
����������
�������

Citation: Shen, P.-C.; Huang, W.-Y.;

Dai, Y.-H.; Lo, C.-H.; Yang, J.-F.; Su,

Y.-F.; Wang, Y.-F.; Lu, C.-F.; Lin, C.-S.

Radiomics-Based Predictive Model of

Radiation-Induced Liver Disease in

Hepatocellular Carcinoma Patients

Receiving Stereo-Tactic Body

Radiotherapy. Biomedicines 2022, 10,

597. https://doi.org/10.3390/

biomedicines10030597

Academic Editors: Yu-Te Wu and

Wan-Yuo Guo

Received: 16 January 2022

Accepted: 1 March 2022

Published: 3 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

Radiomics-Based Predictive Model of Radiation-Induced Liver
Disease in Hepatocellular Carcinoma Patients Receiving
Stereo-Tactic Body Radiotherapy
Po-Chien Shen 1,2, Wen-Yen Huang 1,3, Yang-Hong Dai 1, Cheng-Hsiang Lo 1, Jen-Fu Yang 1,4, Yu-Fu Su 1,4,
Ying-Fu Wang 1, Chia-Feng Lu 2,* and Chun-Shu Lin 1,*

1 National Defense Medical Center, Department of Radiation Oncology, Tri-Service General Hospital,
Taipei 114, Taiwan; 31235@mail.ndmctsgh.edu.tw (P.-C.S.); hwyyi@mail.ndmctsgh.edu.tw (W.-Y.H.);
496010464@mail.ndmctsgh.edu.tw (Y.-H.D.); lsir183@mail.ndmctsgh.edu.tw (C.-H.L.);
ugidgal@mail.ndmctsgh.edu.tw (J.-F.Y.); m871462@mail.ndmctsgh.edu.tw (Y.-F.S.);
doc31006@mail.ndmctsgh.edu.tw (Y.-F.W.)

2 Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University,
Taipei 112, Taiwan

3 Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 114, Taiwan
4 National Defense Medical Center, Institute of Medical Science, Taipei 114, Taiwan
* Correspondence: alvin4016@nycu.edu.tw (C.-F.L.); chunshulin@mail.ndmctsgh.edu.tw (C.-S.L.);

Tel.: +886-2-2826-7308 (C.-F.L.); +886-2-8792-7122 (C.-S.L.)

Abstract: (1) Background: The application of stereotactic body radiation therapy (SBRT) in hepa-
tocellular carcinoma (HCC) limited the risk of the radiation-induced liver disease (RILD) and we
aimed to predict the occurrence of RILD more accurately. (2) Methods: 86 HCC patients were en-
rolled. We identified key predictive factors from clinical, radiomic, and dose-volumetric parameters
using a multivariate analysis, sequential forward selection (SFS), and a K-nearest neighbor (KNN)
algorithm. We developed a predictive model for RILD based on these factors, using the random
forest or logistic regression algorithms. (3) Results: Five key predictive factors in the training set were
identified, including the albumin–bilirubin grade, difference average, strength, V5, and V30. After
model training, the F1 score, sensitivity, specificity, and accuracy of the final random forest model
were 0.857, 100, 93.3, and 94.4% in the test set, respectively. Meanwhile, the logistic regression model
yielded an F1 score, sensitivity, specificity, and accuracy of 0.8, 66.7, 100, and 94.4% in the test set,
respectively. (4) Conclusions: Based on clinical, radiomic, and dose-volumetric factors, our models
achieved satisfactory performance on the prediction of the occurrence of SBRT-related RILD in HCC
patients. Before undergoing SBRT, the proposed models may detect patients at high risk of RILD,
allowing to assist in treatment strategies accordingly.

Keywords: radiation-induced liver disease; stereotactic body radiation therapy; radiomics; predictive
model; decision making

1. Introduction

According to the 2017 Cancer Registry Annual Report of the Health Promotion Admin-
istration of Taiwan, primary liver carcinoma (PLC) accounts for 10% of newly diagnosed
cancers and 17.5% of cancer-related deaths. In addition, PLC is the second leading cause
of cancer-related deaths worldwide [1], and hepatocellular carcinoma (HCC) accounts for
approximately 85% of PLC cases.

