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ABSTRACT

In phylogenomic analysis the collection of trees with identical score (maximum likelihood or
parsimony score) may hamper tree search algorithms. Such collections are coined phylo-
genetic terraces. For sparse supermatrices with a lot of missing data, the number of terraces
and the number of trees on the terraces can be very large. If terraces are not taken into
account, a lot of computation time might be unnecessarily spent to evaluate many trees that
in fact have identical score. To save computation time during the tree search, it is worth-
while to quickly identify such cases. The score of a species tree is the sum of scores for all the
so-called induced partition trees. Therefore, if the topological rearrangement applied to a
species tree does not change the induced partition trees, the score of these partition trees is
unchanged. Here, we provide the conditions under which the three most widely used to-
pological rearrangements (nearest neighbor interchange, subtree pruning and regrafting,
and tree bisection and reconnection) change the topologies of induced partition trees. During
the tree search, these conditions allow us to quickly identify whether we can save compu-
tation time on the evaluation of newly encountered trees. We also introduce the concept of
partial terraces and demonstrate that they occur more frequently than the original ‘‘full’’
terrace. Hence, partial terrace is the more important factor of timesaving compared to full
terrace. Therefore, taking into account the above conditions and the partial terrace concept
will help to speed up the tree search in phylogenomic inference.

Key words: nearest neighbor interchange, partial terraces, phylogenetic terraces, subtree pruning

and regrafting, tree bisection and reconnection.

1. INTRODUCTION

In phylogenomics, one aims to reconstruct a phylogenetic species tree from multiple genes. One

popular approach is to infer the trees from the concatenated gene alignment, the so-called supermatrix

(Sanderson et al., 1998; De Queiroz and Gatesy, 2007). Here, if a gene sequence is not available for some

taxon, it is represented by the sequence of unknown characters and is referred to as missing data. Several
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studies (van der Linde et al., 2010; Pyron and Wiens, 2011; Pyron et al., 2011; Nyakatura and Bininda-

Emonds, 2012; Springer et al., 2012; Hedtke et al., 2013) use quite sparse supermatrices in their analysis and

the percentage of missing data sometimes constitutes up to 95% (Peters et al., 2011).

Recently, it has been shown that missing data can hamper the tree search via existence of phylogenetic

terraces (Sanderson et al., 2011), a collection of trees with exactly the same likelihood or parsimony score.

Terraces occur in the analysis with partitioned data, that is, when distinct blocks of a supermatrix are

treated differently (e.g., when each gene corresponding to one block evolves under its own evolutionary

model). Two trees are said to belong to one terrace if the collections of their induced partition trees are

exactly the same. Here, the induced partition tree is obtained by pruning the taxa on species tree, which

have no sequence for the corresponding partition block.

Since the number of trees on one terrace can be quite large (Sanderson et al., 2011), accounting for

terraces in tree search algorithms can potentially save a lot of computation time. During the tree search, one

explores the tree space by moving from one candidate tree to another by means of topological re-

arrangements. If the topological rearrangement does not change any of the induced partition trees, then the

two trees belong to the same terrace and a recomputation of objective function (maximum likelihood or

maximum parsimony) used in the tree search is not necessary in order to evaluate a new tree.

Here, we first specify the conditions under which the topological rearrangements applied to the species

tree change the corresponding induced partition trees. Using these conditions, one can quickly identify

whether it is necessary to recompute the objective function for a given partition or not as a consequence of

one of the three widely used rearrangements: nearest neighbor interchange (NNI), subtree pruning and

regrafting (SPR) and tree bisection and reconnection (TBR) (Felsenstein, 2004).

We further generalize the concept of terrace to partial terrace, which is even more useful in practical

phylogenetic analysis. We analyze several published alignments by examining NNI neighborhoods of

random trees and trees encountered during the tree search using IQ-TREE (Nguyen et al., 2015). We show

that for large number of taxa partial terraces are mainly determined by the missing data and less dependent

on the actual tree topology analyzed. By taking into account partial terraces, it will be possible to speed up

the tree search algorithms even in the absence of terraces.

The outline of the article is the following. We first introduce the notations and then discuss the important

features of NNI, SPR, and TBR. Next, we specify the conditions when these topological rearrangements do

not change the topology of induced partition trees. We further elucidate why such conditions are helpful

even in the absence of terraces and define the concept of partial terrace. We analyze several published

alignments to point out that partial terraces do occur in practice. Finally, we discuss the additional practical

advantages of using induced partition trees in the maximum likelihood framework.

2. BACKGROUND

2.1. Basic definitions and notations

In this section we provide basic definitions and notations used throughout the article. For a complete

overview, see chapters 2, 3, and 6 in Semple and Steel (2003).

Definition 2.1. Let X be a taxon set. A phylogenetic tree T of X is a leaf-labeled tree with a bijection

map from X into the set of leaves of T.

In the following, we work only with bifurcating phylogenetic trees; that is, all internal nodes have

exactly three adjacent edges.

