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Abstract

Gene duplication generates extra gene copies in which mutations can accumulate without risking the function of pre-
existing genes. Such mutations modify duplicates and contribute to evolutionary novelties. However, the vast majority of
duplicates appear to be short-lived and experience duplicate silencing within a few million years. Little is known about the
molecular mechanisms leading to these alternative fates. Here we delineate differing molecular trajectories of a relatively
recent duplication event between humans and chimpanzees by investigating molecular properties of a single duplicate:
DNA sequences, gene expression and promoter activities. The inverted duplication of the Glutathione S-transferase Theta 2
(GSTT2) gene had occurred at least 7 million years ago in the common ancestor of African great apes and is preserved in
chimpanzees (Pan troglodytes), whereas a deletion polymorphism is prevalent in humans. The alternative fates are
associated with expression divergence between these species, and reduced expression in humans is regulated by silencing
mutations that have been propagated between duplicates by gene conversion. In contrast, selective constraint preserved
duplicate divergence in chimpanzees. The difference in evolutionary processes left a unique DNA footprint in which dying
duplicates are significantly more similar to each other (99.4%) than preserved ones. Such molecular trajectories could
provide insights for the mechanisms underlying duplicate life and death in extant genomes.
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Introduction

Gene duplication events play a very important role in evolution,

as they provide material for genetic innovations [1,2,3,4,5,6,7,8,9].

Gene duplication occurs either at the whole-genome level

(polyploidization) [10,11,12] or at particular genomic segments

[13,14]. Many species living today, such as plants and fish, are

descendants from ancient polyploidy ancestors, and thus poly-

ploidization may have significantly contributed to subsequent

species diversification. Duplicated genomic segments (segmental

duplications, low copy repeats) are particularly abundant in

primate genomes. The human genome contains approximately

400 large blocks of recently duplicated regions that exhibit very

high sequence identity (.90%) between duplications [13,15].

Copy-numbers of such duplicated regions are highly polymorphic

within humans (copy number variations) [16,17]. Furthermore,

duplicated regions exhibit structural and copy-number divergence

between primates [14,18,19]. Such divergence could account for

more genetic differences between primate species than single-

nucleotide substitutions [14,20] and likely underlie some of the

phenotypic differences between primates.

Because of the important role in evolution, several conceptual

frameworks have been developed for processes associated with as

well as consequences derived from the evolution of duplicate genes

[6,9]. When an allele with gene duplication arises in a population,

the allele could achieve fixation either in a neutral fashion (random

drift) [21,22], or by the initial advantage for increased gene dosage

[23,24,25]. The fixation would result in the existence of two genes

with identical functions in the genome. The redundancy of

function would relieve a selective constraint for a duplicate pair,

thereby allowing mutations to accumulate. Such mutations in most

cases are deleterious and lead to the death of duplicate copies [26].

Duplicates that survived would diverge from the original gene and

undergo functional innovations: acquisition of new functions (neo-

functionalization) or partition of the original function (sub-

functionalization) [2,3,27]. Several instances have been demon-

strated for each outcome [28,29,30,31,32], illustrating the

important role of gene duplications in creating evolutionary

novelties.

Although both the significance and consequences of duplicate

gene evolution is well established, little is known about molecular

mechanisms leading to differing fates. This is mainly because most

studies of duplicate evolution focus on outcomes after a very long

period of time. There could be critical fate-determining mechan-

isms for preservation and death at a relatively early stage of

duplicate evolution, as most gene duplicates experience nonfunc-

tionalization of one copy, either by pseudogenization or deletion,

within several million years [5,26]. The mechanisms for this early

process could be studied for a gene duplication that arose in

a common ancestor and experiences alternative fates between two

closely related species. In a simple case, we could find two

functional copies in one species, while other species have one

functional copy, with the other copy being deleted. DNA copy
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number analyses and sequencing for several individuals in each

species could illustrate such a dynamic state of duplicates within

a population. Molecular phenotypes, such as gene expression and

functional analysis, could help us to further dissect the mechanisms

underlying duplicates birth and death, a fundamental process of

genome evolution [33].

In this regard, primate genomes are good resources, because

recent segmental gene duplications are abundant [14,18,20].