Fewer than 30% of patients are eligible for curative surgery or transplantation at the
time of HCC diagnosis [2,3]. In such inoperable cases, radiofrequency ablation (RFA),
transarterial chemoembolization (TACE), and radiotherapy (RT) have been used as alter-
native options. In recent decades, with advances in radiotherapy techniques, the use of
stereotactic body radiotherapy (SBRT) to deliver high radiation doses to the tumor has
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become a feasible and attractive option. However, the tolerance of a normal liver and
related complications is still a constriction in the use of SBRT. Radiation-induced liver
disease (RILD) is a common complication of SBRT without an effective treatment [4]. Most
previous studies have identified baseline liver function as an important risk factor of RILD;
however, there is no strong consensus nor consistent results on the role of conventional
RT nor SBRT features, such as dose-volumetric parameters for RILD prediction [5–10].
Some studies reported that some dose-volumetric parameters, including liver mean dose,
effective liver volume, and doses to 700–900 cc, were associated with liver toxicity, but
other studies did not.

Radiomics is a method that mines features from radiographic medical images; these
features may be subsequently analyzed to quantitatively characterize a disease. Radiomics
has attracted significant research attention in the field of clinical medicine due to its potential
for screening, diagnosis, and prognosis [11–13], including the staging of liver fibrosis [14].
These findings indicate that radiomic features based on the computed tomography (CT)
image obtained before RT may provide information about baseline liver function and may
be associated with the risk of RILD.

To date, models for accurately estimating the risk of RILD in patients with hepato-
cellular carcinoma are limited. Thus, the present study aimed to develop a model for
predicting the occurrence of RILD, based on a combination of clinical, dose-volumetric,
and radiomic features.

2. Materials and Methods
2.1. Patients

Medical records of HCC patients treated with SBRT in our institution between July
2007 and June 2015 were retrospectively reviewed. The inclusion criteria were as follows:
(1) Dynamic CT images obtained before SBRT available for the analysis of radiomic features,
(2) dose-volumetric parameters were available, and (3) follow-up data available and follow-
up time for non-RILD patients longer than 4 months. The final dataset for the subsequent
analyses included 86 patients.

These patients had a confirmed diagnosis, and their treatment options were consid-
ered by a multidisciplinary team composed of experienced oncologists and radiologists.
The most common treatment indications were HCC, which was medically inoperable
or unresectable and unsuitable for TACE or RFA, and patients refused to undergo other
locoregional therapies.

This study was approved by our institutional review board; the informed consent
requirement was waived due to the retrospective nature of the present study.

2.2. SBRT

SBRT preparation, technique, and dose constraints are described in our previous
publication [15]. In brief, all patients were treated using the CyberKnife® system (Accuracy
Inc., Sunnyvale, CA, USA) with real-time tumor tracking devices. Most patients received
fiducial marker implantation for the tumor tracking technique. The gross tumor volume
(GTV) was defined as a radiographically visible tumor based on contrast-enhanced CT or
magnetic resonance imaging (MRI) scans; the clinical target volume (CTV) was equivalent
to the GTV. The planning target volume (PTV) was obtained by adding 0–8 mm of a margin
to the corresponding CTV; this was modified when dose-limiting organs overlapped, except
for the normal liver. We tended to give the highest dose to the gross tumor under the
allowable dose constraints. For patients with larger tumor size (>6 cm), Child–Pugh score
7–8, or multiple tumors (≥3), we might give a more conservative dose. Treatment was
administered in 2–6 fractions, with a total dose of 25–60 Gy (median 45 Gy) prescribed
to the PTV. The median, mean, and range of estimated equivalent dose in 2 Gy fractions
(EQD2) with α/β = 10 Gy were 71.2, 70.2, and 36.4–110.0 Gy, respectively. However, caution
should be taken that linear-quadratic model may overestimate the EQD2 when dealing
with a large fraction size (>5 Gy per fraction).
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2.3. Patient Follow-Up and Definition of RILD

All patients underwent follow-up consultation, liver function tests, and abdominal
dynamic CT and/or MRI scans at 1–4 months after the completion of SBRT, and at 3-month
intervals thereafter for outcome and side effect evaluation. Patients who experienced
disease progression received salvage or palliative therapy.

Classic RILD was defined as elevated levels of alkaline phosphatase more than twice
over the upper normal limit within 4 months [5]. Non-classic RILD was defined as elevated
levels of liver transaminases more than five times over the upper limit within 4 months [4]
or worsening of the Child–Pugh (CP) score by 2 or more points within 3 months [9]. Patients
with progressive HCC were not diagnosed with RILD even if they met these criteria. In
the present study, we included both the classic and non-classic RILD patients according to
above criteria.

