
RESEARCH ARTICLE

Energy efficient partition allocation in mixed-

criticality systems

Ana GuasqueID
1☯*, Patricia Balbastre1☯, Alfons Crespo1‡, Salva Peiró2‡

1 Institut d’Automàtica i Informàtica Industrial. Universitat Politècnica de València, Valencia, Spain, 2 Fent

Innovative Software Solutions S.L., Valencia, Spain

☯ These authors contributed equally to this work.

‡ These authors also contributed equally to this work.

* anguaor@ai2.upv.es

Abstract

This paper addresses the problem of energy management of mixed criticality applications in

a multi-core partitioned architecture. Instead of focusing on new scheduling algorithms to

adjust frequency in order to save energy, we propose a partition to CPU allocation that takes

into account not only the different frequencies at which the CPU can operate but the level of

criticality of the partitions. The goal is to provide a set of pre-calculated allocations, called

profiles, so at run time the system can switch to different modes depending on the battery

level. These profiles achieve different levels of energy saving and performance applying dif-

ferent strategies. We also present a comparison in terms of energy saving of the most used

bin-packing algorithms for partition allocation. As this is an heuristic, it is not possible to

ensure that our results involve the minimum energy consumption. For this reason, we also

provide a comparison with a exact method, such as constraint programming.

Introduction

In real-time systems, there is an increasingly important trend for using applications with dif-

ferent levels of criticality where multiple components with different dependability and real-

time constraints are integrated into a shared computing platform [1]. The reasons behind the

trend for mixed-criticality are mainly non-functional: it reduces costs, volume, weight and

power consumption, and can be found in a multitude of different domains such as industrial

control, airborne, automotive systems and space avionics, only to cite the most notable ones.

At the same time mixed-criticality systems (MCS) are proliferating, computing platforms

are migrating from single cores to multi-core architectures [2, 3]. It is estimated that multi-

cores will be used in about 50% industrial applications by 2017. Multi-cores open new oppor-

tunities to develop robust mixed-criticality systems at competitive price but, on the other

hand, scheduling in multi-core systems is significantly more complex than in a mono-core sys-

tem. The theory that exists about this field, demonstrates that the problem of scheduling real-

time tasks on a multi-core processor is NP-Hard [4], but apart from increasing the complexity,

it also brings up new possibilities for the embedded applications.

PLOS ONE | https://doi.org/10.1371/journal.pone.0213333 March 18, 2019 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Guasque A, Balbastre P, Crespo A, Peiró

S (2019) Energy efficient partition allocation in

mixed-criticality systems. PLoS ONE 14(3):

e0213333. https://doi.org/10.1371/journal.

pone.0213333

Editor: Rashid Mehmood, King Abdulaziz

University, SAUDI ARABIA

Received: July 11, 2017

Accepted: February 12, 2019

Published: March 18, 2019

Copyright: © 2019 Guasque et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

available from figshare at 10.6084/m9.figshare.

7791284.

Funding: This work was supported by Ministerio

de Economia, Industria y Competitividad, Gobierno

de Espana (ES), Award Number TIN2014-56158-

C4-1-P, Grant Recipient Alfons Crespo (AC) and

Patricia Balbastre (PB); H2020 LEIT Information

and Communication Technologies, Award Number

687902, Grant Recipient Fent Innovative Software

Solutions, FentISS Salva Peiró (SP), URL http://

safepower-project.eu/. The author Salva Peiró (SP)

http://orcid.org/0000-0002-2900-8466
https://doi.org/10.1371/journal.pone.0213333
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213333&domain=pdf&date_stamp=2019-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213333&domain=pdf&date_stamp=2019-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213333&domain=pdf&date_stamp=2019-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213333&domain=pdf&date_stamp=2019-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213333&domain=pdf&date_stamp=2019-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213333&domain=pdf&date_stamp=2019-03-18
https://doi.org/10.1371/journal.pone.0213333
https://doi.org/10.1371/journal.pone.0213333
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.7791284
https://doi.org/10.6084/m9.figshare.7791284
http://safepower-project.eu/
http://safepower-project.eu/

Benefits of real-time scheduling and schedulability analysis for multi-core systems involve

providing guarantees for temporal feasibility of tasks execution in advance. Schedulability

analysis checks the time constraints of system tasks, provides a proper schedule, and signifi-

cantly increases the efficiency of design and implementation of real-time systems [5].

In many domains such as avionics, space or industrial control systems, hard real-time con-

straints, safety and security issues and certification assurance levels are commonly required.

Integrated Modular Avionics (IMA) [6] was an architectural proposal emerged as a design

concept to integrate in a hardware platform several applications with different levels of critical-

ity. IMA approach proposes to encapsulate functions into partitions configuring a partitioned

system. Partitioned architectures isolate software components into independent partitions

whose execution shall not interfere with other partitions, preserving temporal and spatial isola-

tion. A spatial isolation protects the memory of a partition. Partitions are allocated in indepen-

dent physical memory addresses. Thus, a partition can only access its memory areas. Temporal

isolation means that only one application at a time has access to the system resources, making

it impossible for an application to run when another application is running. In order to sim-

plify the problem of shared resources among cores, we assume that the interference between

cores is treated, in terms of time, as a part of the worst case execution time (wcet) of each task.

From a software architecture point of view, there is a trend in using virtualization tech-

niques to provide a partitioning architecture under the temporal and spatial isolation. This

approach was initiated in the avionics sector [7] and extended to space [8] and automotive [9].

Virtualization support for partitioning is provided by hypervisors. Hypervisors are layers of

software that exploit the features of the hardware platform to establish independent execution

environments, so that mixed-critical applications on a multi-core platform can be certified

separately. Using hypervisors does not only include independence in terms of time and space,

but also in terms of power consumption. Available energy for a multi-core system has to be

shared by all running applications (i.e. increased power consumption of one application may

reduce the available energy for other applications).