Definition 2.2. A split, denoted by AjB, is a bipartition of X into two nonempty, nonoverlapping sets

A and B, where A W B = X.

Note that AjB and BjA are equivalent. Every edge of T is associated with a split. When cutting an edge e

of T, we obtain two subtrees with leaf labels X1 and X2, and then a split corresponding to e is defined as

X1j X2. We denote this with e = X1j X2

We denote by S(T) a collection of all splits corresponding to edges of T.

The symmetric difference of two sets A and B, denoted ADB, is given by (AyB) W (ByA), or the union of

taxa present in A but not B, and vice versa.
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Definition 2.3. Let T1 and T2 be the two leaf-labeled trees with the same label set X, and S(T1) and

S(T2) be the collections of splits of T1 and, T2, respectively. Then the Robinson–Foulds (RF) distance

(Robinson and Foulds, 1981) between T1 and T2 is equal to jS(T1)DS(T2)j.

If for two trees the RF distance between them is 0, then they have the same collection of splits, and from

splits-equivalence theorem (Semple and Steel, 2003; p. 43), the trees are equivalent.

Definition 2.4. Let Y be a subset of X. An induced subtree of T, denoted by TjY, is a leaf-labeled tree

with the following collection of splits:

S(T jY) = fA \ YjB \ Y : AjB 2 S(T) and A \ Y 6¼ ;‚ B \ Y 6¼ ;g:

For a species tree T and a given partition with taxon set Y, a partition tree is an induced subtree TjY.

2.2. Topological rearrangement operations

In this section we introduce the topological rearrangements on trees commonly used in phylogenetic

inference.

The simplest possible operation that changes only one split on a tree is an NNI. It can only be applied to

interior edges of the tree, since it requires the so-called quartet structure with an interior edge being the

central edge of this structure (Fig. 1).

Let e be an interior edge of T and e1, e2, e3, e4 its four incident edges with A, B, C, D being the taxon sets

leading from them, respectively (Fig. 1). An NNI on T around e is obtained by exchanging the subtrees

below two nonincident edges from e1, e2, e3, e4. We denote a new tree by TNNI.

For each interior edge e there are two possible NNIs obtained by exchanging a subtree below e1 with a

subtree below either e3 or e4 (note that this is equivalent to swapping the subtree below e2 with either e4 or

e3, respectively).

Let us assume that the NNI is applied to edge e by swapping e1 and e3. The splits corresponding to e1, e2,

e3, and e4 stay unchanged:

e1 = AjB [ C [ D‚

e2 = BjA [ C [ D‚

e3 = CjA [ B [ D‚

e4 = DjA [ B [ C:

This also holds true for the edges belonging to subtrees below e1, e2, e3, and e4 (Fig. 1). Here, if

e1 = AjB W C W D, the subtree below e1 is a subtree with a leaf set A and not the union of sets. Hence, the

splits corresponding to e1, e2, e3, e4 and edges below them will be shared by T and TNNI.

The central edge e in terms of splits will be changed by the NNI from A W BjC W D to eNNI = AWD

jB W C.

It follows from above that T and TNNI are different only in one split; that is,

S(T) D S(TNNI) = fA [ BjC [ D‚ A [ DjB [ Cg

and the RF distance between T and TNNI is 2.

FIG. 1. Visualization of NNI. Species tree T and the two NNIs around

central edge e. NNI1 is obtained by exchanging subtrees below edges e1

and e3, while NNI2 by exchanging subtrees e1 and e4. NNI, nearest

neighbor interchange.
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We now discuss SPR, a more general topological rearrangement that changes one or more splits of the

tree.

An SPR on T is represented in Figure 2 (see also Hordijk and Gascuel, 2005). A new tree TSPR is obtained

from T by pruning the subtree below edge a and regrafting it onto edge bn (we sometimes refer to such SPR

as n-SPR). Note, that n is at least 3 and if n = 3, an SPR is equivalent to an NNI obtained by swapping

subtrees belonging to edges a and b2. Let A, B1, ., Bn denote the corresponding taxon sets leading from a,

b1, ., bn, respectively (Fig. 2).

An SPR on T changes only the splits of the path edges, namely: for 8x 2 f1‚ . . . ‚ n - 2g

ex = A [ B1 [ . . . [ BxjBx + 1 [ . . . [ Bn

is changed to

eSPR
x = B1 [ . . . [ BxjBx + 1 [ . . . [ Bn [ A‚

where ex
SPR is an edge that corresponds to ex on a new tree TSPR. Also, a new edge appears: en - 1 = B1

W . W Bn-1jA W Bn. The rest of splits remain unchanged and are shared by both trees. Hence, for T and

TSPR the symmetric difference S(T) D S(TSPR) consists of the following splits:

A [ B1 [ . . . [ BxjBx + 1 [ . . . [ Bn‚ 8x 2 f1‚ . . . ‚ n - 2g‚
B1 [ . . . [ BxjBx + 1 [ . . . [ Bn [ A‚ 8x 2 f2‚ . . . ‚ n - 1g:

The RF distance between T and TSPR is equal to 2 (n - 2).