Several studies have measured copy number divergence between

primates and identified linage-specific deletions of gene duplicates

[19,34,35,36,37,38,39,40,41]. Here we delineate molecular me-

chanisms for gene duplicates that have followed alternative fates

between humans and chimpanzees. The 29-kb tandem inverted

duplication of Glutathione S-transferase Theta 2 (GSTT2) gene, a gene

encoding an enzyme for cellular detoxification and thus showing

association with cancer [42,43,44,45], is preserved in chimpan-

zees, whereas a large deletion polymorphism involving one copy of

duplicates is very common in humans: 63% in Caucasian, 47% in

Yoruban and 50% in Japanese and Chinese (from HapMap

Samples) [46]. Thus, GSTT2 duplicates provide a unique oppor-

tunity to study molecular mechanisms associated with the

alternative fates of duplicate genes. We found that the mRNA

level of GSTT2 is positively correlated with the preservation of

duplication; GSTT2 is expressed at a much higher level in

chimpanzees than in humans. The molecular mechanisms un-

derlying reduced GSTT2 expression in humans include a repressive

regulatory mutation that is propagated between duplicates by gene

conversion. Furthermore, DNA sequences of duplicates from

several individuals showed that dying duplicates (in humans) are

significantly less diverged from each other than preserved ones (in

chimpanzees). These molecular footprints suggest evolutionary

mechanisms behind the GSTT2 duplicate preservation and death

and offer a novel insight on duplicate evolution.

Results

The Origin of Tandem Inverted GSTT2 Duplication
In the human genome, the 29-kb region including GSTT2 is

duplicated next to the parental gene in an inverted orientation on

chromosome 22 (Figure 1A, blue arrows). Due to extensive

segmental duplications, the syntenic regions in primate genomes

other than humans have many gaps and are not completely

assembled. Therefore, to first define the origin of duplication, we

applied a Southern blotting-based restriction fragment length

polymorphism (RFLP) analysis [46] for primate primary fibro-

blasts, a tissue that expresses GSTT2 (Table S1). In human

fibroblasts, three EcoRV fragments hybridized to a single probe

(red bar); one for the repeat harboring GSTT2B (6.3-kb), one for

the repeat harboring GSTT2 (4.3-kb) and one for the region near

GSTT1 (16-kb) (Figure 1a, red bars). Consistent with our previous

result, a deletion polymorphism involving GSTT2B (GSTT2B-del),

judged by either the lack (Human-3, 6 and 7) or the reduced

intensity (Human-4, 5) of a 6.3-kb EcoRV fragment, is common in

humans. In contrast, all chimpanzee fibroblasts show an equal

intensity between 6.3-kb and 4.3-kb fragments. Genotypes were

further confirmed by a genotyping PCR assay (Figure S1).

Sequences from the boundaries of duplication revealed the perfect

alignment between humans and chimpanzees, confirming the

common origin of duplication (Figure S2). The two fragments (6.3-

kb and 4.3-kb) representing duplication were also identified in

gorilla (Gorilla gorilla) (Figure 1A, Go). The duplication in gorilla is

also tandem inverted, because Southern analysis using snap-back

DNA [47] (genomic DNA treated by de-naturation followed by

rapid re-naturation) identified a 7-kb XhoI fragment (SB +) from
a 14-kb genomic fragment (SB 2) (Figure 1B).

Expression Divergence of GSTT2
The alternative fates may indicate a differential level of selective

constraints for GSTT2 duplication between humans and chim-

panzees. We addressed this issue by examining expression

divergence [48,49]. Indeed, very high-levels of GSTT2 expression

distinguished chimpanzee fibroblasts from human fibroblasts in

Northern analyses (Figure 2A). Real-time PCR based quantifica-

tion indicated that the expression of GSTT2 mRNA in

chimpanzees was at least three-fold higher than that in humans

even when fibroblasts homozygous for the duplication allele

(chimp 1–4 and human 1–2) were compared (Figure 2B). In

Figure 1. The origin of tandem inverted duplication of GSTT2. A.
Conservation of the tandem inverted duplication of GSTT2 gene in
humans, chimpanzees and gorillas. The region harboring GSTT2, GSTT1
and DDT genes in the human chromosome 22 (top) and Southern
analysis for EcoRV-digested genomic DNA from gorilla, chimpanzee and
human fibroblasts (bottom) are shown. Inverted duplication is shown as
a pair of blue arrows. A red vertical bar indicates the probe for Southern
analyses that hybridize to three EcoRV restriction fragments. Note that
both 6.3-kb and 16-kb fragments are often missing in humans, which
corresponds to the deletion of either GSTT2B (gray bar) or GSTT1 (open
bar) as previously described [46]. Mb: mega-bases (co-ordinates). B.
Southern analysis for either genomic DNA (SB -) or snap-back DNA (SB+)
from the fibroblasts analyzed in A. De-naturation and rapid re-
naturation (snap-back) facilitates intra-stand annealing of inverted
repeat DNA, and the restriction-digest of snap-back DNA results in
a half-sized fragment (7-kb).
doi:10.1371/journal.pone.0038958.g001
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contrast, DDT, another gene within the inverted duplication