Energy management is also a very active research area in the recent years. Many approaches

have been proposed to minimize energy consumption under the constraint that all tasks meet

their deadlines. Most of the efforts have focused on new on-line scheduling algorithms which

find an appropriate trade-off between the total utilization of the CPU and the energy con-

sumption while meeting all deadlines. Two widely used techniques for reducing energy con-

sumption are Dynamic Voltage and Frequency Scaling (DVFS) and Dynamic Power

Management (DPM) [10]. For partitioned systems, these techniques can be used in their off-

line versions and reclaiming the static slack. The reason is that in a partitioned system, the

scheduling plan is computed offline as defined in ARINC-653 [11]. Moreover, task migrations

are not allowed because of the hardware state pollution caused and the consequent additional

execution time overheads introduced [12, 13].

To generate a schedule plan in a multi-core partitioned system, the following steps are

defined:

1. Allocation of workload to cores.

2. For each core, perform the schedule generation.

Energy management techniques have focused on Step 2, reclaiming the unused slack for

scaling speed to save energy. Very few articles have addressed energy management in MCS,

but almost none have studied the influence of the allocation algorithm in the energy consump-

tion of the resulting schedule. That is why we are going to focus on Step 1. It is key to further

consider the impact of task mapping on energy minimization.

Energy in mixed-criticality systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0213333 March 18, 2019 2 / 22

is employed by Fent Innovative Software Solutions,

FentISS. Fent Innovative Software Solutions

provided support in the form of salary for author

SP, but did not have any additional role in the study

design, data collection and analysis, decision to

publish, or preparation of the manuscript. The

specific role of this author is articulated in the

‘author contributions’ section. This work was also

supported by FP7 Information and Communication

Technologies, Award Number 610640, Grant

Recipient Alfons Crespo (AC), URL http://www.

dreams-project.eu/. No other individuals employed

or contracted by the funders (other than the named

authors) played any role in study design, data

collection and analysis, decision to publish or

preparation of the manuscript.

Competing interests: We have the following

interests: The author Salva Peiró (SP) is employed

by Fent Innovative Software Solutions, Fent ISS.

There are no patents, products in development or

marketed products to declare. This does not alter

our adherence to all the PLOS ONE policies on

sharing data and materials.

https://doi.org/10.1371/journal.pone.0213333
http://www.dreams-project.eu/
http://www.dreams-project.eu/

Exacts methods, as linear programming solutions, are commonly used in order to solve a

minimization problem. This implies that the approach presented in this paper does not offer

the maximum energy savings by comparison with exact methods but we get faster execution

time. In this paper, we also provide a comparison between our heuristic and a constraint pro-

gramming solution, in terms of energy savings and execution time of both solvers.

Contributions

This paper addresses the problem of energy management of mixed criticality applications in a

multi-core partitioned architecture from the point of view of the allocation of workload to

cores. We propose an allocation technique based on well-known bin packing algorithms that

takes into account the different frequencies at which a core can operate.

Firstly, we will develop the technique for generic real-time systems (no MCS) and then we

will add the consideration of MCS.

Some multicore systems can support an independent local clock per core. In this situation,

n partitions can be running at different frequencies in different n cores simultaneously. Like-

wise, within a core, two or more partitions can run at different frequencies. But, once the fre-

quency of a partition has been selected, it will remain constant during all system execution.

The reason is that our study selects frequencies per partition in a static way, to give to the sys-

tem (hypervisor or a supervisor partition) the information of partitions and frequencies.

Changing frequencies in a core produces overheads to take account into the study. To simplify

the problem, we do not consider this added cost in this paper but it is clear that we will treat it

in the future work. Moreover, shared resources and communication channels between parti-

tions must be also considered but, again for clarity purposes, have been avoided.

The goal of this paper is to provide a set of plans with different consumptions and perfor-

mances, depending on how low-level criticality load is treated. Then, at runtime, the system

will decide which plan to execute depending on, for example, the battery level.

The comparison with a exact method is also presented in this paper. We easily deduce that

our method is not as exact in terms of energy savings but the time used to find the solution is

even more drastically reduced.

Related work

As part of the recent energy management research, several papers proposed DVFS-based solu-

tions for real-time embedded systems running on conventional multi-processor platforms.

Recently, [14] presented a survey of energy management techniques for embedded systems,

while Bambagini et al. [10] presented a survey focused on hard real-time systems.

Regarding energy management in multiprocessors, Xu et al. [15] proposed a heuristic to

find the allocation of parallel tasks that minimizes energy the consumption. This work is simi-

lar to our proposal in the sense that is focused in the allocation of tasks to processors rather

than in the online scheduling. However, their work applies to parallel tasks running on identi-

cal processors and it do not consider MCS. Devadas and Aydin [16] presented a system-level

energy management of a set of processing cores that share the same supply voltage and fre-

quency (voltage island).

Energy management in mixed-criticality multiprocessor real-time systems has been intro-

duced in very few papers. The first paper that considers energy as important as schedulability

in MCS is [17]. In this paper, the authors claim that energy is as important as time in mixed-

criticality systems and they demonstrate how an incorrect handling of energy can violate

mixed-criticality guarantees. They also propose an energy-aware mixed-criticality scheduler.

In [18] a monitoring and control mechanism based on event-driven power estimation to

Energy in mixed-criticality systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0213333 March 18, 2019 3 / 22

https://doi.org/10.1371/journal.pone.0213333

isolate dynamic power consumption of mixed-critical applications running on a many-core

platform is presented. In [19] the authors propose a scheduling algorithm that handles tasks

with high-criticality levels such that no deadline is missed. For tasks with low-criticality levels,

it finds an appropriate trade-off between the number of missed deadlines and their energy

consumption. In [20] a DVFS technique is proposed for MCS together with an energy-aware

task allocation on identical multi-core processor.

One work that focuses on energy efficient allocation in MCS is presented by Awan et al. in

[21]. They present an approach to generate a set of feasible allocations and select the one with

the lowest energy consumption. They assume the Vestal model for MCS. They also do not take

into account the different frequencies of the cores in the allocation algorithm.

In [20], authors propose an energy saving method for MCS on multicore based on the isola-

tion of tasks depending on their criticality levels on different cores. In our study, we have con-

sider the mix of workloads from different criticality levels in different cores.

Seeing the publication dates of the articles, it is clear that it is a topic of interest where there

are many open issues to solve.

Methods

Model

Task model. We consider a set of m heterogeneous cores M1‥Mm. Each core can execute

with any g frequencies independently, within the range [f1, fg], being fg the highest frequency of

each core. As cores are heterogeneous, each of them works in a different range of frequencies.

