
Synthesis, Characterization, Crystal Structures, and Supramolecular
Assembly of Copper Complexes Derived from Nitroterephthalic Acid
along with Hirshfeld Surface Analysis and Quantum Chemical
Studies
Seadat Suliddin Hasanova, Emina Agil Yolchueva, Aliyeva Qudrat Mashadi, Shabbir Muhammad,
Muhammad Ashfaq,* Movsumov Elman Muhammed, Khurram Shahzad Munawar,
Muhammad Nawaz Tahir, Abdullah G. Al-Sehemi, and Saleh S. Alarfaji

Cite This: ACS Omega 2023, 8, 8530−8540 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Two new Cu(II) carboxylate complexes, Cu-NTA
and Cu-DNTA, were prepared by treating 2-nitroterephthalic acid
with CuSO4·5H2O at room temperature. The synthesized complexes
were characterized by elemental (CHN), FT-IR, and thermogravi-
metric analysis. The crystal structures of both complexes were
explored by single crystal X-ray diffraction analysis, which inferred
that the coordination geometry is slightly distorted octahedral and
square pyramidal in Cu-NTA and Cu-DNTA, respectively. The non-
covalent interactions that are the main feature of the supramolecular
assembly were investigated by Hirshfeld surface analysis for both
complexes. The propensity of each pair of chemical moieties involved
in crystal-packing interactions was determined by the enrichment
ratio. Quantum chemical computations were performed to optimize
the molecular geometry of complex Cu-NTA and compared it with the experimental single crystal structure, which was found to be
in sensible agreement with the experimental structure of the complex. The DFT method was used to see the potential of the selected
Cu-NTA complex for linear and nonlinear optical properties. The static NLO polarizability <γ> of complex Cu-NTA was calculated
to be 86.28 × 10−36 esu at M06 functional and 6-31G*/LANL2DZ basis set, which was rationally large to look for NLO applications
of complex Cu-NTA. Additionally, the molecular electrostatic potential and frontier molecular orbitals were also computed with the
same methodology to see electronic characteristics and ground-state electronic charge distributions.

1. INTRODUCTION
Over the past 25 years, a great deal of research has been done
on metal complexes based on benzene dicarboxylic acid to
better understand their structural characteristics and diverse
properties.1 Dicarboxylates are frequently employed in the
construction of coordination polymers with desirable top-
ologies from a synthetic perspective due to their abundant
coordination modes and potential to behave like hydrogen
bonding acceptors and donors.2,3 Terephthalic acid, which has
two carboxylate groups at the trans position, can be helpful in
the preparation of coordination polymers through complete
and partial deprotonation due to the evenly spaced carboxylic
groups, the stiffness of the phenyl skeleton, and particularly its
various bridging modes.4−6 Additionally, research has demon-
strated that the functionalization of the organic linker with
either nitro or amino groups can successfully modify the band
gap of effective semiconductor supramolecular species.7 Hence,
nitroterephthalic acid is preferred over simple terephthalic acid.
There are now more than twenty 2-nitroterephthalic acid

complexes that have been identified to have different
coordination features.8−12

The ability to produce polymers with a larger range of
structural characteristics has been made feasible by using
mixed ligands rather than a single kind of ligand. As a result,
adding auxiliary ligands to the reaction systems, such as
aromatic N-donors, can lead to a wide range of structural
diversities.13 The major problem in the process of synthesizing
coordination polymers is to control the dimensions. Lower
dimensionalities are typically the consequence of the
coordination of H2O or molecules of other solvents by
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multifunctional ligands that cause steric hindrance around the
central metal atoms or ions.14

Cueto et al. reported that the copper terephthalate trihydrate
complex was one of the first metal terephthalate complexes to
be described as porous MOFs, and it was further investigated
for conductivity and magnetic properties.15 Mori et al.
announced the discovery of the first copper terephthalate
with a significant surface area.16,17 It was thought that this first
copper terephthalate complex has a paddlewheel-type
structure, even though no structural information was ever
provided.18

Therefore, based on the aforementioned factors and our
experience with metal carboxylates,19−24 in this study, we have
described the synthesis of two Cu(II) complexes, Cu-NTA and
Cu-DNTA, from CuSO4·5H2O, nitro-substituted terephthalic
acid, and N-donor ligand. The method applied for the
synthesis of complexes is very simple, as there is no vigorous
heating or reflux needed. The reaction was conducted in
aqueous media, which is considered a green and cheap solvent.
Additionally, quantum chemical approaches were applied to
study the electronic structure and optical and nonlinear optical
response properties of the synthesized Cu-NTA complex.