(Figure 1A), did not show the expression divergence. The high-

level expression is not due to the chimpanzee-specific amplification

of GSTT2, because the DNA copy number of GSTT2 is equal

between humans and chimpanzees (Figure 2A, bottom). We

further investigated the expression divergence using a publically

available dataset (Figure 2C). A global gene expression analysis for

brain tissues from multiple individuals [50] showed that GSTT2

mRNA level is consistently higher in all chimpanzees than in

humans (Gene Expression Omnibus profiles, GDS2678/

1099_s_at/GSTT2). Neither GSTT1, the only paralogue of

GSTT2 in both humans and chimpanzees, nor DDT showed such

differences. These results suggest that the expression divergence of

GSTT2 is not limited to primary fibroblasts, but is also the case in

brain tissues.

Silenced GSTT2 Duplicates in Humans
The expression divergence associated with the alternative fates

between two closely-related species provides a setting to study

early molecular trajectories of duplicate evolution. The expression

divergence can be due to epigenetic transcriptional regulation,

such as the hypermethylation of promoter CpG islands. To test the

idea, bisulfate modified DNA was sequenced and methylated

cytosines were mapped for the GSTT2 (and GSTT2B) promoter

CpG islands (Figure S3). In both humans and chimpanzees, CpG

islands were almost methyl-cytosine free, indicating that transcrip-

tional regulation by hypermethylation was unlikely the mecha-

nism. Therefore, we turned our investigation to genetic changes

associated with the expression divergence.

We first determined duplicate-specific expression. This was

done by distinguishing GSTT2 from GSTT2B using the paralogous

variation (G/A) site represented in the reference human genome

(hg19) (Figure 3A). The sequences surrounding a paralogous

variation site within exon 4 of GSTT2 (CCCGAG), but not

GSTT2B (CCCAAG), is recognized by the restriction enzyme AvaI.

This allows us to determine expression from each duplicate;

a duplicate with an AvaI site (AvaI-duplicate) and a duplicate

without an AvaI site (no-AvaI duplicate). Genotypes were de-

termined for several human primary tissues (brain, colon and

fibroblasts) that were either homozygous or heterozygous for the

duplication allele and thus had at least one copy of GSTT2B

(Figure 3B, left and Figure S1). Out of 11 samples, only 6 showed

both an undigested and a digested fragment, indicating that the

paralogous G/A site is polymorphic in humans. cDNA from these

6 samples was further examined for duplicate-specific expression

(Figure 3B, right). In four samples, we only found fragments

digested by AvaI, indicating that some of the duplicates without an

AvaI site are silenced.

We further verified the silenced duplicate by sequencing PCR

products (Figure 3C). A single PCR clone sequence represents

a sequence from a single duplicate, and a silenced duplicate is seen

as a duplicate that is under-represented in PCR clones amplified

from cDNA. To rule out the amplification bias introduced by the

specific primer set for the AvaI-restriction analysis, full-length

cDNA was amplified for sequencing (Figure 3C, blue arrows). In

fibroblast-2, PCR-clones without an AvaI site were exclusively

obtained from genomic DNA (11 out of 20 clones), but not from

cDNA (0/11 clones) (Figure 3C, right). This under-representation

Figure 2. Expression divergence of GSTT2. A. Expression divergence of GSTT2 between primate fibroblasts. Both Northern (mRNA) and Southern
(DNA) analysis are shown. cDNA from GSTT2, DDT and b-actin (control) were used as probes for Northern analyses and DNA from GSTT2 exon 1 and
BTBD11 (control) were used as probes for Southern analyses. B. Real-time PCR based quantification of GSTT2 mRNA in fibroblasts. Relative expression
level (to human fibroblast 1) is shown. The averages of three independent experiments are shown. An error bar represents a standard deviation. C.
Expression divergence of GSTT2 between human and chimpanzee brain. Heat map (red, high and green, low) was generated using Cluster 3.0 from
the gene expression profiles from microarray data (Gene Expression Omnibus profiles, GDS2678) [50].
doi:10.1371/journal.pone.0038958.g002
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was also the case for primary tissues. The duplicates without an

AvaI site were also common in PCR clones from genomic DNA for

both colon-2 (10/21) and colon-3 (6/14), whereas such fragments

were severely underrepresented in clones from cDNA (0/8 and 1/

12, respectively, Figure S4).