The last topological rearrangement we are going to discuss is the TBR. A TBR on T is shown in Figure 3,

where a new tree TTBR is obtained from T (Fig. 3, in black) by cutting edge e and reconnecting edges bn and

cm with a new edge eTBR (Fig. 3, red dashed line). Note that n or m must be greater than 2. W.l.o.g. assume

that m £ n. If n = 3 and m = 2, then a TBR corresponds to an NNI around edge e1 by swapping subtrees

below e and b2. If n > 3 and m = 2, then a TBR corresponds to an SPR.

TBR only changes the splits corresponding to all path edges (ei and zj), but e. Namely,

FIG. 2. Visualization of SPR. A new tree TSPR is ob-

tained by pruning the subtree A below edge a and re-

grafting it onto edge bn (dashed red subtree). After SPR

is applied, edges b1 and e1 are joined and edge bn is split

into en-1 and bn. SPR, subtree pruning and regrafting.

FIG. 3. Visualization of TBR. To obtain

TTBR, species tree T is cut into two parts

(by removing edge e), which are further

reconnected by joining edges bn and cm

with eTBR. Edge bn is split into en-1 and bn,

while cm is split into zm-1 and cm. Edges b1

and e1 are joined, as well as c1 and z1.

TBR, tree bisection and reconnection.
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e = B1 [ . . . [ BnjC1 [ . . . [ Cm = eTBR‚

while for 8x 2 f1‚ . . . ‚ n - 2g

ex = C1 [ . . . [ Cm [ B1 [ . . . [ BxjBx + 1 [ . . . [ Bn

is changed to

eTBR
x = B1 [ . . . [ BxjBx + 1 [ . . . [ Bn [ C1 [ . . . [ Cm

and for 8y 2 f1‚ . . . ‚ m - 2g

zy = B1 [ . . . [ Bn [ C1 [ . . . [ CyjCy + 1 [ . . . [ Cm

is changed to

zTBR
y = C1 [ . . . [ CyjCy + 1 [ . . . [ Cm [ B1 [ . . . [ Bn:

Also two new edges appear

en - 1 = B1 [ . . . [ Bn - 1jBn [ C1 [ . . . [ Cm‚

zm - 1 = C1 [ . . . [ Cm - 1jCm [ B1 [ . . . [ Bn:

The remaining splits stay unchanged. Hence, for T and TTBR the symmetric difference S(T) D S(TTBR) is

a set consisting of the following splits

C1 [ . . . [ Cm [ B1 [ . . . [ BxjBx + 1 [ . . . [ Bn‚ 8x 2 f1‚ . . . ‚ n - 2g‚
B1 [ . . . [ BxjBx + 1 [ . . . [ Bn [ C1 [ . . . [ Cm‚ 8x 2 f2‚ . . . ‚ n - 1g‚

B1 [ . . . [ Bn [ C1 [ . . . [ CyjCy + 1 [ . . . [ Cm‚ 8y 2 f1‚ . . . ‚ m - 2g‚
C1 [ . . . [ CyjCy + 1 [ . . . [ Cm [ B1 [ . . . [ Bn‚ 8y 2 f2‚ . . . ‚ m - 1g:

Therefore, the RF distance between T and TTBR is 2 (n + m - 4).

3. CONSEQUENCES OF TOPOLOGICAL REARRANGEMENTS
APPLIED TO A SPECIES TREE

In the following we discuss how the topological rearrangement of the species tree T influences the

topology of the partition trees and start with the simplest operation, an NNI.

Proposition 1. Let e be an interior edge and e1, e2, e3, e4 the four edges adjacent to e with A, B, C, D

being the taxon sets leading from the corresponding edges (Fig. 1). Let a new tree TNNI be obtained from T via

NNI. For a partition with a taxon set Y, the topologies of TjY and TNNIjY are different iff Y has at least one

representative taxon in each subset A, B, C, D.

Proof.

W.l.o.g. assume that TNNI is obtained from T via swapping of subtrees below e1 and e3. Then

S(T) D S TNNIð Þ = fA [ BjC [ D‚ A [ DjB [ Cg and as a consequence for corresponding partition trees we

have

S(T jY) D S(TNNI jY) = f(A [ B) \ Y j(C [ D) \ Y‚ (A [ D) \ Yj(B [ C) \ Yg:

It is easy to show that if at least one set from A X Y, B X Y, C X Y, D X Y were empty, then both splits

(A W B) X Yj(C W D) X Y and (A W D) X Yj(B W C) X Y coincide with splits shared by TjY and TNNIjY
(e.g., see Fig. 4). Hence, S(TjY) D S TNNI jYð Þ = ; and the RF distance between these trees would be 0.