2. RESULTS AND DISCUSSION
2.1. SC-XRD Description of Cu-NTA and Cu-DNTA.

The crystal structure of both compounds is determined by the
SC-XRD technique. Experimental facts are given in Table 1,
whereas important bond lengths (Å) and bond angles (°) are
given in Table 2.
In Cu-NTA (Figure 1 and Table 1), the asymmetric unit

contains half of the molecule, while the remaining half
molecule is created by symmetry (i) − x + 1/2, −y + 5/2,
−z + 1/2. The Cu ion is hexa coordinated using four water
molecules and two non-chelating 4-carboxy-2-nitrobenzoate
molecules to complete the coordination sphere surrounding

the Cu-atom. The bond lengths range from 1.9219 (11) to
2.5164 (11) Å and the bond angles range from 87.34 (5) to
180.0° (Table 2) in the coordination sphere, which indicates
that the coordination geometry is slightly distorted octahedral.
The phenyl ring A makes the dihedral angles of 41.9 (1), 5.9

Table 1. SC-XRD Experimental Details of Cu-NTA and Cu-DNTA

crystal parameters Cu-NTA Cu-DNTA

chemical formula C16H16CuN2O16 C18H15CuN3O7

CCDC 2192298 2192299
Mr 555.86 231.67
crystal system, space group monoclinic, I2/a monoclinic, C2/c
temperature (K) 100 100
a, b, c (Å) 18.27331 (13), 6.99598 (5), 15.67276 (12) 15.0291 (13), 5.8680 (5), 21.9408 (18)
α, β, γ (°) 90, 96.6485 (7), 90 90, 104.359 (3), 90
V (Å3) 1990.13 (3) 1874.5 (3)
Z 4 4
radiation type Cu Kα Mo Kα

μ (mm−1) 2.438 1.213
crystal size (mm) 0.43 × 0.29 × 0.24 0.25 × 0.20 × 0.03
diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
absorption correction multi-scan (SADABS; Bruker, 2007) multi-scan (SADABS; Bruker, 2007)
no. of measured, independent, and observed [I
> 2σ(I)] reflections

8342, 1852, 1848 16,281, 3432, 2427

Rint 0.022 0.113
(sin θ/λ)max (Å−1) 0.611 0.759
R[F2 > 2 σ(F2)], wR(F2), S 0.025, 0.069, 1.15 0.051, 0.104, 1.05
no. of reflections 1852 3432
no. of parameters 176 150
no. of restraints 8
H-atom treatment H-atoms are treated by a mixture of independent and

constrained refinement
H-atoms are treated by a mixture of independent and
constrained refinement

Δρmax, Δρmin (e Å−3) 0.34, −0.37 0.53, −0.74

Table 2. Important Geometrical Parameters of Cu-NTA and
Cu-DNTAa

bond lengths (Å) of Cu-NTA bond lengths (Å) of Cu-DNTA

Cu1−O1 1.9754 (11) Cu1−O1 2.190 (3)
Cu1−O1i 1.9754 (11) Cu1−O2 1.9754 (16)
Cu1−O2i 2.5164 (11) Cu1−O2ii 1.9755 (16)
Cu1−O2 2.5164 (11) Cu1−N1 2.009 (2)
Cu1−O3 1.9219 (11) Cu1−N1ii 2.009 (2)
Cu1−O3i 1.9219 (11) O2−C6 1.271 (3)
O3−C1 1.2673 (19) C7−C9iii 1.386 (3)

selected bond angles (°) of Cu-NTA
selected bond angles (°) of Cu-

DNTA

O1−Cu1−O1i 180.0 O2−Cu1−O2ii 168.27 (11)
O1−Cu1−O2 91.34 (4) O2−Cu1−N1 88.61 (7)
O1i−Cu1−O2 88.66 (4) O2ii−Cu1−N1 91.15 (7)
O3−Cu1−O2 85.72 (4) O2−Cu1−N1ii 91.15 (7)
O3i−Cu1−O2 94.28 (4) O2ii−Cu1−N1ii 88.61 (7)
O3−Cu1−O3i 180.0 N1−Cu1−N1ii 177.63 (13)
O3−Cu1−O1 87.34 (5) O2−Cu1−O1 95.86 (6)
O3i−Cu1−O1 92.66 (5) O2ii−Cu1−O1 95.86 (6)
O3−Cu1−O1i 92.66 (5) N1−Cu1−O1 91.18 (7)
O3i−Cu1−O1i 87.34 (5) N1ii−Cu1−O1 91.18 (7)
Cu1−O1−H1A 108.3 (14) C8−C7−C9iii 118.3 (2)
Cu1−O1−H1B 108.2 (14) C9iii−C7−C6 120.4 (2)
H1A−O1−H1B 110.1 (19) C8−C9−C7iii 120.0 (2)
H2A−O2−H2B 105.6 (19) C7iii−C9−H9 120.0