To determine genetic changes associated with the duplicate-

specific silencing, we sequenced long-PCR clones that covered the

entire genomic locus of either GSTT2 or GSTT2B (Figure 3C, red

arrows and Figure 3D). There are thirty-one sequence changes

(eight in coding) in fibro-2, twenty-three (four in coding) in colon-2

Figure 3. Silenced GSTT2 duplicates in humans. A. Experimental design for distinguishing GSTT2 from GSTT2B using the paralogous SNP site in
the exon 4 of GSTT2/GSTT2B. Schematic drawings of both the duplication allele and the deletion allele (top), PCR strategy (middle) and AvaI restriction
maps for both genomic DNA and cDNA (bottom) are shown. Blue and red arrows represent primers for the PCR. DNA samples are genotyped for the
duplicate with an AvaI site (333-bp and 192-bp) and the duplicate without an AvaI site (525-bp). For cDNA, the duplicate with an AvaI site is digested
into 334-bp and 279-bp fragments, whereas the duplicate without an AvaI site remains as a 613-bp fragment. B. Distinguishing GSTT2 from GSTT2B in
several human primary tissues (fibroblasts, colon and brain) (left). The tissue samples harboring the duplicate without an AvaI site were examined for
its mRNA expression (right). Note that in four tissue samples (fibro-2, Colon-2, colon-3 and brain-3), the PCR product without an AvaI site is not seen.
c: colon tissue. C. Silenced duplicates confirmed by PCR-clone based single-duplicate sequencing. Results from human fibroblast-2 are shown. For the
sequencing, different primer sets (blue arrows) from B were used. D. Mutations leading to premature stop codons are associated with silenced
duplicates (sequences shown in red). The entire GSTT2 genomic region was amplified (Figure 3C, red arrows) by PCR and PCR-clones were sequenced.
The duplicate without an AvaI site (Figure 2c, 1) is associated with a G to A mutation at the consensus sequence of spliced donor of intron 2 (2) and
a premature stop codon (CGA to TGA) within exon 5 (3). Both mutations were previously described for Australian individuals [72].
doi:10.1371/journal.pone.0038958.g003
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and twenty three (five in coding) in colon-3 between GSTT2 and

GSTT2B (Table S2). Among the sequence changes, two sequence

changes likely affect the stability of mRNA by giving rise to

premature stop codons: a mutation at the splice donor site of exon

2 (a consensus GT to AT mutation that would result in aberrant

splicing and frame-shift) and a nonsense mutation at codon 196.

The silenced duplicate was indeed associated with these two

changes, suggesting the important role of these changes in the

silencing. Overall, sequence identity between AvaI and no-AvaI

duplicates is extremely high (99.4%, Table S2, Table S4; Genbank

accession # JN819426 and JN819427). Therefore, the silencing

could have been established by a small number of mutations.

Propagation of a Regulatory Mutation by Gene
Conversion
The three-fold reduction of GSTT2 mRNA in humans

(Figure 2B) would indicate additional underlying mechanisms for

repression. We identified a human-specific, 17-bp duplication in

the promoter region (Figure 4A). Such a mutation could function

as a regulatory mutation and repress transcription. Indeed, the

promoter with the 17-bp duplication (17bp dup-Luc) showed

a considerably reduced level of luciferase activity than the

promoter without the 17-bp duplication (no dup-Luc)

(Figure 4B). In all three cell lines tested, we observed an almost

70% reduction of luciferase activity from the promoter with 17-bp

duplication.

Considering the origin of GSTT2 duplication in the common

ancestor between humans, chimpanzees and gorillas, the sequence

similarity between duplicates in humans (99.4%) is extremely high.