2.4. Extraction of Radiomic Features

The radiomics feature extractions were performed only for the region of interest (ROI)
on the simulation CT. None of the follow-up images were used to calculate the radiomics
features. Our region of interest (ROI) in this study was the normal liver in the arterial
phase. It included the total liver volume minus the GTV, any cysts, and the gall bladder.
The ROIs were initially contoured by the medical physicist on the simulation CT, and it
would be modified by the doctor based on the consensus of two radiation oncologists.
We then saved these images in the format of Digital Imagine and Communications in
Medicine. We used the 3D Slicer software which is based on the py-radiomics module to
extract radiomic features [16]. Image resolution was resampled to the isotropic voxel size of
1 × 1 ×1 mm3 by applying the interpolation method for further calculation of 3D radiomic
features. Because there was an absolute Hounsfield unit of CT image, we fixed the bin size
at 25 to maintain the direct relationship with the original intensity scale. So, the intensity
within the delineated normal liver volume would be discretized into 5 bins, which was
suitable for the relatively homogenous organ under contrast CT including liver.

Overall, 107 radiomic features including 16 first-order statistics, 16 shape-based,
24 gray-level co-occurrence matrixes (GLCM), 16 gray-level run-length matrixes (GLRLM),
16 gray-level size-zone matrixes (GLSZM), 14 gray-level dependence matrixes (GLDM),
and 5 neighboring gray-tone difference matrixes (NGTDM), were extracted from each
patient. All the image preprocessing steps and subsequent radiomics extractions were per-
formed and complied with the Image Biomarker Standardization Initiative (IBSI) reference
manual [17].

2.5. Selection of Predictive Factors

We selected predictive factors from three aspects, which contained clinical, radiomic,
and dose-volumetric parameters. To determine the key clinical risk factor for RILD, we
determined the risk of RILD by fitting a binary logistic regression model based on character-
istics such as gender, age, alpha-fetoprotein levels, etiology, Eastern Cooperative Oncology
Group performance status, EQD2, and albumin–bilirubin (ALBI) score. To prevent multi-
collinearity between factors such as ALBI and CP class, we chose only one factor per clinical
indicator for analysis. Clinical factors with p-values of <0.05 in multivariable analysis were
included in the predictive model. Above analyses were performed in SPSS 22 (SPSS, Inc.,
Chicago, IL, USA).

Considering the curse of dimensionality in radiomic features, we used the K-nearest
neighbor (KNN) and the sequential forward selection (SFS) algorithm as the greedy meth-
ods to find the best combination of N features associated with RILD. Before the process
of feature selection, each feature was transformed into the standardized range (Z-score
transformation) based on the mean and standard deviation values of the study cohort.

For dose-volumetric parameters including GTV, normal liver volume, V5, V10, V15,
V20, V25, and V30, multivariable analysis is not suitable, as these parameters are interde-
pendent. Accordingly, we also used the KNN and SFS to identify the parameters associated



Biomedicines 2022, 10, 597 4 of 12

with RILD. Both radiomic and dose-volumetric parameter selections were performed with
Python 3.5 (Python Software Foundation, DE, USA).

2.6. Model Construction

Random forest (RF) and logistic regression (LR) models were used as classifiers to
determine whether the patient may develop RILD after receiving SBRT. The model was
computed using Python 3.5. To build this model, we randomly split our dataset (14 RILD
cases among 86 patients) at the ratio of 6:2:2 into the training, validation, and test sets.
The training set was used to train the model; the extra cases were generated from the
minority class in the training set, using the synthetic minority oversampling technique
(SMOTE) [18] to modify imbalanced data. We then calculated the possibility score of RILD
by fitting the training set to the RF or LR model based on the previously identified predictive
factors. The threshold indicative of RILD risk was initially set to 0.5. We subsequently
adjusted this threshold and higher-level parameters of the candidate model based on model
performance on the training and validation sets to determine the final model. We evaluated
the performance of the final model using the test set.

In addition to the model validation, by using the abovementioned hold-out approach,
we further applied a 10-fold cross-validation method to validate our model. We randomly
split our dataset into 10 subsets with equal sizes. For each run, one of the 10 subsets
would be preserved as validation set, while the remaining 9 subsets were used as the
training set. In each training set, we applied the SMOTE on the minority class to reduce
the potential prediction bias caused by the imbalanced data. This validation process based
on the validation set would be repeated for 10 times, and the model performance was
calculated by the average and standard deviation across 10 evaluations. The results of
comparison between the hold-out and 10-fold cross-validation methods will be provided
in the Supplementary Materials.

2.7. Statistical Analysis

We evaluated the performance of the predictive model using a confusion matrix with
sensitivity, positive predictive value (PPV), specificity, and negative predictive value. In a
model that predicts liver toxicity, such as RILD, sensitivity and PPV are the most important
indexes; therefore, we used the F1 score to assess model performance. The F1 score was
equal to the harmonic mean of sensitivity and PPV. Moreover, both the area under the
precision–recall curve (AUPRC) and receiver operating characteristic curve (AUROC) were
used to assess output quality. These analyses were all performed with Python 3.5.