aSymmetry codes: (i) −x + 1/2, −y + 5/2, −z + 1/2; (ii) −x + 1, y,
−z + 1/2; (iii) −x + 1, −y + 1, −z.
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(2), and 47.3 (9)° with the first carboxylate group B (C1/O4/
O5), second carboxylate group C (C8/O5/O6), and nitro
group C (N1/O7/O8), respectively. The molecules are
interconnected to generate dimers via O−H···O bonding
(Figure S1 and Table 3). The C−H···O bonding, which is

comparatively weaker than O−H···O bonding, also plays an
important role in crystal packing and interlinking of the dimers.
One of the O-atoms of the nitro group behaves like a H-bond
acceptor for ortho CH of the benzene ring, whereas the other
O-atom of the nitro group is not involved in H-bonding. Two
H-atoms of H2O molecules behave like H-bond donors for the

O-atom of the carboxylate group. One of the water molecules
also acts as a H-bond acceptor. The packing of the crystal is
further stabilized by C−O···π and off-set π···π stacking
interactions (Figure 2). The O···π distance for C−O···π
interaction is 3.04 Å (Table 3). For off-set π···π stacking
interactions, the inter-centroid separation is 3.69 Å (Figure 2)
and the ring off-set ranges from 1.483 to 3.520 Å.
The crystal structure of Cu-DNTA (Figure 3 and Table 1) is

a one-dimensional polymeric compound that extends along the
c-axis. The central Cu-atom is penta coordinated by the O-
atoms of the non-chelating 2-nitroterephthalate ligand, the
nitrogen atoms of the pyridine rings, and the O-atom of water.
The value of the geometry index τ5 is calculated to find the
exact coordination geometry. The τ5 value may be zero or one
for the square pyramidal and trigonal bipyramidal geometries,
respectively. For Cu-DNTA, the value of the geometry index is
0.00066, which indicates that the geometry is square pyramidal
and the oxygen atom (O1) occupies the axial site. The Cu-
atom is deviated by 0.122 Å from the basal plane defined by
(N1/N1i/O2/O2i) atoms. The polymer chains are interlinked
through O−H···O and moderately weak C−H···O bonding
(Figure S2 and Table 3). Both hydrogen atoms of water act as
H-donor for one of the oxygen atoms of the carboxylate group.
The O-atom of water and the N-atom of the pyridine ring do
not play their role as a H-bond acceptor. The packing of the
crystal is further stabilized by the N−O···π interaction within a
polymeric chain as well as among the polymeric chains (Table
3). One of the O-atoms of the nitro group is involved in the
N−O···π interaction within the polymeric chain, whereas the
other O-atom of the nitro group is engaged in the N−O···π
interaction among the neighboring polymeric chains (Figure
S3). In addition to the N−O···π interaction, very weak off-set
π···π stacking interactions are present as the inter-centroid
separation ranges from 4.8842 (16) to 5.8682 (14) Å.
2.2. Hirshfeld Surface Analysis. Nowadays, the non-

covalent interactions in the single crystals can be explored
comprehensively with the help of Hirshfeld surface analysis
(HSA) using Crystal Explorer version 21.5.25 The Hirshfeld
surface (HS) can be plotted by using various properties like
normalized distances (dnorm), shape index, etc. The HS plotted
over dnorm provides the exploration of H-bonding interactions
by assigning a different color for short and long contacts. Short
contacts are the representatives of the H-bonding inter-
actions.26−31

On the HS, the short and long connections are represented
by red and blue patches, respectively. The white dots on the
HS indicate the connections where the distance between the

Figure 1. ORTEP diagram of Cu-NTA that is drawn at a 50% probability level. The hydrogen atoms are represented as tiny circles with variable
radii.