Therefore, for TjY and TNNIjY to have different topologies, all A X Y, B X Y, C X Y, D X Y must be

nonempty, meaning that Y has to have at least one representative in each subset A, B, C, D. -

In simple words, if some intersections of A, B, C, D with Y are empty, then a partition tree does not have

a corresponding quartet structure for the NNI to be applied to and edge e loses its centrality or interior
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feature (see, e.g., Fig. 4). When this happens, the topology of the partition tree TjY is not affected by the

NNI applied to e on the species tree T.

We next specify the condition when an SPR changes the topology of partition tree.

Proposition 2. Let tree T be in the form shown in Figure 2, and a new tree TSPR is obtained with SPR

by pruning subtree below edge a and regrafting it onto bn.

Then for a partition with a taxon set Y the following is true:

(i) the topologies of TjY and TSPRjY are different, if Y has at least one representative in A and in at least

another three subsets from B1, B2, ., Bn;

(ii) this SPR will correspond to an SPR on TjY obtained by pruning the subtree below edge with a split

A X Yj(B1 W . W Bn) X Y and regrafting it onto edge with split Bk \ Yj [i2f1‚ ...‚ ngyk Bi [ A
� �

\ Y , where

k = max1�i�nfijBi \ Y 6¼ ;g.

Proof.

(i) The symmetric difference S(T) D S(TSPR) consists of the following splits

A [ B1 [ . . . [ BxjBx + 1 [ . . . [ Bn‚ 8x 2 f1‚ . . . ‚ n - 2g‚
B1 [ . . . [ BxjBx + 1 [ . . . [ Bn [ A‚ 8x 2 f2‚ . . . ‚ n - 1g:

As a consequence for the induced partition trees TjY and TSPRjY, the symmetric difference of S(TjY) and

S(TSPRjY) consists of

A [ B1 [ . . . [ Bxð Þ \ Y j Bx + 1 [ . . . [ Bnð Þ \ Y‚ 8x 2 f1‚ . . . ‚ n - 2g‚
B1 [ . . . [ Bxð Þ \ Y j Bx + 1 [ . . . [ Bn [ Að Þ \ Y‚ 8x 2 f2‚ . . . ‚ n - 1g:

:

It is easy to see that if A X Y = ;, then all these splits would be shared by both partition trees, that is,

S(TjY) D S(TSPRjY) = ; and the RF distance between TjY and TSPRjY would be 0. Therefore, Y must have at

least one representative in A.

For TjY and TSPRjY to have different topologies, an SPR on T should correspond to at least an NNI on

TjY. Hence, TjY must have a corresponding quartet structure and together with A at least another three

subsets from B1, B2, ., Bn should have at least one representative in Y. W.l.o.g. assume that together with

A also Bm, Bh, Bk (1 £ m < h < k £ n) have at least one representative in Y while

Bj \ Y = ; 8j 2 f1‚ . . . ‚ ngyfm‚ h‚ kg (see, e.g., Fig. 5). Then

S(TjY) D S TSPRjYð Þ = f A [ Bmð Þ \ Y j Bh [ Bkð Þ \ Y‚ Bm [ Bhð Þ \ Y j Bk [ Að Þ \ Yg:

Thus, the RF distance between TjY and TSPRjY is 2.

(ii) Let I = {i1,.., ik} be the set of all indices, such that 8i 2 I : Bi \ Y 6¼ ; and let 1 � i1 < � � � < ik � n.

For edge a = AjB1 W . W Bn its corresponding split on the partition tree TjY is equal to

A \ Yj B1 [ . . . [ Bnð Þ \ Y = A \ Yj [i2I Bi \ Yð Þ:

FIG. 4. An example when an NNI on T does not change the topology of TjY. Solid lines correspond to two induced

partition trees before (TjY) and after (TNNIjY) the NNI was applied to edge e on T by swapping the subtrees below e1 and

e3 (Fig. 1). In this case, Y does not have a representative in A (i.e., A X Y = ;); therefore, (A W B)XYj(CWD)XY =
BXYj(CWD)XY and (AWD)XYj(BWC)XY = DXYj(BWC)XY. Since the splits BXYj(CWD)XY and DXYj(BWC)XY

are shared by TjY and TNNIjY, then S(TjY) D S(TNNIjY) = ; and RF distance between TjY and TNNIjY is 0.
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Similarly for eik - 1 its corresponding split on TjY

A [ B1 [ . . . [ Bik - 1ð Þ \ Y j Bik [ . . . [ Bnð Þ \ Y = [i2Iyik Bi [ Að Þ \ Y jBik \ Y‚

and for eSPR
ik - 1 its corresponding split on the partition tree TSPRjY

B1 [ . . . [ Bik - 1ð Þ \ Y j Bik [ . . . [ Bn [ Að Þ \ Y = [i2Iyik Bið Þ \ Y j Bik [ Að Þ \ Y :

The above means that an edge on TjY with split [i2Iyik Bi [ Að Þ \ Y jBik \ Y was divided by an edge with

split A \ Yj [i2I Bi \ Yð Þ in two edges (see also Fig. 5, where I = {i1, i2, i3}). Therefore, regrafting onto

edge bn on T corresponds to regrafting onto edge with a split Bik \ Yj [i2f1‚ ::‚ ngnik Bi [ A
� �

\ Y on partition

tree TjY. And since 1 � i1 < � � � < ik � n, then ik = max1�i�nfijBi \ Y 6¼ ;g. -

In other words, Proposition 2 states that an SPR on T changes the topology of TjY if the structure of T

from Figure 2 corresponds to at least a quartet structure on TjY (e.g., Fig. 5). In this case, n-SPR on T is a

3-SPR (or NNI) on TjY.