Molecular processes, such as inter-locus gene conversion, could

actively homogenize duplicates [33,51]. Gene conversion could

have propagated the regulatory mutation from one duplicate to

the other, which could further reduce GSTT2 mRNA. Indeed,

a PCR assay for distinguishing the promoters with 17-bp

duplication (322-bp) from the ones without duplication (305-bp)

revealed that the majority of human samples only had the

promoter with 17-bp duplication (Figure 4C, left). This was further

confirmed by sequencing PCR clones (Figure 4C, right). In

contrast, chimpanzees only have the promoters without a17-bp

duplication. These results illustrate the molecular trajectory of

GSTT2 promoter: (1) the ancestral state is the promoter without

a17-bp duplication, as judged by the lack of a 17-bp duplication in

chimpanzees (and other primates, Figure S5) and in some humans,

and (2) the 17-bp duplication is an acquired mutation in human

lineage. The 17-bp duplication observed in both duplicates is

unlikely to be anindependent occurrence of thesame exact

mutation, but insteadwould likely have been propagated by gene

conversion.

Constraints for the Preserved Duplicates in Chimpanzee
Then, how has the duplication been preserved in chimpanzees?

High-level expression from the preserved duplicates could indicate

either (1) selection for the large amount of GSTT2 protein, or (2)

constraints for two proteins with slightly different function encoded

by each duplicate. These possibilities could be distinguished by

sequencing duplicates from chimpanzees. As an initial step, we

determined the RFLP for the paralogous SNP site in exon 4

(Figure 5A and 3A) that is associated with acidic- to basic-amino

acid change (Glutamate acid to Lysine) (Figure 5B). If a large

amount of GSTT2 is solely needed, preserving the paralogous SNP

might not be important. Alternatively, if the variation is strictly

preserved, both duplicates encoding slightly different proteins

could be important. Genomic DNA from 12 unrelated chimpan-

zees showed that, in all cases, both AvaI and no-AvaI duplicates

were preserved (Figure 5A). Both duplicates are equally expressed

(Figure 5A, right) and do not carry mutations leading to premature

translation termination. The Glutamate acid encoded by the AvaI-

duplicate appears to be highly conserved in mammals (Figure 5B),

suggesting that the substituted Lysine might have a unique and

important function for chimpanzees.

The paralogous SNP observed in both chimpanzees and some

humans indicates its origin in the common ancestor’s genome.

Selective constraints might have actively preserved such di-

vergence in chimpanzee, whereas gene conversion eliminated

the paralogous SNP in some of the human duplicates (Figure 3B,

fibro-1, 4, colon-1 and brain 1, 4). Although demonstrating

evolutionary constraints in such highly similar sequences is

a challenge [52], the patterns of sequence divergence between

AvaI- and no-AvaI duplicates might imply such a scenario (Table

S4; GneBank Accession # JN819426, JN819427, JN819428,

JN819429, JN819430, JN819431, JN819432, JN819433,

JN819434, JN819435, Jn819436 and JN819437). First, analysis

of duplicates from three unrelated individuals of each species

indicated that nucleotide sequences are appreciably less similar in

chimpanzees than in humans (Figure 5C, top). Second, estimating

divergence in coding and non-coding regions separately revealed

that such a difference is significant only in non-coding regions

(Figure 5C). A phylogram showed that, although exons are

similarly related to each other in both species, introns are more

diverged in chimpanzees than in humans (Figure S6). These

patterns imply that GSTT2 duplicates might have been under

selective constraint, such as purifying selection, in chimpanzees.

Intron divergence in chimpanzees is estimated to be 3%, thus,

greater than the average sequence divergence between humans

and chimpanzees (1.23%) [52], which is consistent with the

occurrence of GSTT2 duplication in the common ancestor of

humans, chimpanzees and gorillas.

Discussion

In this study, we delineated evolutionary processes that differed

between preserved and dying GSTT2 (Glutathione S-transferase Theta

2) duplicates, and elucidated important molecular events for each

trajectory (Figure 6). First, we traced back the origin of tandem

inverted GSTT2 duplication to the common ancestor of African

great apes (Figure 1). The level of GSTT2 mRNA expression

distinguishes dying duplicates (in humans) from preserved ones (in

chimpanzees) (Figure 2). The mutations introducing premature

stop codons are associated with a silenced duplicate (Figure 3), and

regulatory mutations have been propagated between duplicates by

gene conversion (Figure 4). In contrast, natural selection could be

responsible for the preservation of duplicates and high-level

expression in chimpanzees (Figure 5). These processes have left

a paradoxical molecular footprint for duplicate evolution; DNA

sequences are more similar to each other in dying duplicates than

in preserved duplicates (Figure 5 and S6).