Table 3. Hydrogen-Bond Geometry (Å, °) for Cu-NTA and
Cu-DNTA Together with C−O···π and C−O···π Interaction
in Cu-NTA and Cu-DNTA, Respectivelya

Cu-NTA D−H···A D−H H···A D···A <(D−H···
A)°

O1−H1A···
O4i

0.83 (2) 1.95 (2) 2.7076
(16)

151 (2)

O1−H1B···
O5ii

0.83 (2) 1.91 (2) 2.7315
(16)

169 (2)

O2−H2A···
O4iii

0.85 (2) 1.90 (2) 2.7504
(16)

177 (2)

O2−H2B···
O6iv

0.84 (2) 2.32 (2) 3.0335
(16)

143 (2)

O6−H6A···
O2ii

0.86 (1) 1.85 (1) 2.7005
(16)

177 (2)

C4−H4···O8v 0.95 2.40 3.278 (2) 154
C−O···π C−O O···π C···π <(C−

O···π)°
C8−O5···
Cg1vi

1.211
(2)

3.0395
(13)

3.3058
(15)

91.73 (9)

Cu-
DNTA

D−H···A D−H H···A D···A <(D−H···
A)°

O1−H1A···
O3vii

0.87 (3) 1.81 (3) 2.673 (3) 172 (4)

C2−H2···
O2viii

0.95 2.57 3.449 (3) 154

C5−H5···O3ix 0.95 2.60 3.492 (3) 157
N−O···π N−O N···π N···π <(N−

O···π)°
N2A−O5A···
Cg1

1.227
(6)

3.439 (6) 4.419 (5) 137.1 (4)

N2A−O4A···
Cg2x

1.227
(6)

3.502 (4) 4.627 (5) 155.0 (4)

aSymmetry codes: (i) − x + 1/2, −y + 5/2, −z + 1/2; (ii) − x, −y +
2, −z; (iii) x, y + 1, z; (iv) x + 1/2, −y + 2, z; (v) x, −y + 1/2 + 1, +z-
1/2; (vi) -x,1-y, −z; (vii) − x + 1, y − 1, −z + 1/2; (viii) x − 1/2, y +
1/2, z; (ix) x, y − 1, z; (ix) x, y + 1, z.
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interacting atoms is smaller than the total of the atoms’ van der
Waals radii.32−34 Figure 4a,b shows the HS over dnorm for Cu-
NTA and Cu-DNTA, respectively. The red spot on the HS of
Cu-NTA near carboxylate O-atoms, water molecules, and
ortho CH of the benzene ring indicates that these atoms are
involved in the H-bonding interactions. For Cu-DNTA, only
one red spot is found on the HS that is around the Cu-atom,
which represents the coordination of the Cu-atom with the
symmetry-related O-atom of the 2-nitroterephthalate ligand.
The π···π stacking interactions can be visualized by plotting the
HS over the shape index. The consecutive red and blue
triangular areas around the aromatic ring on the HS plotted
over the shape index for Cu-NTA (Figure 4c) and Cu-DNTA
(Figure 4d) designate the existence of π···π stacking
interactions in Cu-NTA and Cu-DNTA.

The short, as well as the comparatively longer, contacts can
be quantified by two-dimensional (2D) fingerprint plot
analysis.35−38 2D fingerprint plots are designed by using the
HS as an input. Figure 5a,e shows the 2D plots for the overall
interactions for Cu-NTA and Cu-DNTA, respectively. The
central sky blue region represents the π···π stacking
interactions, which are larger for Cu-NTA (Figure 5a) as
compared to Cu-DNTA (Figure 5b), which indicates that the
π···π stacking interactions are stronger in Cu-NTA as
compared to Cu-DNTA. For both compounds, the most
important contacts are O···H, H···H, and C···H, having
percentage contributions of 50.9, 18.3, and 5% in Cu-NTA
and 41.8, 20.5, and 16.5% in Cu-DNTA. The remaining 2D
fingerprint plots that are comparatively less important are
shown in Figures S4 and S5 for Cu-NTA and Cu-DNTA,

Figure 2. Graphical illustration of C−O···π and off-set π···π stacking interactions. Hydrogen atoms are left out for simplicity. The measurements are
given in Å.

