as well a known and often addressed problem in EIT, whose errors are cur-
rently accepted in all routinely applied reconstruction methods. Though a real thorax shape is unlikely to be 
more error prone than a static circle in reconstruction, the sensitivity of the approach to the mismatch between 
assumed lung shapes and actual form needs to be examined in future research. A further limitation of our study 
was a heuristical determination of the number of DCT coefficients. Additional examinations are necessary to 
define an optimal number of DCT coefficients, considering e.g. the inherently low resolution of EIT. Furthermore 
we only considered the lung shapes of a single slice; this has to be extended in future studies to investigate whether 
a 3D model of the lungs leads to better results. Additional studies with more patients are necessary to further 
evaluate the approach and to demonstrate the performance in combination with morphological data.

Although the images obtained with this method look quite attractive we want to point out that we have no evi-
dence that the general resolution is improved, however it is proven that using the actual thorax contour for image 
reconstruction leads to better results7. Nevertheless we are confident that the approach described in this paper 
simplifies superposition of CT or MRI images with data obtained from EIT and therefore might help clinicians 
in image interpretation and diagnosis in a similar way as it is already done in the combination of PET or SPECT 
images and CT data.

Conclusion
In conclusion, anomalies in ventilation distribution can be correlated with underlying morphological informa-
tion, and vice versa the impact of pathological changes in lung tissue on ventilation distribution can be examined 
if the described approach is used for image reconstruction. We want to emphasize that EIT data might as well be 
used to generate functional images, e.g. regional time constant maps, which is only possible due to the high frame 
rate of EIT. Correlation of morphological images with EIT data might especially be useful for spontaneously 
breathing patients, suffering e.g. from asthma bronchiole, CF or COPD. For these patients we do not expect large 
changes in lung shape as it might happen in a ventilated patient e.g. during a recruitment maneuver. This means 
that for EIT the described method might be a step out of the intensive care unit, towards radiology and pulmonol-
ogy, where merged CT-EIT images might be used to improve diagnostic accuracy and as a result patient outcome.
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