However, for simplicity and to be able to adapt our model to the Safepower project [22], we

suppose that all cores work in the same range of frequencies. As bin-packing algorithms are

not influenced by system frequencies, this simplification does not affect to rest of the paper.

Each core is assigned a set of p critical partitions P1‥Pp that are defined by the pair Pi = (τ,

L), where τ is the set of tasks and L is the criticality level of the partition.

We define two criticality levels per partition [22]: HI (high) and LO (low). All tasks that

belong to the same partition have the same criticality level. HI partitions have to be executed to

completion in any condition and temporal constraints of their tasks have to be fulfilled. LO

partitions can be executed in some conditions. No temporal constraints are identified but it is

expected a bandwidth for them. If, in some cases, they can be dropped, we call them disposable

LO partitions (DLO). If they have to be executed in any case they are called required LO parti-

tions (RLO). But, even if these partitions cannot be dropped, their bandwidth can be reduced

if needed (for energy saving purposes). Dropping and other operations will be introduced

later.

Each partition Pi is composed of ni tasks ti ¼ ðti1::tiniÞ. Each task τij is characterized

depending on its criticality:

• HI tasks are defined as τij = (Cij, Dij, Tij) where Tij is the period, Dij is the deadline and it is

supposed to be equal to Tij and Cij is the active worst case execution time. Active worst case

execution time of a task depends on the running processor frequency. Thus, computation

time of each task is denoted as an array ½Cf1
ij ; ::;C

fg
ij � in which Cfi

ij is the worst case execution

time (wcet) estimated at frequency fi. There is no need that all tasks spend their worst case

time in all executions. Thus, we consider the most critical value (wcet) to do the analysis and

it will ensure that any other value will be supported by our study.

The utilization of a task τij running at frequency fi is Ufi
ij ¼

Cfiij
Tij

.

Energy in mixed-criticality systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0213333 March 18, 2019 4 / 22

https://doi.org/10.1371/journal.pone.0213333

• LO tasks τij are characterized by their bandwidth Zij ¼
Bfiij
Tij

, where Bfi
ij is the budget or worst

case execution time at frequency fi and Tij is the period of a task τij. The utilization Ufi
ij of a

task τij running at frequency fi is ηij.

We may assume without loss of generality that all preemptions occur at integer time values.

We then assume, for the remainder of the article, that all parameters are indeed integers.

Denote that the internal partition context switch in taken into account in the task computa-

tion. Moreover, core migration of a partition or a task is not allowed.

Utilization of a partition running at frequency fi is given by Ufi
i ¼

Pni
j¼1

Ufi
ij being Ufi

ij defined

previously.

Regarding to the distribution of tasks and partitions to cores, methods presented in this

paper solve both situations:

• All tasks belonging to the same partition are assigned to the same core. In this situation, the

unit which is allocated to cores is the partition.

• Tasks of the same partition are assigned to different cores. In this situation, the unit which is

allocated to cores is the task.

Henceforth we will assume that all tasks in a partition are assigned to the same core. The

reason is to avoid overheads. Thus, partitions will be allocated to cores and the total core utili-

zation UCi
is defined as the sum of all utilizations of partitions assigned to that core Ci.

Note that, from the criticality point of view, our model is simpler than Vestal’s model [23]

in the sense that we assume the longest execution time observed in testing as a unique WCET

estimate for each frequency. The reason is to avoid having a computation times matrix (two

dimensions for frequency and criticality level). Vestal’s model also use the same term “critical-

ity” to refer both to the criticality of a task and the mode of operation [24]. We consider that

the system has different operational modes each one associated a static schedule. In Vestal’s

model, two different operational modes will differ only in the computation times. In our

model (based on ARINC-653 Part 2), each operational mode can have associated a different

set of tasks.

Power model. Power consumption is divided in dynamic consumption and static con-

sumption. The former depends on the activity of the processor while the latter is mainly due to

leakage current and can only be reduced by activating a low-power state. We will assume the

power model from [20]:

Pðf Þ ¼ Ps þ bf a

where P(f) is the total power consumption at operating frequency f, Ps is the static power

consumption and βfα is the dynamic power consumption. A common assumption is that 2�

α� 3.

Energy efficient partition allocation in non MCS

In next sections, we are going to present our solution to the mixed-criticality energy minimiza-

tion problem (from the allocation point of view). This solution is based on the utilization of an

allocation heuristic. Allocation to cores can be solved using a bin-packing algorithm. The

approach requires to define objects (partition utilizations Ui), which can then be packed on to

the bins (cores).

Among all these heuristics, Worst Fit Decreasing Utilization (WFDU) is known to obtain a

well-balanced load among cores. In [25] it is demonstrated that this balance-load also

Energy in mixed-criticality systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0213333 March 18, 2019 5 / 22

https://doi.org/10.1371/journal.pone.0213333

minimizes energy consumption. But this statement is done for systems with applications run-

ning at the same frequency.

Motivational example. This example is taken from [25] adapted for our partition model.

Consider four partitions with U1 = 0.5, U2 = 0.4, U3 = 0.4 and U4 = 0.3 running on m = 2 het-

erogeneous processors. By [25] we know that the allocation that minimizes energy is UC1
¼

U1 þ U4 ¼ 0:8 and UC2
¼ U2 þ U3 ¼ 0:8 since it is the most balanced one. But this is consid-

ering that all partitions run at the same frequency. Following the model defined before, with

g = 2 frequencies (f1, f2) then each partitions will have 2 possible utilizations. The values are

shown in Table 1. Now, allocators can choose one of the two utilizations for each partition. But

which one of all possible combinations results in the most energy efficient?.

In this section an energy efficient partition allocation is presented in which each partition

can run at a different frequency. This frequency will not change throughout the system execu-

tion. Making an analogy with priorities, DVFS will treat frequencies as dynamic priorities

while our method considers frequencies as static priorities. However, our method does not

prevent any further dynamic slack reclaiming. Our proposal is not optimal, since computing

the allocation that minimizes overall energy consumption is intractable.

Algorithm 1 shows the EEA (Energy Efficient Allocator) algorithm to allocate partitions to

cores.