Figure 3. ORTEP diagram of Cu-DNTA that is depicted at a 50% probability level. The H-atoms are represented as tiny circles with variable radii.
Only the major parts of the disordered nitro group and disordered hydrogen attached to a carbon atom (C8) are shown for clarity.
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respectively. The combination of chemical species has a unique
tendency for crystal-packing interactions. The propensity of
one pair is different from other pairs. The enrichment ratio
provides the propensity by dividing the proportion of the
actual contacts in the crystal by the theoretical proportion of
the random contacts.39−41 Tables S1 and S2 list the
enrichment ratio of the pair of chemical moieties in Cu-
NTA and Cu-DNTA, respectively. The contacts with an
enrichment ratio greater than one have a higher propensity to
generate crystal-packing interactions relative to other contacts.

For both compounds, C···C and O···H contacts have a higher
propensity than other contacts, with enrichment ratios of 3.74
and 1.45, respectively, in Cu-NTA and 2.28 and 1.53,
respectively, in Cu-DNTA. C···H contacts have a higher
propensity in Cu-NTA as compared to Cu-DNTA. The N···O
contacts have a higher propensity in Cu-DNTA as compared
to in Cu-NTA, which is due to the fact that the N−O···π
interaction is present in Cu-DNTA, which is absent in Cu-
NTA.

Figure 4. HS plotted over dnorm for (a) Cu-NTA in the range of −0.6920 to 1.2737 a.u. and (b) Cu-DNTA in the array of −1.2743 to 1.1532 a.u.
The HS plotted over the shape index in the range of −1 to 1 a.u. for (c) Cu-NTA and (d) Cu-DNTA.

Figure 5. 2D fingerprint plots showing significant interatomic contacts and overall interactions (a−d) for Cu-NTA and (e, f) for Cu-DNTA.
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2.3. Void Analysis. The voids are directly associated with
the mechanical properties of the single crystals. If a single
crystal has a very small number of voids, then it means that it
will have good mechanical properties like a response to applied
stress, melting point, etc. From this perspective, we have
calculated voids in Cu-NTA and Cu-DNTA by assuming that
all the atoms are spherically symmetric and by adding the
electronic density of all the atoms existing in the crystal
structure.42−45 Figure S6 shows the voids present in the crystal
packing of Cu-NTA and Cu-DNTA, respectively. The study
inferred that the percentage space occupied by voids is 7.5 and
8.9% in Cu-NTA and Cu-DNTA, respectively, which indicates
that in both compounds, the molecules are strongly packed
without significant cavities.
2.4. FT-IR Spectral Investigations. According to the

literature,46 the FT-IR spectra of copper complexes displayed
absorption bands in their definite sections. The most
noticeable difference was the disappearance of wider bands
at 3400 cm−1 in the Cu-DNTA spectra, which are thought to
be due to COOH vibrations of the free ligand. The appearance
of additional medium-intensity bands around 550 cm−1 for
both complexes owing to Cu−O bonding further confirmed
the existence of coordinated deprotonated carboxylate ligands
in the spectra of the complexes. Asymmetric and symmetric
COO− vibrations in Cu-NTA showed prominent bands at
1658 and 1425 cm−1, respectively, with a Δv value of 233,
indicating a monodentate mode of carboxylate ligand binding.
The two strong bands were seen for the COO− moiety’s
asymmetric (1665 cm−1) and symmetric (1430 cm−1)
vibrations in Cu-DNTA, with a Δv value of 235, which also
guarantees the monodentate mode of coordination of the
carboxylate ligand. The SC-XRD data further confirms the
mode of coordination of the ligands. The medium-intensity
bands at 650 cm−1 due to the newly formed Cu−N bond
represent the coordination of pyridine to the copper core in
Cu-DNTA. The coordinated water molecules show their
presence as a broad band from 3300 to 2800 cm−1 in both
complexes.
2.5. Thermogravimetric Analysis. Thermolysis of both

complexes occurs in four stages at different temperature
intervals: In the first stage of Cu-NTA at a temperature range
of 180−200 °C, four H2O molecules are released, accom-
panied by a weight loss of 12.95%. In the second stage, at a
temperature range of 200−365 °C, thermolysis is stable.
Apparently, the monomeric structure becomes dimeric, which
is characteristic of Cu(II) complexes with benzoic acid
derivatives. In the third stage, at 370−495 °C, the breakdown
of dimeric molecules occurs, along with the burning out of
carbon hydrate residues with a deep exo-effect. In the fourth
stage, Cu(II) carbonate is formed (690 °C) and finally
decomposes to metal oxides at 780 °C.
In the first stage of Cu-DNTA at a temperature range of

175−210 °C, coordinating one molecule of water and two
molecules of pyridine are released. The remaining three stages
of thermolysis proceeded in the same manner as that of Cu-
NTA.