In the case of GSTT2 duplication, observed mRNA levels

distinguished preserved duplicates from dying ones. The expres-

sion divergence was not only seen in primary fibroblasts but also

found in brain tissues (Figure 2). In the study conducted by

Caceres et al., GSTT2 was one of the most differentially expressed

genes between human and chimpanzee brain [50]. Thus, GSTT2

(and a paralogue GSTT2B) likely has a more important function

in chimpanzees than in humans. GSTs (Alpha, Mu, Pi and Theta)

are a group of phase II enzymes for cellular detoxification and

solubilize harmful molecules by conjugating a hydrophilic tag

(GSH) to the molecule. Among GSTs, theta class (GSTT) exhibits

several distinct properties from other GSTs. First, theta is the most
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ancient class and is highly conserved from bacteria to mammals

[42,43,53]. Other classes are considered to be derived from the

theta class by gene duplication. Second, unlike other GSTs that

have evolved to combat a broad spectrum of toxins and thus are

predominantly expressed in liver and kidney [54], GSTT2 is

ubiquitously expressed. Furthermore, GSTT2 has distinct struc-

tural features in both the active catalytic site and the C-terminus

region that defines substrate repertoire from other GSTs [55]. The

highly conserved Tyr residue, a critical residue for activating GSH

binding in other classes, is replaced by Ser. The C-terminal

extension in the theta-class proteins completely buries the

substrate-binding pocket and creates the least accessible substrate

binding sites among GSTs, indicating a narrow target specificity of

GSTT2. These unique properties lead to the notion that GSTT2

is not a typical enzyme for eliminating wide range of exogenous

toxins, but may protect cells from endogenous harmful molecules

generated by oxidative stresses [55,56]. The distinctive fate and

expression divergence of such a gene could be important to

consider for understanding phenotypic differences between two

species. One possibility is that a redundant function of another

theta class enzyme GSTT1 compensates the low level of GSTT2

expression in humans. However, this is unlikely, because the intra-

class similarity in theta class is very low, and only 55% of amino-

acids are conserved between GSTT1 and GSTT2 [42]. Further-

more, we did not observe an over-expression of GSTT1 in

humans (Figure 2B and data not shown).

Three mutations (a 17-bp duplication mutation, a mutation at

the spliced donor site of intron 2 and a premature stop codon)

collectively silence a particular duplicate. A 17-bp duplication

within the promoter greatly reduced GSTT2 mRNA in our

promoter assay (Figure 4B). On the other hand, the 17-bp

duplication is prevalent in human duplicates, many of which

express low levels of GSTT2 mRNA. Therefore, the 17-bp

duplication itself is not sufficient for the silencing. We further

investigated the involvement of mRNA degradation process as

a potential mechanism. A mutation at the splice donor site of

Figure 4. Propagation of a regulatory mutation by gene conversion. A. A 17-bp duplication mutation at the GSTT2 promoter. Sequences
from PCR-clones are shown for the promoter with 17-bp duplication (shaded in orange) and the promoter without 17-bp duplication. B. The 17-bp
duplication is a hypomorphic mutation, judged by the reduced luciferase activity associated with the mutation. Either a promoter harboring 17-bp
duplication (an orange rectangle) or without the duplication was cloned into pGL3-basic vector (Promega). Each vector was co-transfected with the
control vector encoding Renilla luciferase into three human cell lines (a human kidney epithelial cell line HEK293T and human colorectal cancer cell
lines HCT116 and HT29) for measuring luciferase activity. Relative activities of luciferase (Firefly/Renilla) to the activities from 17-bp dup promoters are
shown. C. Propagation of the 17-bp duplication in humans. (left) PCR was used to amplify the genomic region containing the 17-bp duplication. Note
that most of the human DNA samples show only one PCR product, the duplicate with 17-bp duplication (drawn schematically at the bottom). (right)
The numbers of PCR clones for the duplicate without 17-bp duplication (red) and the one with 17-bp duplication (blue) are shown.
doi:10.1371/journal.pone.0038958.g004
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Figure 5. Natural selection for the GSTT2 duplicates in chimpanzee. A. The paralogous SNP site is preserved and both duplicates are
expressed in chimpanzee. AvaI RFLP (Figure 2a) shows that three fragments, representing both AvaI- and no AvaI-duplicates, are present in PCR
products amplified from both genomic DNA (five fibroblasts and seven lymphoblasts) and cDNA (four fibroblasts). B. The paralogous SNP at an AvaI
site is associated with a radical amino-acid change (Glutamate acid to Lysine). The lysine residue is unique to chimpanzees. C. (top) Pairwise
nucleotide sequence differences between AvaI- and no AvaI-duplicates. Average differences in three human samples (fibro-2, colon-2 and -3) and