Algorithm 1: Allocation for energy management
Data: Allocator, sorting
Result: mapping
1 Function EEA (Allocator, sorting)
2 k ! 0;
3 mapping core workload;
4 Set all partition frequencies to the maximum frequency;
5 Loop
6 mapping(k) = Allocate (Allocator);
7 if feasible then
8 k ! k+1;
9 Pi = selectPartition(sorting);
10 if Pi = −1 then
11 exit;
12 end
13 decreaseFrequency(Pi);
14 else
15 increaseFrequency(Pi);
16 exit;
17 end

Algorithm 2: Partition selection
Data: sorting
Result: Allocated partition or not
1 Function selectPartition (sorting)
2 sort partitions according to sorting criteria to create an array

of heaps Ulist;

Table 1. Utilizations.

Uf 1
i Uf 2

i

P1 0.7 0.5

P2 0.56 0.4

P3 0.56 0.4

P4 0.42 0.3

https://doi.org/10.1371/journal.pone.0213333.t001

Energy in mixed-criticality systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0213333 March 18, 2019 6 / 22

https://doi.org/10.1371/journal.pone.0213333.t001
https://doi.org/10.1371/journal.pone.0213333

3 for i = g; i > 2; i = i + 1 do
4 p = Head(UList(i));
5 if p! = null then
6 return p;
7 end
8 end
9 return -1;

In this algorithm we can choose the type of allocator and the criterion with which the parti-

tions are selected to decrease its frequency. As allocators we have considered WFDU, FFDU

and BFDU (the same ones that have been compared in [25]). As sorting criteria, partitions can

be chosen by decreasing utilization (DU), increasing utilization (IU) or randomly (R). This

way we can make a comparison between these allocations algorithms and know which of them

is better for energy management purposes.

The algorithm starts assigning the highest frequency to all partitions. The allocation of this

partition set (k = 0) is called the original mapping that is also the mapping with the most

energy consumption. Then, a partition is selected (following the criteria DU, IU or R) to

decrease its frequency to fg−1 and an allocation is again performed (k = 1). The algorithm runs

sequentially decreasing partition frequencies until we reach a non-feasible mapping or all the

partitions have reached the minimum frequency. We consider a feasible mapping if the utiliza-

tion of each core is below 1 [26].

The frequency decrease works as follows (Algorithm 1): for each frequency f there is a heap

of partitions that have assigned this frequency sorted according to the sorting criteria. The par-

tition to decrease its frequency is chosen from the head of the list of the highest frequency. If

the only non-empty heap is the one with frequency equal to f1 the function selectPartition
returns -1 and the algorithm stops since all partitions have reached their lowest frequency.

The result of this algorithm is a mapping with the minimum consumption before the sys-

tem becomes unfeasible. In addition, each iteration of the loop gets a mapping with less con-

sumption than the previous one. So, we can compare bin-packing algorithms by energy

consumption of the last mapping and parameter k that is the number of mappings obtained by

the algorithm.

Example. Back to the motivational example of this section, Fig 1 shows the iterations of

the EEA algorithm. We have run WFDU2, that is, partitions have been allocated following

WFDU and the partition selection criteria is by decreasing utilization. Fig 1A corresponds to

the original mapping, in which all partitions run at the maximum frequency f2. In the first iter-

ation, P1 is selected to decrease its frequency, so we change its utilization from Uf 2
1 ¼ 0:5 to

Uf 1
1 ¼ 0:7. The result is shown in Fig 1B. In the next iteration (k = 2), P2 is selected to decrease

its frequency resulting in Fig 1C. The algorithm stops because the next mapping will cause

UC2
> 1.

Fig 1. EEA mappings.

https://doi.org/10.1371/journal.pone.0213333.g001

Energy in mixed-criticality systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0213333 March 18, 2019 7 / 22

https://doi.org/10.1371/journal.pone.0213333.g001
https://doi.org/10.1371/journal.pone.0213333

For the calculation of the energy consumption, we assume α = 3, β = 1 and Ps = 0.8W [20].

The processor frequencies are [f1, f2] = [0.8, 1.1]GHz. The energy consumption for an hyper-

period H is calculated as E = P(f)H. The results are shown in Table 2. As we see, increasing the

total utilization of the cores by decreasing the frequencies at which partitions run results in an

energy saving with respect to the original mapping up to a 8% in this simple example.

Partition allocation in MCS

Once the energy efficient allocation method has been presented, in this section we are going to

complete the proposal with the inclusion of mixed-criticality systems.

In the previous section all partitions have the same criticality level, but when partitions

have different levels of criticality, we can follow the next strategies to save energy:

• Trim the bandwidth of RLO partitions. RLO partitions cannot be dropped but their band-

width can be reduced. We propose the reduction in the following way:

For a RLO partition Pi with Uf1
i ; ;U

fg
i , it is trimmed when it executes at the lowest frequency

f1 but with the utilization of the highest frequency fg. In practice, this is possible due to the

utilization of a static cyclic scheduler in which we can force the duration of the slots. This

way we can assign Cfg
ij units of time but running at frequency f1.

Let’s assume that for a time window of length the hyperperiod H, the units of time that a par-

tition Pi executes under frequency f1 is:

H
Cf1
i

Ti
¼ HUf1

i ð1Þ

When a partition is trimmed, it executes

H
Cfg
i

Ti
¼ HUfg

i ð2Þ

Therefore, there is a performance loss of:

1 �
Ufg

i

Uf1
i

¼ 1 �
Xj¼ni

j¼1

Cfg
ij

Cf1
ij

ð3Þ

• Trim the bandwidth of DLO partitions. This is done in the same way as for RLO partitions.

The performance loss will follow the same equation.

• Drop DLO partitions. As stated in previous sections, these partitions can be dropped if

needed. In this case, the performance loss of this partition is 1.

To summarize, dropping a partition means not running it, while trimming is an intermedi-

ate solution between executing completely the partition and not executing it at all. A trimmed

Table 2. Energy consumptions of the mappings of the example.

M1 M2 Total

Mapping a) 170.48 170.48 340.96

Mapping b) 155.77 170.48 326.25

Mapping c) 155.77 158.71 314.48

https://doi.org/10.1371/journal.pone.0213333.t002

Energy in mixed-criticality systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0213333 March 18, 2019 8 / 22

https://doi.org/10.1371/journal.pone.0213333.t002
https://doi.org/10.1371/journal.pone.0213333

partition executes at its higher frequency but with the lowest WCET. It is indicated for parti-

tions whose activities are “best effort”, that is, partitions with soft timing constrains, as they are

a LOW criticality partition.