3. Results
3.1. Patient Characteristics

A total of 86 patients were identified, of which 14 developed RILD. There were 14 cases
of non-classical RILD, and one of these patients developed both classical and non-classical
RILD at the same time. Patient characteristics are summarized in Table 1. Overall, the
mean age was 63.2 years, and the median tumor size was 5.6 (range, 1.0 to 20.1) cm. A
total of 75 (87.6%) patients had hepatitis B or C, and 32 (37.2%) presented with portal vein
thrombosis. Sixty-eight (79%) and 36 (41.9%) patients were CP class A and ALBI Grade 1,
respectively. The SBRT dose ranged from 25 to 60 Gy in 2–6 fractions. The median follow-up
time was 14.7 (range, 1–105) months for all patients.
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Table 1. Patient, tumor, and treatment characteristics for overall, RILD and non-RILD cohorts.

Characteristic All Patient (N = 86) Without RILD (N = 72) With RILD (N = 14)

Age (mean) 63.2 ± 12.3 62.9 ± 12.4 65.2 ± 12.2

Sex

Female 21 (24.4%) 15 (20.8%) 6 (42.9%)
Male 65 (75.6%) 57 (79.2%) 8 (57.1%)

Hepatitis B or C 75 (87.2%) 61 (84.7%) 14 (100%)

With prior tx before SBRT 54 (62.8%) 46 (63.9%) 8 (57.1%)

Tumor size
Mean, cm 6.4 ± 3.7 6.3 ± 3.9 6.6 ± 2.5

Median (range), cm 5.6 (1–20.1) 5.5 (1–20.1) 6.6 (2–13)

BCLC stage
0-A 15 (17.4%) 14 (19.4%) 1 (7.1%)

B 11 (12.8%) 9 (12.5%) 2 (14.3%)
C 59 (68.6%) 49 (68.1%) 10 (71.4%)
D 1 (1.2%) 0 1 (7.1%)

ECOG
0–1 75 (87.2%) 66 (91.7%) 9 (64.3%)
2–4 11 (12.8%) 6 (8.3%) 5 (35.7%)

PVT 32 (37.2%) 24 (33.3%) 8 (57.1%)

CP class
A 68 (79%) 63 (87.5%) 5 (35.7%)
B 18 (21%) 9 (12.5%) 9 (64.3%)

ALBI grade
1 36 (41.9%) 35 (48.6%) 1 (7.1%)
2 48 (55.8%) 37 (51.4%) 11 (78.6%)
3 2 (2.3%) 0 2 (14.3%)

Dose 25–60 Gy/2–6 fx 30–60 Gy/2–6 fx 25–55/5 fx

GTV volume

Mean, cc 217.6 ± 305.0 221.5 ± 325.0 197.9 ± 178.8

Median (range), cc 106.8 (0.7–1817.2) 101.7 (0.7–1817.2) 139.0 (9.4–572.9)

Normal liver volume (mean, cc) 1384.0 ± 522.9 1404.0 ± 515.8 1281.1 ± 566.1

V5 (mean,%) 69.4 ± 20.3 69.0 ± 21.6 71.6 ± 11.9
V10 (mean,%) 44.8 ± 18.6 45.3 ± 19.8 42.3 ± 10.6
V15 (mean,%) 27.1 ± 12.5 27.5 ± 13.2 25.1 ± 8.5
V20 (mean,%) 17.5 ± 8.7 17.7 ± 9.1 16.2 ± 6.5
V25 (mean,%) 11.7 ± 6.5 11.9 ± 6.7 10.6 ± 5.6
V30 (mean,%) 7.7 ± 4.9 7.8 ± 4.9 7.0 ± 4.9

Median f/u (month) 14.7 (1–105) 18.2 (1.7–105) 2.8 (1–58)

RILD: radiation-induced liver disease, tx: treatment, SBRT: stereotactic body radiation therapy, cm: centimeter,
BCLC: Barcelona Clinic Liver Cancer, ECOG: Eastern Cooperative Oncology Group, PVT: portal vein thrombosis,
CP class: Child–Pugh class, ALBI: albumin–bilirubin, GTV: gross tumor volume, Gy: gray, fx: fractions, cc: cubic
centimeter, f/u: follow up.