We now discuss TBR and the topological change of a partition tree as a consequence of TBR on species tree.

Proposition 3. Let tree T be in the form shown in Figure 3 and a new tree TTBR is obtained by

cutting edge e and reconnecting bn and cm with a new edge.

Then for a partition with a taxon set Y the following is true:

(i) the topologies of TjY and TTBRjY are different if either of the following conditions is satisfied:

� Y has at least one representative in at least one subset from B1, B2, . , Bn and in at least another three

subsets from C1, C2, . ,Cm

� Y has at least one representative in at least one subset from C1, C2, . , Cm and in at least another three

subsets from B1, B2, . , Bn

(ii) this TBR will correspond to a TBR on TjY obtained by cutting the edge with split (B1 W . W Bn) X
Yj(C1 W . W Cm) X Y and reconnecting edges with splits Bk X Yj(WiE{1,..,n}yk Bi W C1 W . W Cm) X Y

and Ch X Yj(WjE{1,..,m}yh Cj W B1 W . W Bn) X Y, where k = max1£i£n {i j Bi X Y s ;} and h = max1£j£m

{j j Cj X Y s ;}.

Proof.

(i) The symmetric difference S (T) D S (TTBR) consists of the following splits:

FIG. 5. An example when n-SPR

on T is a 3-SPR (or NNI) on TjY.

There are two induced partition

trees (solid lines): before (TjY) and

after (TSPRjY) an SPR was applied

on T by pruning the subtree below

edge a and regrafting it onto bn

(Fig. 2). The three dots denote all

the subtrees between the corre-

sponding pair of subtrees on the

species trees T and TSPR. Here, only

A, Bm, Bh, and Bk have at least one

representative in Y and cj˛{1, . ,

n}y{m, h, k}: Bj have no taxa in

common with Y.
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C1 [ . . . [ Cm [ B1 [ . . . [ BxjBx + 1 [ . . . [ Bn‚ 8x 2 f1‚ . . . ‚ n - 2g‚
B1 [ . . . [ BxjBx + 1 [ . . . [ Bn [ C1 [ . . . [ Cm‚ 8x 2 f2‚ . . . ‚ n - 1g‚

B1 [ . . . [ Bn [ C1 [ . . . [ CyjCy + 1 [ . . . [ Cm‚ 8y 2 f1‚ . . . ‚ m - 2g‚
C1 [ . . . [ CyjCy + 1 [ . . . [ Cm [ B1 [ . . . [ Bn‚ 8y 2 f2‚ . . . ‚ m - 1g‚

As a consequence, the symmetric difference S(T jY)DS(TTBRjY) consists of

(C1 [ . . . [ Cm [ B1 [ . . . [ Bx) \ Yj(Bx + 1 [ . . . [ Bn) \ Y‚ 8x 2 f1‚ . . . ‚ n - 2g‚
(B1 [ . . . [ Bx) \ Yj(Bx + 1 [ . . . [ Bn [ C1 [ . . . [ Cm) \ Y‚ 8x 2 f2‚ . . . ‚ n - 1g‚

(B1 [ . . . [ Bn [ C1 [ . . . [ Cy) \ Y j(Cy + 1 [ . . . [ Cm) \ Y‚ 8y 2 f1‚ . . . ‚ m - 2g‚
(C1 [ . . . [ Cy) \ Y j(Cy + 1 [ . . . [ Cm [ B1 [ . . . [ Bn) \ Y‚ 8y 2 f2‚ . . . ‚ m - 1g‚

It is easy to see that if ci E {1,..,n}: Bi X Y = ;, then all these splits would be shared by both partition

trees; that is S(TjY) D S(TTBRjY) = ; and the RF distance between TjY and TTBRjY would be 0. Therefore, Y

must have at least one representative in at least one from B1, B2, ., Bn. Similarly, Y must have at least one

representative in at least one from C1, C2, . , Cm.

W.l.o.g. assume that Bk X Y s ; and Ch X Y s ;, where 1 £ k £ n and 1 £ h £ m.

Partition trees TjY and TTBRjY will have different topologies if a TBR on T corresponds to at least an NNI

on TjY. Hence, the partition tree TjY must have a corresponding quartet structure and together with Bk and

Ch at least other two subsets from the remaining Bi and Cj should have at least one representative in Y.