3. COMPUTATIONAL RESULTS
3.1. Computational Methodology. Computational cal-

culations were carried out using the Gaussian 16 program47 to
understand the Cu-NTA complex’s electronic properties. The
initial geometry of the Cu-NTA complex, which served as the
starting configuration for the search for optimal geometry, was

taken from the crystal structure. The optimization of the
molecular structure was conducted with the help of the M06
method with a mixed basis set of 6-31G*/LanL2DZ. In some
prior studies, the reliability of the Minnesota family functionals
(M06 and M06-2X) has been evaluated and found to be better
than other currently available conventional DFT func-
tionals.48,49 For theoretical calculations of transition metal
complexes, LanL2DZ relativistic pseudopotentials have proven
to be more trustworthy and yield findings that are equivalent to
experimental data. Both of these basis sets were applied to
different atoms of the complex, as LanL2DZ was utilized for
Cu metal and 6-31G* was for carbon, oxygen, nitrogen, and
hydrogen. The calculations of dipole moment, linear polar-
izability, and third-order nonlinear polarizability of the Cu-
NTA complex were performed by using the same level of
theory. The GaussView 6.0.1650 was used to analyze the
complex’s ground-state optimal geometry, frontier molecular
orbital energy profile, and three-dimensional molecular
electrostatic potential map. Further computational details can
be seen in our previously published full computational studies
papers.51−54

The dipole moment (μ) and linear polarizability (α°) can be
calculated by using eqs 1 and 2:

( )x y z
2 2 2= + + (1)

1
3

( )xx yy zz° = + +
(2)

The second hyperpolarizability is calculated by using eq 3:

1
15

( )
ij x y z

iijj ijij ijji
, ,

= + +
= (3)

These tensors are reduced to only six components (by
Kleinman symmetry) using eq 4:

1
15

( 2( ))xxxx yyyy zzzz xxyy xxzz yyzz= + + + + +

(4)

3.2. Computational Geometry Optimization for the
Cu-NTA Complex. Nowadays, computational calculations are
commonly used to describe the structural properties of many
compounds. Among the above-synthesized compounds, we
chose the Cu-NTA complex for studying its geometry and
other electronic properties through computational tools
because the molecular geometry of the Cu-DNTA complex
has not been obtained due to its larger size and involvement of
multiple metal atoms. The geometry optimization of the Cu-
NTA complex has been carried out by employing the M06
functional. For comparison of geometrical parameters,
experimentally (within parenthesis) and theoretically (without
parentheses) observed bond lengths of the Cu-NTA complex
are shown in Figure S7. The Cu-NTA complex consists of two
ligands of 2-nitroterephthalic acid (NTA) and four solvent
water molecules bound to the Cu(II) ion in an octahedral
coordination environment. Cu(II) ion occupies a centrosym-
metric inversion center. Two ligands of 2-nitroterephthalic acid
occupy two trans axial positions in this coordination
environment. In the equatorial plane, the Cu1−O33 and
Cu1−O8 (oxygen atom of 2-nitroterephthalic acid) bond
distance is 1.921 Å in the crystal structure and 1.938 Å in the
calculated structure. A noticeable difference is observed
between the crystal structure and theoretical bond lengths in
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the two axial bonds of Cu1−O2 and Cu1−O27. That is 1.975
Å experimentally, while it is appreciably elongated to 2.141 Å
in computed geometry. The long bonds of Cu, including Cu1−
O30 and Cu−O5, are seen at 2.516 Å in the XRD structure for
a d9 system of Cu, while it is reduced to 2.234 Å in an
optimized structure. Possible causes of this bond length
reduction include phase changes because the XRD structure is
analyzed in the solid phase and theoretical calculations are
performed in the gas phase. There are no catastrophic
disagreements between the experimental and theoretical
bond distances among 2-nitroterephthalic acids, as manifested
in Figure S7. This comparison offers confidence that the M06
functional can be used for further calculations.
3.3. Linear and Third-Order NLO Properties. Nonlinear