Molecular Mechanisms of Duplicate Evolution
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intron 2 could cause an aberrant splicing that results in a frame-

shift and a premature termination codon. A premature termina-

tion codon could induce an mRNA degradation process called

nonsense mediated mRNA decay (NMD) [57,58]. NMD is

a conserved cellular process that surveys premature termination

codons and prevents the expression of truncated proteins. NMD is

triggered by a protein complex that is located within exon-exon

junctions of mRNA (Exon junction complex, EJC). Termination

codons that are located upstream of EJC can be recognized as

‘‘premature’’, because authentic termination codons should be

located at the downstream of last exon-exon junctions. (In this

regard, the nonsense mutation located at the final exon, codon 196

in Figure 4D, will not trigger NMD.) We rigorously investigated

the involvement of NMD in the silencing of a GSTT2 duplicate by

commonly used methods: inhibiting either a component of NMD

(Upf1) by shRNA or translation using cyclohexamide. In either

case, we were not able to detect the expression of an aberrantly

spliced product (data not shown). Therefore, NMD is unlikely to

contribute to the observed complete silencing. Other possible

changes, such as a regulatory mutation further upstream of the

promoter, could co-operate with the 17-bp duplication for the

silencing.

We defined differential molecular trajectories between pre-

served and dying GSTT2 duplicates. Although it remains to be

chimpanzees (fibro-2, -3 and -4) are shown along with the differences in the reference human genome sequence (hg19). An error bar represents
a standard deviation from an average. (bottom) Average evolutionary distances (Tamura-Nei distance) [71] of coding and non-coding sequences
between AvaI- and no AvaI-duplicates.
doi:10.1371/journal.pone.0038958.g005

Figure 6. Molecular trajectories for the evolution of GSTT2 duplication. Purifying selection could have maintained the paralogous SNP site in
chimpanzee. Under relaxed selection (for human duplication), gene conversion have homogenized duplicates, which resulted in (1) erasing the
paralogous SNP and (2) transferring hypomorphic mutations.
doi:10.1371/journal.pone.0038958.g006
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determined how common these molecular trajectories are in the

aging processes of gene duplicates, the trajectories offer important

insights into molecular mechanisms underlying duplicate evolu-

tion. Several studies have shown that very young duplicates are

over-abundant across the genomes of eukaryotes [5,59,60,61,62].

In addition to the accelerated recent duplication activities [14,20],

the rejection of molecular clock by gene conversion could also

result in the over-abundance of dying, older duplicates that have

very high sequence similarities. Older duplicates could look young

when gene conversion homogenizes duplicates. However, such

conversion could also propagate deleterious mutations [63,64,65]

as we see for GSTT2 duplicates, and would put the lives of both

duplicates in danger. An allele with the deletion of one duplicate

could rescue the function of pre-existing genes, because a deletion

could prevent such unwanted gene conversion. Therefore, some of

the duplicates with very high-sequence similarities may not indeed

be young, but can instead be older and would soon be eliminated

from the genomes.

We identified a silenced duplicate at an early stage of duplicate

evolution. Silenced duplicates have long been conceived as an

intermediate leading to a new gene function due to its neutrality

for mutational effects [1,66,67,68] (Figure S7). Mutations accu-

mulating in duplicates may not be completely neutral, because the

function of gene products depends on other gene products and

environmental conditions [69,70]. For example, gene products

very often function in protein complexes and hence mutant

proteins could compete with wild-type ones to participate in

complexes. Mutations in silenced duplicates can be ignored by

natural selection, because silenced duplicates are untranslatable.

However, silenced duplicates need to regain expression. Two

findings from our study suggest a mechanism. First, silenced

duplicates can be established by a relatively small number of

mutations. Second, gene conversion occurs in dying duplicates and

can modify sequences for silenced duplicates. A typical short

conversion tract could be sufficient to erase silencing mutations.