W.l.o.g. assume that together with Bk and Ch also Cp, Cq (1 £ p < q < h £ m) have at least one represen-

tative in Y (Fig. 6, right panel). Then it is easy to show that

S(T jY)DS(TTBRjY) = f(Bk [ Cp) \ Y j(Cq [ Ch) \ Y‚ (Cp [ Cq) \ Y j(Ch [ Bk) \ Yg

and RF distance between TjY and TTBRjY is 2.

Similarly, one can show that if together with Bk and Ch also Bp, Bq (1 £ p < q < k £ n) have at least one

representative in Y, then RF distance between TjY and TTBRjY is also 2.

In contrast, if Y has at least one representative in Bk, Ch and also in Bp, Cq (1 £ p < k £ n and 1 £ q < h £
m), then S(T jY)DS(TTBRjY) = ; and RF distance is 0 (Fig. 6, left panel).

(ii) Let I = {i1,..,ik} be the set of all indices such that 8i 2 I : Bi \ Y 6¼ ; and let 1 £ i1 < . < ik £ n.

Similarly, let J = {j1,..,jh} be the set of all indices such that 8j 2 J : Cj \ Y 6¼ ; and let 1 £ j1 < . < jh £ m.

Then for edge

e = B1 [ . . . [ BnjC1 [ . . . [ Cm

the corresponding split on TjY is

[i2IBi \ Y j [j2J Cj \ Y :

FIG. 6. Examples of corresponding TBRs on partition trees. Two partition trees with topologies before (TjY, in black)

and after (TTBRjY, in red) the TBR were applied to the species tree. For simplicity we do not show the pruned subtrees

for which BiXY = ; and CjXY = ;. On the left is an example case when the topology of partition tree remains unchanged

after TBR. On the right is the simplest case when the TBR changes the topology of partition tree. In this case a TBR on

species tree corresponds to an NNI on partition tree.
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For edge

eik - 1 = C1 [ . . . [ Cm [ B1 [ . . . [ Bik - 1jBik [ . . . [ Bn

its corresponding split on tree TjY is

C1 [ . . . [ Cm [ B1 [ . . . [ Bik - 1ð Þ \ Y j Bik [ . . . [ Bnð Þ \ Y =
= [j2JCj \ Y
� �

[ [i2Iyik Bi \ Yð ÞjBik \ Y :

Similarly, for the corresponding edge on TTBR eTBR
ik - 1 = B1 [ . . . [ Bik - 1jBik [ . . . [ Bn [ C1 [ . . . [ Cm its

split on TTBRjY is

B1 [ . . . [ Bik - 1ð Þ \ Y j Bik [ . . . [ Bn [ C1 [ . . . [ Cmð Þ \ Y =
= [i2Iyik Bi \ Yð Þj Bik\Yð Þ [ [j2JCj \ Y

� �
:

For edges

zjh - 1 = B1 [ . . . [ Bn [ C1 [ . . . [ Cjh - 1jCjh [ . . . [ Cm

and

zTBR
jh - 1 = C1 [ . . . [ Cjh�1jCjh [ . . . [ Cm [ B1 [ . . . [ Bn

their corresponding splits on TjY and TTBRjY are

[i2IBi \ Yð Þ [ [j2Jyjh Cj \ Y
� �

jCjh \ Y

and

[j2Jyjh Cj \ Y
� �

j Cjh \ Y
� �

\ [i2IBi \ Yð Þ

respectively. The above means that edges on TjY with corresponding splits

[j2J Cj \ Y
� �

[ [i2Iyik Bi \ Yð ÞjBik \ Y

and

[i2I Bi \ Yð Þ [ [j2Jyjh Cj \ Y
� �

jCjh \ Y

were reconnected on TTBRjY by [i2I Bi \ Y j [j2J Cj \ Y . Since 1 £ i1 < . < ik £ n and 1 £ j1 < . < jh £ m,

then ik = max1£i£n{i j Bi X Y s ;} and jh = max 1£j£m{j j Cj X Y s ;}. -

4. PARTIAL TERRACES

4.1. Definition of partial terraces

In this section we discuss partial terraces that generalize the terrace concept (Sanderson et al., 2011),

which we call full terrace for clarity. When comparing the two trees in a partitioned framework, we

compare the sets of their induced partition trees. If the sets are identical, then the two trees belong to one

full terrace. Sanderson et al. (2011) showed that the number of trees on one full terrace can be quite large.

Large full terraces pose a problem in phylogenetic inference, since they may abort tree search prematurely

or even if an optimal tree has been found, this tree is by no means unique. To reduce this problem, it is

possible to reduce the terrace size by, for example, choosing a different partition scheme (Sanderson et al.,

2015) or by excluding some taxa from the analysis.