optical materials play a vital role in recent technology
development. The NLO materials are utilized in laser
frequency doubling, telecommunication, and other digital
data storage and processing. The third-order NLO response
has been calculated through the calculation of second
hyperpolarizability (gamma) amplitudes. Besides this, linear
polarizability, which shows a linear response to the applied
electric field, has also been calculated at the same level of
theory. Linear polarizability also plays a key role while
designing electro-optical materials. Table S3 shows the
amplitudes of linear polarizability and third-order NLO
polarizability with their individual components. The isotropic
and anisotropic linear polarizabilities are calculated to be 41.23
× 10−24 and 41.03 × 10−24 esu, respectively. The nonzero
polarizability shows the tendency of the molecules to polarize
their electric cloud under an applied electric field. The
isotropic and anisotropic amplitudes are similar, which
indicates that there are no directional aspects and the molecule
shows similar polarization regardless of its orientation.
Most importantly, the static <γ> amplitude of Cu-NTA is

seen to be 86.28 × 10−36 esu. Besides this, we have also
calculated the frequency-dependent second hyperpolarizability
in the form of γ(−w;w,0,0) and γ(−2w;w,w,0) with an applied
wavelength of 1060 nm. The frequency-dependent values of
γ(−w;w,0,0) and γ(−2w;w,w,0) are found to be 118.56 ×
10−36 and 256.49 × 10−36 esu, which are larger than the static
values of the second hyperpolarizability. The calculated third-
order NLO amplitudes are found to be reasonably large and
also comparable to some previously reported metal com-
plexes,55−57 which show its potential to consider Cu-NTA a
fair contender for NLO applications.
3.4. Frontier Molecular Orbital and Molecular

Electrostatic Potential Diagram. The frontier molecular
orbitals, which include HOMO−LUMO, serve as an example
of the chemical reactivity and kinetic stability of the molecules.
Figure 6 shows the frontier molecular orbital surfaces to better
understand the bonding structure of the Cu-NTA complex.
The highest occupied molecular orbital (HOMO) distribution
indicates that the charge density is evenly distributed over the
metal and its ligands. In distinction, the electronic density in
the lowest unoccupied molecular orbital (LUMO) is
concentrated on the NTA ligands exclusively. The electronic
density transfers from the occupied d orbitals of the metals to
the unoccupied antibonding π orbital of the ligand. The energy
gap between HOMO and LUMO in Cu-NTA is 5.14 eV,
showing its polarizability and higher chemical reactivity with
lower kinetic stability.
The molecular electrostatic potential (MEP) postulates the

nucleophilic and electrophilic sites over the total density

surface of a complex.58−60 The MEP of the Cu-NTA complex
is exhibited in Figure 7. A positive electrostatic potential is
present at both ends of the NTA ligands on the oxygen atom
attached to hydrogen in the carboxylic group, which is shown
by the blue color. It provides a site for nucleophilic attack. It
might be caused by a drop in electron density because electron
density moves toward the doubly bounded oxygen atom of the
carboxylic group indicated by the yellow color providing a site
for electrophilic attack. Moreover, the yellow color is also
present on the oxygen atom of the carboxylate group in the
NTA ligand other than the oxygen that is linked to copper
metal because the electron density of the double bond moves
toward this oxygen and electrons in the d orbital of Cu metal
transfer toward another oxygen atom. The oxygen atom of
water molecules that are attached to Cu metal represents a
slight blue color related to nucleophilic reactivity.

4. CONCLUSIONS AND PERSPECTIVES
The current research work presents the synthesis, crystal
structure, spectroscopic characterization, and computational
studies of two copper complexes derived from nitrotereph-
thalic acid. The synthetic procedure is very simple and
produces the complexes in a pure form with excellent yield.
The SC-XRD study inferred that the coordination geometry is
relatively different in Cu-NTA and Cu-DNTA. The HSA
concludes that O···H, H···H, and C···H contacts have a higher
contribution in the crystal packing as compared to other
contacts, but C···H contacts have a higher propensity to form
the crystal-packing interaction in Cu-NTA as compared to Cu-
DNTA. The DFT method is used to study the selected Cu-
NTA complex for its linear and nonlinear optical properties.
The molecular geometry of complex Cu-NTA is optimized by
quantum chemical computations and compared with its
experimental single crystal structure, which is found to be in
sensible agreement with the experimental structure of the
complex. The static NLO polarizability <γ> of complex Cu-
NTA is found to be 86.28 × 10−36 esu at the M06 functional
and 6-31G*/LAN2DZ basis set. Additionally, we have also
calculated the frequency-dependent second hyperpolarizability
in the form of γ(−w;w,0,0) and γ(−2w;w,w,0) with an applied
wavelength of 1060 nm. The frequency-dependent values of
γ(−w;w,0,0) and γ(−2w;w,w,0) are found to be 118.56 ×
10−36 and 256.49 × 10−36 esu, which are larger than the static γ
amplitude. The calculated third-order NLO amplitudes are
found to be reasonably large to consider Cu-NTA a fair

Figure 6. Frontier molecular orbitals of the Cu-NTA complex
calculated at the M06 functional.
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contender for NLO applications. Moreover, the MEP and
frontier molecular orbital are also computed with the same
methodology to see electronic characteristics and ground-state
electronic charge distributions.