By defining duplicate-specific sequences from several individu-

als, we were able to determine the dynamic state of GSTT2

duplicate evolution within a population. In humans, GSTT2B is

either a functional gene (as represented in hg19), a silenced

pseudo-gene or a deleted gene. In contrast, GSTT2 maintains

a paralogous SNP in chimpanzees. Therefore, in addition to the

status of copy number variations, genomic sequence information is

necessary to elucidate the evolutionary history of duplicate genes.

This is also important for testing gene-disease associations, as

defining the functional state of each copy is essential for accurately

measuring disease associations.

Materials and Methods

DNA and RNA Manipulations
All the duplicate sequences (Table S4) were deposited to NCBI

(GneBank Accession # JN819426, JN819427, JN819428,

JN819429, JN819430, JN819431, JN819432, JN819433,

JN819434, JN819435, Jn819436 and JN819437).

Details of primary tissues used for this study are described in

Table S1. Primary fibroblasts from gorillas, chimpanzees and

humans were obtained from Coriell Institute (http://www.coriell.

org/). Commercially available normal colon DNA was purchased

from Biochain (www.biochain.com). Primary brain tissues were

obtained from the Cleveland Clinic Human Biospecimen Re-

source. Research using specimens obtained from the Cleveland

Clinic Human Biospecimen Resource falls under the category of

‘‘human specimen research that does not involve human subjects’’

and is not regulated by 45 CFR Part 46.

PCR primers for cloning DNA fragments, for PCR-RFLP

analyses, for sequencing and for quantitative Real-Time PCR are

listed in Table S3. DNA and RNA extractions, Southern and

Northern hybridizations, Real-time PCR were performed as

described previously [46]. For generating snap-back DNA, XhoI-

digested genomic DNA was denatured by boiling for 7 minutes in

the presence of 100 mM NaCl, followed by rapid re-naturation on

ice for 10 minutes [47].

Long-PCR and Sequence Analyses
The genomic sequence from each duplicate was obtained by

long-PCR and PCR-clone based sequencing. The genomic regions

covering entire GSTT2/GSTT2B genes were amplified using two

different primer sets (Table S3) to eliminate amplification bias

from a single primer set. Human fibroblast DNA was amplified

using FastStart High Fidelity TAQ Polymerase (Roche). PCR

products were cloned into pSC-A (Stratgene). Chimpanzee

fibroblast DNA was amplified using Phusion Hot Start Pol II

(New England Biolabs) and cloned into pSC-B (Stratagene). PCR

clones were isolated using the Fast Plasmid Miniprep Kit (Five

Prime) and the entire 5 kb region was sequenced using six different

primers. All of the sequences were compiled using the DNAStar

Lasergene 8 programs, and sequence divergence between GSTT2

(AvaI-duplicate) and GSTT2B (no-AvaI duplicate) was calculated

using NCBI Blast Alignment.

The extent of evolutionary divergence between nucleotide

sequences was calculated using MEGA5 (http://www.

megasoftware.net/) [71], using Tamura-Nei substitution model

that takes into account GC content biases as well as unequal rates

of transition and transversion. To compute evolutionary distances,

any site at which the alignment postulated a gap (indels) was

removed from all comparisons so that a comparable set of sites was

used for each comparison. Statistical analyses were done using

Minitab 15 (http://www.minitab.com/en-US/default.aspx).

Transcriptional Activity of GSTT2/GSTT2B Promoters
The promoter for GSTT2/GSTT2B was PCR-amplified and

cloned from human fibroblast-1, a fibroblast that have both

GSTT2 and 17-bp dup promoter (Figure 3a). The promoter

region amplified was either a 1,054-bp (GSTT2) or a 1,071-bp

fragment (17-bp dup) that corresponded to the sequence up to

1 kb upstream from the translation initiation site. The PCR

products were verified by sequencing prior to being cloned into the

upstream of a firefly luciferase gene (pGL3-Basic vector, Promega).

For the luciferase assay, each luciferase construct was co-

transfected with a control construct (encoding Renilla luciferase)

into 1.66105 cells. At 48 h post-transfection, the amount of both

firefly luciferase and Renilla luciferase was measured using

a WallacVictor3 luminometer.
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(EPS)
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