Now, if two species trees T1 and T2 share only a subset of identical induced partition trees, then we say

that they belong to the same partial terrace. The log-likelihoods and parsimony scores of identical partition

trees T1jYi and T2jYi are the same. Obviously, partial terraces occur more frequently than full terraces (see

below). Large partial terraces can be still problematic for tree search algorithms. On the other hand, partial

terraces provide the potential to reduce computation time.
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4.2. Occurrence of partial terraces in real data

In this section we evaluate how often partial terraces occur in real alignments. By no means do we intend

to make a full exploration of potential computing time that may be saved since the performance of the

particular software will depend on the data structures and particular implementation used for the tree space

exploration.

To elucidate the occurrence of partial terraces and full terraces, we analyzed seven recently published

alignments (Table 1). Alignments have different numbers of taxa ranging from 69 to 404 taxa. The number

of partitions (here, genes) varies from 11 to 79.

For each alignment we performed a maximum likelihood tree search using IQ-TREE (Nguyen et al.,

2015) under the edge-unlinked (EUL) partition model assuming a GTR+G (Lanave et al., 1984; Yang,

1994) model for all partitions. We collected all the intermediate trees encountered during the search. For

each intermediate tree T, we explored all trees TNNI in its NNI neighborhood. We examined partial terraces

of each TNNI and T by computing how many induced partition trees are shared between them.

Apart from intermediate trees collected during the tree search, we also analyzed NNI neighborhoods for

1000 random Yule–Harding (YH) trees (Harding, 1971) for each tested alignment.

We defined 12 bins based on the percentage of shared induced partition trees between T and TNNI (Table

2) and counted how many TNNI trees fall into each bin. Table 3 shows the mean percentage of TNNI trees

that fall into the corresponding bin for the intermediate trees. Figure 7 displays the boxplots for the first

three alignments from Table 1 either for the IQ-TREE search trees (left column) or the random YH trees

(right column) (see Supplementary Figs. S1–S4 for the remaining alignments; Supplementary Material is

available online at www.liebertonline.com/cmb).

Intermediate and random trees have similar percentages of TNNI trees across different bins (Fig. 7 and

Supplementary Figs. S1–S4). This suggests that the general picture of partial terraces is mainly determined

by the spread of missing data in the supermatrix and is less dependent on the actual tree topology.

Moreover, increasing the number of taxa tends to decrease the variance of TNNI percentage within each bin

(for both intermediate and random trees).

Figure 8 integrates the information from Tables 2 and 3 and provides rough estimates of potential

computational savings if accounting for partial and full terraces. The green bars reflect the average per-

centage of identical induced partition trees when TNNI is compared to T. For example, for DNA1 there is no

Table 1. Alignments Used to Study the Occurrence of Partial Terraces During the Tree Search

Type and ID

No. of

species

No. of

genes

Missing

data (%) Source

DNA1 128 32 30 Stamatakis and Alachiotis (2010)

DNA2 237 74 72 Nyakatura and Bininda-Emonds (2012)

DNA3 372 79 66 Springer et al. (2012)

DNA4 404 11 60 Stamatakis and Alachiotis (2010)

AA1 69 31 35 De Queiroz et al. (1995)

AA2 70 35 34

AA3 72 51 35

Table 2. Partial Terrace Bins Based on the Percentage

of the Shared Partition Trees Between T and T
NNI

Name Percentage of shared partition trees out of the total number of partition trees

No partial terrace (PT) = 0%, the topologies of all partition trees are pairwise different

between T and TNNI

PT1 (0%,10%]

PT2 (10%, 20%]

PT3 (20%, 30%]

. .
PT9 (80%, 90%]

PT10 (90%, 100%)

Full terrace = 100%, T and TNNI belong to one terrace
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full terrace, but we observe partial terraces that may lead to a reduction of about 38% (the percentage of

green bars) in computation time.

There is a full terrace for DNA2, but it consists of only 1.75% of the NNI neighborhood, whereas partial

terraces constitute the remaining 98.25% and lead to a potential reduction of computations of about 80%

(the percentage of green bars). In fact, since no TNNI tree falls into ‘‘no PT’’ bin, we can save some

computation time for all the trees encountered during tree search. Similar trend is observed for DNA3 and

DNA4 with the predicted timesaving of 71% for each alignment.

5. ADVANTAGES OF USING INDUCED PARTITION TREES
IN MAXIMUM LIKELIHOOD INFERENCE

In maximum likelihood inference, after applying a topological rearrangement on T, one needs to

optimize the edge lengths of a new tree TNEW. Therefore, together with the topological changes of

partition trees, it is important to consider how topological rearrangement on T influences edge length

optimization.

In the following we discuss two partition models commonly used in likelihood inferences, EUL and

edge-linked (EL), and the advantages of using induced partition trees for either model (Yang, 1996).

We start by considering the most general partition model, EUL. Given a species tree T, we first obtain the

corresponding induced partition trees. Under the EUL model, the edge lengths of the partition trees are

optimized separately. The edge lengths of T are then computed from the corresponding edges lengths

inferred on the partition trees, for example, as mean edge length.