Depending on how we combine these strategies, we will obtain different mappings with dif-

ferent grades of energy consumption and performance. The idea is to trim and/or to drop

RLO/DLO partitions and execute EEA algorithm, that will use the free utilization of DLO and/

or RLO partitions to decrease frequencies as much as possible. Then, we are going to define

the profiles, taking into account that each profile is a consequence of the previous profile, i.e.,

adds changes to the previous actions. We propose the following profiles:

• Profile 1: Maximum energy saving without performance loss. In this case, we do not allow to

drop any DLO partition neither trimming RLO partitions. Therefore, this is equivalent to

treat all RLO and HI partitions as HI partitions and the EEA algorithm is executed as

explained before.

• Profile 2: This profile will only allow trimming DLO partitions.

• Profile 3: This profile will allow trimming RLO partitions.

• Profile 4: In this profile we drop all DLO partitions.

• Profile 5: In this profile we execute the EEA algorithm in HI partitions as much as possible.

It is clear that as long as the number of the profile increases, the energy saving and the perfor-

mance loss also increases.

This profiles are different mappings in which each partition will run at a specific frequency.

Then, each profile will derive into a static scheduling plan stored in the configuration file of the

hypervisor. This way, each operational mode instead of having one scheduling plan associated,

now it will have 5 scheduling plans. At runtime, a supervisor partition will be in charge of change

the profile depending on the energy state of the system. This change always occurs when the

major activation frame (MAF) is completed. This ensures that all tasks complete their execution

before changing the operational mode. An example of the advantage of changing plans is to link

them to the battery level. Profile 1 will operate when battery level is between 100-81%, Profile 2

with 80%-61%, Profile 3 with 60%-41%, Profile 4 with 40%-21% and Profile 5 with 20%-1%.

Example. Using the same example as before, now we will assume that P1 and P2 are HI

partitions, while P3 is RLO and P4 is a DLO partition. Profile 1 is equivalent to the mapping

obtained in Fig 1C.

From this starting point, we can derive the rest of the profiles:

• Profile 2: In this profile, the utilization of P4 for f1 is trimmed from 0.42 to 0.3.

• Profile 3: In this profile, the utilization of P4 for f1 is trimmed from 0.42 to 0.3 and the utiliza-

tion of P3 for f1 is trimmed from 0.56 to 0.4.

• Profile 4: This profile does not contain P4.

• Profile 5: In this profile, P4 does not exist and the utilization of P3 for f1 is trimmed from 0.56

to 0.4.

Figs 2, 3, 4 and 5 show the resulting mappings of the previous profiles. In Profiles 4 and 5,

dropping partition P5 does not achieve any benefit because the extra “space” cannot be used to

allocate any more partition in M1. The different energy consumptions are presented in

Table 3. We can see how this time, the energy saving is more important at the expense of losing

performance.

Energy in mixed-criticality systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0213333 March 18, 2019 9 / 22

https://doi.org/10.1371/journal.pone.0213333

This performance loss is 0.25 for P4 trimming, 1 for P4 dropping. Regarding P3, perfor-

mance loss is 0.28.

Results

We developed a simulator to implement the proposed algorithms and a synthetic task and par-

tition generator.

A number of tests have been run, specifically 105 synthetic partition sets have been gener-

ated for m = 4 and total utilizations varying from 2.5 to 4 in steps of 0.1, resulting in 1500000

total simulations.

Each core utilization depends on the criticality level of the core, being the most critical

cores those with highest utilization. The sum of all utilizations of cores is equal to the utiliza-

tion of the system, defined by the user, with a maximum value of m.

The number of partitions for each criticality level is calculated as follows:

• HI level: a random value within the interval [4, 8].

• LO level (RLO): a random value within the interval [3, 6].

• LO level (DLO): a random value within the interval [3, 8].

Partitions utilizations were generated using the UUniFast algorithm [27] that gets an unbiased

distribution of utilizations.

Regarding to tasks, the number of tasks per partition is calculated as follows:

Fig 2. Mapping for Profile 2.

https://doi.org/10.1371/journal.pone.0213333.g002

Energy in mixed-criticality systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0213333 March 18, 2019 10 / 22

https://doi.org/10.1371/journal.pone.0213333.g002
https://doi.org/10.1371/journal.pone.0213333

• HI partitions: a random value within [2, 8] tasks per partition.

• LO level partitions (RLO): one task per partition.

• LO level partitions (DLO): one task per partition.

Tasks utilizations were also generated using the UUniFast algorithm [27]. Tasks parameters

are calculated for the greatest frequency, fg. Once task utilization has been deduced, period is

selected randomly in such a way that the hyperperiod of tasks is not a very big value. Then, the

computation time of τij at a frequency fg is calculated as Cfg
ij ¼ Ufg

ij � Tij.

Computation time Cfi
ij of a task τij increases by reducing its frequency fi, i.e. the higher the

frequency, the shorter the computing time. To simplify the problem, we suppose that this rela-

tion is linear. In particular, in the first step, computation times of tasks are generated with the

greatest frequency. Consequently, to complete the array of values of wcet, we use the values of

available system frequencies as follows:

Definition 1 Let us denote as fp the value from which frequencies are greater or equal to 1
within the range [f1, . . ., fp, . . ., fg]. Then:

Cfm� 1
ij ¼

Cfm
ij

fm
if 0 � m � p

Cfm
ij � fm if pþ 1 � m � g

8
>><

>>:

ð4Þ

Fig 3. Mapping for Profile 3.

https://doi.org/10.1371/journal.pone.0213333.g003

Energy in mixed-criticality systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0213333 March 18, 2019 11 / 22

https://doi.org/10.1371/journal.pone.0213333.g003
https://doi.org/10.1371/journal.pone.0213333

All these parameters are saved in an array and used for frequency changes in tasks. It is

clear that linear relation is a simplification of the problem. If this relation is not known, the

user will provide the array of computation times to make the work succeeds.

When everything is ready, we start the simulator to calculate different mappings with differ-

ent grades of energy and performance, as was explained before.