5. EXPERIMENTAL SECTION
5.1. Materials and Methods. The analytical-grade

compounds that are readily available commercially are
employed in the current research work. The infrared spectra
from 450 to 4000 cm−1 were measured using KBr pellets with a
PerkinElmer Spectrum 100 FT-IR spectrophotometer. The
NETZSCH STA-409 PC/PG derivatograph was used for
thermal analysis. The DTA, TG, and DTG curves were
measured at an increasing heating rate of 10 °C per min from
ambient to 800 °C with the help of platinum crucibles under
nitrogen atmosphere. The Costech ECS 4010 CHNSO
analyzer was used for elemental analysis (CHN).
5.2. Synthesis of Cu-NTA. The Cu(II) complex (Cu-

NTA) was prepared by dissolving 2.11 g (10 mmol) of 2-
nitroterephthalic acid in 25 mL of hot distilled water, to which
an aqueous solution (25 mL) of 1.25 g (5 mmol) of CuSO4·
5H2O was added with continuous stirring and then left at
room temperature (Scheme 1). After a few days, bluish-colored
prismatic crystals settled down. The crystals were filtered and
dried in a desiccator under anhydrous conditions to a constant
weight.

Cu-NTA: Yield 81%; Color Blue; Anal. Calcd for
C16H16CuN2O16 (%): C, 34.57; H, 2.90; N, 5.04. Found %:
C, 34.65; H, 2.86; N, 4.98; FT-IR (cm−1): 1658s ν(COO)asym,
1425s ν(COO)sym, 233 = Δν, 1365s ν(C=C), 690s ν(C−
NO2), 550s ν(Cu−O), 3400b ν(Cu−H2O).
5.3. Synthesis of Cu-DNTA. 2-Nitroterephthalic acid 2.11

g (10 mmol) was dissolved in 25 mL of hot distilled water, to
which an aqueous solution (25 mL) of 1.68 g (20 mmol) of
NaHCO3 was added drop by drop with continuous stirring.
Then, an aqueous solution (25 mL) of 2.50 g (10 mmol) of
CuSO4·5H2O was added to it (Scheme 1). After that, 2−3
drops of pyridine were added and the flask containing the
reaction mixture was left as such for a few days until the blue
needle-like crystals of Cu-DNTA appeared. The resulting
crystals were filtered and dried in a desiccator over anhydrous
CaCl2.

Cu-DNTA: Yield 80%; Color Blue; Anal. Calcd for
C18H15CuN3O7 (%): C, 48.16; H, 3.37; N, 9.36. Found %:

C, 48.13; H, 3.35; N, 9.38; FT-IR (cm−1): 1665s ν(COO)asym,
1430s ν(COO)sym, 235 = Δν, 1367s ν(C=C), 692s ν(C−
NO2), 650s ν(Cu−N), 551s ν(Cu−O).
5.4. Single Crystal X-ray Diffraction Procedure. The

single crystal XRD data of both complexes were collected on a
Bruker Kappa Apex-II CCD diffractometer having APEX-II
software. The structure solution is performed on SHELXT-
201461 and structure refinement is done on SHELXL 2019/
2.62 All non-hydrogen atoms are refined with the help of
anisotropic displacement parameters, while hydrogen atoms
are assigned by isotropic displacement parameters. All H-atoms
are added in the refinement model by using the riding model
except the H-atoms attached to O-atoms (O1/O2/O6) in the
case of Cu-NTA and O-atom (O1) in the case of Cu-DNTA.
The H-atoms attached to the above-mentioned O-atoms are
refined freely for finding the correct orientation of these H-
atoms. ORTEP-III,63 PLATON,64 and Mercury 4.065 are used
for graphical illustrations.

Figure 7. MEP diagram of the Cu-NTA complex, where the iso-surface value is 0.002 a.u. The blue and red colors indicate the positive and
negative potential maxima, respectively.

Scheme 1. Synthesis of Cu-NTA and Cu-DNTA
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