Therefore, if the topological rearrangement on T does not change the topology of a partition tree TjY, no

edge length optimization is necessary and, as a result, the optimal partition tree likelihood remains un-

changed after such a topological rearrangement on T. Let TNEW be a tree obtained from T by some

topological rearrangement.

Under EUL partition model there is no need to optimize the edge lengths of partitioned trees shared

between T and TNEW. As a result, the log-likelihood of the corresponding partition trees is the same.

In contrast to the EUL model, the edges between T and partition trees are linked in the EL model. That

means that there is only one set of edge lengths for T and partition trees with the possibility of rescaling

edge lengths of each partition tree by a partition-specific evolutionary rate. Therefore, the optimization of

edge lengths is done on the species tree. Even if a topological rearrangement on T does not change the

topology of partition tree, it still affects the optimal partition tree likelihood via optimization of edge

lengths. This is also the reason why full terraces cannot occur under the EL model (Sanderson et al., 2015).

Theoretically, one would need to optimize each edge on the species tree, which would definitely influence

the partition tree edge lengths and also the likelihood. But in practice, to save computations, one only

optimizes those edges in the vicinity of topological changes (Stamatakis et al., 2005; Guindon et al., 2010;

Nguyen et al., 2015). For example, for an NNI, one reoptimizes only five edge lengths (e, e1, e2, e3, e4)

around the swap. Under the EL model, such a particular feature of practical optimization can take an

advantage when considering the induced partition trees.

Given a partition tree with taxon set Y and an edge e on T with the corresponding split AjB, if A X Y = ;
or B X Y = ; then the optimization of e does not affect the likelihood of TjY.

Table 3. Mean Percentage of Trees from NNI Neighborhood of Intermediate

Trees Falling into Corresponding Partial Terrace Bin

No PT

(%)

PT1

(%)

PT2

(%)

PT3

(%)

PT4

(%)

PT5

(%)

PT6

(%)

PT7

(%)

PT8

(%)

PT9

(%)

PT10

(%)

Full terrace

(%)

DNA1 7.14 12.97 4.85 1.80 3.55 32.59 37.11 0 0 0 0 0

DNA2 0 0 0.02 0.63 1.82 5.07 11.31 8.69 18.19 10.77 41.75 1.75

DNA3 0 2.75 5.38 9.22 10.06 6.32 4.34 1.33 0.23 6.38 50.36 3.63

DNA4 0.35 0.26 1.88 4.06 5.20 6.56 8.77 11.34 16.48 23.37 17.68 4.05

AA1 12.11 10.64 7.47 8.10 6.35 15.42 11.28 8.20 10.50 7.18 2.76 0

AA2 8.73 11.90 6.77 9.10 11.22 9.08 16.27 10.95 11.63 2.92 1.44 0

AA3 12.25 11.62 4.07 7.15 3.04 15.47 15.43 10.40 7.55 7.92 4.85 0.26

CONSEQUENCES OF NNI, SPR, AND TBR FOR PARTITION TREES 1139



FIG. 7. NNI neighborhood analysis for alignments DNA1 (top), DNA2 (middle), and DNA3 (bottom).
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In this case, a split AjB does not have a corresponding split in S(TjY), and therefore edge e is not linked

to any edge on TjY. This observation can be exploited to save computing time.

6. DISCUSSION

We have shown that it is advantageous to identify and account for full and partial terraces during the tree

search in phylogenomics. One main advantage is the saving of computation time. If two trees belong to the

same full or partial terrace, then one needs to compute the objective function for the identical partition trees

only once. The values of objective function will be the same for these partition trees. The larger the number

of identical partition trees between species trees, the more computation time can be saved.

From the conditions discussed in the previous sections, the topological rearrangement that benefits the most from

partial terraces is obviously NNI. It is intuitive that NNI applied to the species tree will not change the topology of

partition trees more often than SPR or TBR. However, in tree searches one typically applies short SPR (e.g.,

RAxML); that is, the number of edges between the pruning and the regrafting edges are much smaller than the

number of taxa. The same is true for TBR. And since one also expects short SPR and short TBR to result in no change

of partition trees quite often for sparse supermatrices, partial terraces are also beneficial for these rearrangements.

Moreover, the use of induced partition trees has another advantage that long SPR or TBR on a species

tree T, as a result of missing data, might correspond to a much shorter SPR or TBR on TjY. This leads to

computation saving even if SPR or TBR changes the topology of the induced partition trees.

Here, we elucidated the frequent existence of partial terraces in practice via NNI neighborhoods, showing

that partial terraces are not only a theoretical concept, but also have practical implications in phylogenomics.

The predicted timesaving for the examined real alignments is only the rough estimate, since we treated the

alignment lengths per partition as equal. If the length of alignment corresponding to the shared partition trees

is relatively large compared to the whole supermatrix, then one expects even more speed up.

Another important factor for timesaving is the actual implementation of search strategies in the particular

software. We plan to implement efficient techniques to take full advantage of partial and full terraces in IQ-

TREE. A more thorough analysis of such techniques will be presented elsewhere.
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