As we mentioned in initial sections, there are some differences between choosing as alloca-

tion unit a task or a partition.

We have conducted the same experiments for 8 cores. In this case, the number of partitions

have been multiplied by 2. Other experiments consist on using 2 cores. In both cases, similar

results have been obtained as for 4 cores.

Comparison of allocation methods in non MCS

In this section a comparison between the different allocators and partition selection is done.

We measure two parameters:

• Energy saving: This is the saving of the final mapping with respect to the original mapping,

that is, the mapping at which all partitions run at the highest frequency (iteration k = 0).

• Number of feasible mappings. This corresponds to the iterator k of Algorithm 1.

Figs 6A, 7A and 8A show the results for 4 cores. In this pictures, the relation between energy

saving and utilization factor (from 240% to 400% in the case of 4 cores) is depicted. As utiliza-

tion factor increases, it is observed that energy saving is reduced. When cores are almost full

Fig 4. Mapping for Profile 4.

https://doi.org/10.1371/journal.pone.0213333.g004

Energy in mixed-criticality systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0213333 March 18, 2019 12 / 22

https://doi.org/10.1371/journal.pone.0213333.g004
https://doi.org/10.1371/journal.pone.0213333

(utilization 380-400%), reducing frequency (i.e. increasing computation times) will make the

system infeasible. For this reason, the scope of energy saving is short.

As it is seen in the figures, the three base bin packing algorithms present very similar results.

This is not a surprise, since we are measuring the energy of the final mapping, which corre-

sponds to a situation in which all the cores will be at full capacity. Moreover, there is also no

difference in the partition selection criteria as far as energy saving is concerned.

However, the number of mappings is depicted in Figs 6B, 7B and 8B. It seems that WFDU

is the algorithm that needs more iterations to reach the optimal solution and R is the worst

partition selection criteria, due to the randomness of its results. It is clear that the more utiliza-

tion factor, the less iterations are possible to perform.

Fig 5. Mapping for Profile 5.

https://doi.org/10.1371/journal.pone.0213333.g005

Table 3. Energy consumptions of the different profiles.

M1 M2 Total

Profile 2 131.2 158.71 289.91

Profile 3 131.2 104.96 236.16

Profile 4 91.84 158.71 250.55

Profile 5 91.84 104.96 196.8

https://doi.org/10.1371/journal.pone.0213333.t003

Energy in mixed-criticality systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0213333 March 18, 2019 13 / 22

https://doi.org/10.1371/journal.pone.0213333.g005
https://doi.org/10.1371/journal.pone.0213333.t003
https://doi.org/10.1371/journal.pone.0213333

To avoid adding all the results in this paper, we show in Fig 9 the reason to select FFDU2 as

allocator. Although we know that different allocators provide very similar results, FFDU2 allo-

cator provides slightly better outcomes.

Fig 10 depicts, as in previous figures, the relation between energy saving and utilization fac-

tor but, in this case, experiments have been developed in 2 (Fig 10A) and 8 cores (Fig 10B). It

is demonstrated again that energy saving decreases with utilization factor, being almost zero

when cores are getting full.

As different allocators provide similar results, let us complement the results section with a

comparison between an exact method (constraint programming solutions, CP) and our heu-

ristic. In almost all situations CP provides the same solution as our heuristic. But, in some sce-

narios, CP provides better energy savings than our algorithm. However, in terms of time

consumptions, our algorithm offers much better results.

Fig 11 depicts the average time used by the CPU in executing 50 iterations of the EEA algo-

rithm. Each iteration consists of allocating a number between 10 and 20 partitions in 4 differ-

ent cores, in order to minimize the energy consumption. The time measured in CP simulator

Fig 6. DU. A: Energy saving. B: Number of mappings.

https://doi.org/10.1371/journal.pone.0213333.g006

Fig 7. IU. A: Energy saving. B: Number of mappings.

https://doi.org/10.1371/journal.pone.0213333.g007

Energy in mixed-criticality systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0213333 March 18, 2019 14 / 22

https://doi.org/10.1371/journal.pone.0213333.g006
https://doi.org/10.1371/journal.pone.0213333.g007
https://doi.org/10.1371/journal.pone.0213333

is directly provided by the solver. The time in heuristic algorithm is calculated measuring the

number of instructions and the frequency of the CPU. WE can obverse that the more the sys-

tem utilization is, the less time the algorithm needs to reduce the system frequency (increasing

system utilization is less possible).

We observe that only one experiment expends between 15 and 30 minutes and even more,

depending on the system parameters, number of cores and partitions, number of available fre-

quencies, etc. In a simple situation with 4 partitions allocated in 2 cores as in Table 4 with 2

system frequencies, the times used to solve the problem in each situation and energy savings

are summarised in Table 5.

Fig 8. R. A: Energy saving. B: Number of mappings.

https://doi.org/10.1371/journal.pone.0213333.g008

Fig 9. Energy saving no MCS when allocator is FFDU.

https://doi.org/10.1371/journal.pone.0213333.g009

Energy in mixed-criticality systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0213333 March 18, 2019 15 / 22

https://doi.org/10.1371/journal.pone.0213333.g008
https://doi.org/10.1371/journal.pone.0213333.g009
https://doi.org/10.1371/journal.pone.0213333

Fig 10. Energy saving with 2 and 8 cores. A: 2 cores. B: 8 cores.

https://doi.org/10.1371/journal.pone.0213333.g010

Fig 11. Time consumption in executing EEA algorithm.

https://doi.org/10.1371/journal.pone.0213333.g011

Table 4. Utilizations—Example.

Uf 1
i Uf 2

i

P1 0.62 0.5

P2 0.41 0.35

P3 0.69 0.58

P4 0.45 0.37

https://doi.org/10.1371/journal.pone.0213333.t004

Energy in mixed-criticality systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0213333 March 18, 2019 16 / 22

https://doi.org/10.1371/journal.pone.0213333.g010
https://doi.org/10.1371/journal.pone.0213333.g011
https://doi.org/10.1371/journal.pone.0213333.t004
https://doi.org/10.1371/journal.pone.0213333

In Table 5, it is observed that the energy consumption is bigger with EEA than CP, but the

time the CP solver needs to find the solution is significantly higher.

In next subsection we use the same simulator in order to evaluate the situation in a mixed

criticality system.

Energy saving and performance loss in MCS

We conducted the same set of experiments to measure the energy saving achieved, the perfor-

mance loss and number of mappings of the 5 profiles explained previously.

Fig 12 depicts energy savings with different allocators and profiles. It shows the more sys-

tem utilization increases the more energy saving decreases. If cores are almost full, decreasing

system frequency is becoming increasingly difficult and saving energy is also difficult.

As is no MCS, we show in Fig 13 the reason to select FFDU2 as allocator.

With FFDU2, we measure the parameters mentioned before: energy saving, performance

loss and number of mappings.

• Energy saving is measured as in non MCS. As each profile uses lower system frequency than

the previous profile, energy saving will be greater as profile increases. It is depicted in Fig 14.

When DLO tasks are dropped and the system frequency is reduced as much is possible (pro-

file 5), energy saving is about 35%.

• Performance loss in profile i is calculated as the relation between the system execution times

in profile i and profile 0, being profile 0 the original system at the maximum frequency. If we

consider that profile 0 supposes 0% of performance loss (Fig 15):

• Profile 1 increases the performance in relation to profile 0 (the system is 15% closer to be

completely filled).

Table 5. Comparision between EEA and CP solvers.

EM1
(Ws) EM2

(Ws) TOTAL ENERGY (Ws) Simulation Time

EEA 10.4275 14.725 25.1525 0m0.202s

CP 12.6225 12.1125 24.735 14m 5s

https://doi.org/10.1371/journal.pone.0213333.t005

Fig 12. Energy saving with different allocators. A: Profile 1. B: Profile 5.

https://doi.org/10.1371/journal.pone.0213333.g012

Energy in mixed-criticality systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0213333 March 18, 2019 17 / 22

https://doi.org/10.1371/journal.pone.0213333.t005
https://doi.org/10.1371/journal.pone.0213333.g012
https://doi.org/10.1371/journal.pone.0213333

Fig 13. Energy saving MCS when allocator is FFDU.

https://doi.org/10.1371/journal.pone.0213333.g013

Fig 14. Energy saving for MCS profiles.

https://doi.org/10.1371/journal.pone.0213333.g014

Energy in mixed-criticality systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0213333 March 18, 2019 18 / 22

https://doi.org/10.1371/journal.pone.0213333.g013
https://doi.org/10.1371/journal.pone.0213333.g014
https://doi.org/10.1371/journal.pone.0213333

• Profile 2 decreases the performance when DLO tasks are trimmed (performance loss of

10% with respect to profile 0)

• Profile 3 also decreases the performance when RLO tasks are trimmed (performance loss

of 30% with respect to profile 0)

• Profile 3 also decreases the performance when DLO tasks are dropped (performance loss

of 55% with respect to profile 0)

• Profile 5 increases the performance in relation to profile 4 (increasing computation time of

HI tasks by reducing the system frequency) but, with respect to the original profile, there is

a performance loss of 40-55%.

• Number of mappings. Parameter k is calculated as in non MCS. As it is seen in Fig 16, obvi-

ously the number of mappings increases with profile. It is obvious that the more operations

(k) to partitions are needed, the more attempts to fill the cores are done.

Using a CP solver in order to conduct these experiments provides worst solutions than in

non MCS. This occurs because the number of constraints increases due to the addition of the

criticality of the partition. In most cases, we have spent several days without reaching the

solution.

Conclusion

In this paper, we have addressed the problem of partition allocation in mixed-criticality sys-

tems when the goal is to reduce energy consumption. Instead of focusing on new scheduling

algorithms to adjust frequency in order to save energy, we propose a partition to CPU

Fig 15. Performance loss for MCS profiles.

https://doi.org/10.1371/journal.pone.0213333.g015

Energy in mixed-criticality systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0213333 March 18, 2019 19 / 22

https://doi.org/10.1371/journal.pone.0213333.g015
https://doi.org/10.1371/journal.pone.0213333

allocation that takes into account not only the different frequencies at which the CPU can

operate but the level of criticality of the partitions. We have also proposed a different mixed-

criticality model instead of the well-known Vestal model. The motivation is to cope with the

requirements imposed by the applications used in the avionics and railway sector, since the

results of this research will be applied in H2020 project Safepower with demonstrators in these

two sectors. We have proposed an allocation method for real-time systems of the same critical-

ity and extended this method for mixed-criticality systems. The extension is based on combin-

ing two strategies: dropping partitions that are not mandatory in extreme low power situations

and reducing the bandwidth of mandatory LO partitions. In the general method we achieve

an energy saving up to a 5%. In the extension to MCS, we achieve up to a 35% saving at the

expense of losing performance of LO partitions. We propose a set of profiles so at run time the

system has to decide to switch to a more energy conserving profile depending on the power

sensor values. In spite of the fact that this is not an exact method, it provides a faster feasible

solution, with similar results to the optimal solution.

Author Contributions

Conceptualization: Ana Guasque, Patricia Balbastre, Alfons Crespo, Salva Peiró.

Data curation: Ana Guasque, Patricia Balbastre.

Formal analysis: Ana Guasque, Patricia Balbastre.

Funding acquisition: Patricia Balbastre, Alfons Crespo, Salva Peiró.

Investigation: Ana Guasque, Patricia Balbastre, Alfons Crespo, Salva Peiró.

Methodology: Ana Guasque, Patricia Balbastre.

Project administration: Patricia Balbastre, Alfons Crespo.

Fig 16. k for MCS profiles.

https://doi.org/10.1371/journal.pone.0213333.g016

Energy in mixed-criticality systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0213333 March 18, 2019 20 / 22

https://doi.org/10.1371/journal.pone.0213333.g016
https://doi.org/10.1371/journal.pone.0213333

Resources: Patricia Balbastre, Alfons Crespo.

Software: Ana Guasque, Patricia Balbastre.

Supervision: Ana Guasque, Patricia Balbastre, Alfons Crespo, Salva Peiró.

Validation: Ana Guasque, Patricia Balbastre, Alfons Crespo, Salva Peiró.

Visualization: Ana Guasque, Patricia Balbastre.

Writing – original draft: Ana Guasque, Patricia Balbastre.

Writing – review & editing: Ana Guasque, Patricia Balbastre, Alfons Crespo, Salva Peiró.

References
1. Commision E. Workshop on Mixed Criticality Systems; 2012.

2. Vaidehi M, Gopalakrisgnan TR. Multi-core Applications in Real Time Systems. In: Multi-core Applica-

tions in Real Time Systems; Vol 1, Issue 1, pp 30–35, 2008.

3. Mollison MS, Erickson JP, Anderson JH, Baruah SK, Scoredos JA. Mixed-criticality real-time schedul-

ing for multi-core systems. In: 10th International Conference on Computer and Information Technology

(CIT); pp. 1864–1871, 2010.

4. Davis RI, Burns A. A survey of hard real-time scheduling for multiprocessor systems. ACM Comput

Surv. 2011; 43(4):35. https://doi.org/10.1145/1978802.1978814

5. Chen J, Du C, Xie F, Yang Z. Schedulability analysis of non-preemptive strictly periodic tasks in multi-

core real-time systems. Real-Time Systems. 2016; 52(3):239–271. https://doi.org/10.1007/s11241-

015-9226-z

6. IMA-SP Integrated Modular Avionics for Space. ESA project 4000100764; 2011-13.

7. Rushby J. Partitioning in Avionics Architectures: Requirements, Mechanisms, and Assurance; 1999.

8. Windsor J, Hjortnaes K. Time and Space Partitioning in Spacecraft Avionics. Space Mission Challenges

for Information Technology. 2009;0:13–20. http://doi.ieeecomputersociety.org/10.1109/SMC-IT.2009.

11.

9. Heinecke H, Bortolazzi J, Schnelle KP, l Maté J, Fennel H, Scharnhorst T. AUTOSAR—An industry-

wide initiative to manage the complexity of emerging Automotive E/E-Architectures; 203.

10. Bambagini M, Marinoni M, Aydin H, Buttazzo G. Energy-Aware Scheduling for Real-Time Systems: A

Survey. ACM Trans Embed Comput Syst. 2016; 15(1):7:1–7:34. https://doi.org/10.1145/2808231

11. Avionics Application Software Standard Interface (ARINC-653); 1996.

12. Chen J, Du C. Schedulability analysis for independent partitions in integrated modular avionics systems.

In: 2015 IEEE International Conference on Progress in Informatics and Computing (PIC); 2015. p. 521–

525.

13. Chen J, Du C, Han P. Scheduling Independent Partitions in Integrated Modular Avionics Systems.

PLOS ONE. 2016; 11(12):1–18. https://doi.org/10.1371/journal.pone.0168064

14. Mittal S. A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems.

CoRR. 2014;abs/1401.0765.

15. Xu H, Kong F, Deng Q. Energy Minimizing for Parallel Real-Time Tasks Based on Level-Packing. In:

2012 IEEE International Conference on Embedded and Real-Time Computing Systems and Applica-

tions; 2012. p. 98–103.

16. Devadas V, Aydin H. Coordinated power management of periodic real-time tasks on chip multiproces-

sors. In: Green Computing Conference, 2010 International; 2010. p. 61–72.

17. Völp M, Hähnel M, Lackorzynski A. Has energy surpassed timeliness? Scheduling energy-constrained

mixed-criticality systems. In: 20th IEEE Real-Time and Embedded Technology and Applications Sym-

posium, RTAS; 2014. p. 275–284.

18. Motruk B, Diemer J, Buchty R, Berekovic M. In: Kubátová H, Hochberger C, Daněk M, Sick B, editors.

Power Monitoring for Mixed-Criticality on a Many-Core Platform; 2013. p. 13–24.

19. Legout V, Jan M, Pautet L. Mixed-criticality multiprocessor real-time systems: Energy consumption vs

deadline misses. In: 1st workshop on Real-Time Mixed Criticality Systems; 2013.

20. Narayana S, Huang P, Giannopoulou G, Thiele L, Prasad RV. Exploring energy saving for mixed-criti-

cality systems on multi-cores. In: 2016 IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS). IEEE; 2016. p. 1–12.

Energy in mixed-criticality systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0213333 March 18, 2019 21 / 22

https://doi.org/10.1145/1978802.1978814
https://doi.org/10.1007/s11241-015-9226-z
https://doi.org/10.1007/s11241-015-9226-z
http://doi.ieeecomputersociety.org/10.1109/SMC-IT.2009.11
http://doi.ieeecomputersociety.org/10.1109/SMC-IT.2009.11
https://doi.org/10.1145/2808231
https://doi.org/10.1371/journal.pone.0168064
https://doi.org/10.1371/journal.pone.0213333

21. Awan MA, Masson D, Tovar E. Energy efficient mapping of mixed criticality applications on unrelated

heterogeneous multi-core platforms. In: 2016 11th IEEE Symposium on Industrial Embedded Systems

(SIES); 2016. p. 1–10.

22. Lenz A, Blázquez MA, Coronel J, Crespo A, Davidmann S, Garcia JCD, et al. SAFEPOWER Project:

Architecture for Safe and Power-Efficient Mixed-Criticality Systems. In: 2016 Euromicro Conference on

Digital System Design (DSD); 2016. p. 294–300.

23. Vestal S. Preemptive scheduling of multi-criticality systems with varying degrees of execution time

assurance. In: Real-Time Systems Symposium, 2007. RTSS 2007. 28th IEEE International. IEEE;

2007. p. 239–243.

24. Graydon P, Bate I. In: Safety Assurance Driven Problem Formulation for Mixed-Criticality Scheduling;

2013. p. 19–24.

25. Aydin H, Yang Q. Energy-aware partitioning for multiprocessor real-time systems. In: Proceedings

International Parallel and Distributed Processing Symposium; 2003.

26. Liu CL, Layland JW. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment. J

ACM. 1973; 20(1):46–61. https://doi.org/10.1145/321738.321743

27. Bini E, Buttazzo GC. Measuring the Performance of Schedulability Tests. Real-Time Syst. 2005; 30(1-

2):129–154. https://doi.org/10.1007/s11241-005-0507-9

Energy in mixed-criticality systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0213333 March 18, 2019 22 / 22

https://doi.org/10.1145/321738.321743
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1371/journal.pone.0213333