3.2. Predictive Factors

Multivariable LR analysis revealed that the ALBI score was the only independent
predictor of RILD among the clinical factors (Table 2). Besides, we identified a combination
of radiomic features associated with RILD using the KNN and SFS algorithms. When
the number of the nearest neighbors, K, was equal to three, and the number of features
of the best combination, N, was equal to two, we obtained the highest F1 score of 0.762
with the combination of the difference average (GLCM feature) and strength (NGTDM
feature). Similarly, among dose-volumetric parameters, using the KNN and SFS method,
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we identified the combination of V5 and V30 with the highest F1 score (0.678), given K = 2
and N = 2.

Table 2. Analysis of the clinical factor of RILD using logistic regression.

Clinical Variable
Multivariate Analysis

HR 95% CI p Value

Gender 0.481 0.010–23.675 0.713

Age 1.041 0.859–1.261 0.683

Pretx AFP 1.000 0.999–1.001 0.576

Etiology 0.952
HBV vs. no 2.256 × 1010 - 0.998
HCV vs. no 4.076 × 1010 - 0.998

HBV and HCV vs. no 1.314 × 1010 - 0.998

ECOG
2–4 vs. 0–1 57.790 0.613–5444.863 0.080

EQD2 1.018 0.901–1.151 0.770

ALBI score 91.304 2.700–3087.382 0.012
RILD: radiation-induced liver disease, Pretx: pre-treatment, AFP: alpha-fetoprotein, HBV: hepatitis B, HCV:
hepatitis C, ECOG: Eastern Cooperative Oncology Group, EQD2: equivalent dose in 2Gy fractions, ALBI: albumin–
bilirubin.

3.3. Random Forest Model

The procedure of the factor selection identified the ALBI grade, difference average,
strength, V5, and V30 as factors associated with RILD. After oversampling the training set
using SMOTE, we obtained a dataset of 84 cases with 42 RILD patients. We determined the
probability score of RILD in this training set by fitting an RF model to the key predictive
factors. The accuracy of the model in the training set was 100%. The AUPRC and AUROC
were both 1 (Figure 1A).

Moreover, the accuracy, sensitivity, PPV, and F1 score of the model in the validation set
were 88.9, 33.3, 100.0, and 0.5, respectively. The AUPRC and AUROC were 0.739 and 0.800
(Figure 1A), respectively. Based on the relationship between the F1 score and threshold
value in the validation set (Figure 1B), we adjusted the threshold from 0.5 to 0.456, which
was the best cut-off point; afterward, model accuracy, sensitivity, PPV, and F1 score in the
validation set increased to 94.4, 66.7, 100, and 0.8, respectively. Finally, we evaluated the
performance of the current model using the test set. The accuracy, sensitivity, PPV, and
F1 score were 94.4, 100, 75, and 0.857, respectively (Table 3). The AUPRC and AUROC
were 0.764 and 0.956 (Figure 1A), respectively. We also tried to build models without using
radiomics, and the results were shown in Figure 1C and Table 3.

Table 3. Summary of sensitivity, specificity, and accuracy rates for prediction of RILD in the test set
by random forest and logistic regression model for hepatocellular carcinoma treated with SBRT.

Random Forest
(With Radiomics)

Random Forest
(Without Radiomics)

Logistic Regression
(With Radiomics)

Logistic Regression
(Without Radiomics)

Sensitivity 1.000 1.000 0.667 0.667
Specificity 0.933 0.600 1.000 0.733

Positive predictive rate 0.750 0.333 1.000 0.333
Accuracy 0.944 0.667 0.944 0.722
F1 score 0.857 0.500 0.800 0.444
AUROC 0.956 0.844 0.889 0.733

RILD: radiation-induced liver disease, AUROC: area under receiver operating characteristic.
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Figure 1. Receiver operating characteristic curve for the random forest (RF) model in training,
validation, and test sets with (A) or without (C) radiomic features. (B) The relationship between
sensitivity, positive predictive rate, F1 score, and threshold values of the RF model in the validation set.

3.4. Logistic Regression Model

After oversampling the training set using the SMOTE, we fitted an LR-based model
with the same key predictive factors (ALBI grade, difference average, strength, V5, and
V30). The accuracy of the model in the training set was 89.3% and the F1 score was 0.901.
The sensitivity, PPV, AUPRC, and AUROC were 97.6, 83.7, 0.915, and 0.938 (Figure 2A),
respectively. The accuracy of the model in the validation set was 94.4% and the F1 score was
0.8. The sensitivity, PPV, AUPRC, and AUROC were 66.7, 100, 0.850, and 0.956 (Figure 2A),
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respectively. We then determined the relationship between the F1 score and the threshold
value (Figure 2B), which revealed 0.531 as the best cut-off point. Finally, we evaluated the
final LR model using the test set. The accuracy of the LR model was 94.4%. The sensitivity,
PPV, and F1 scores were 66.7, 100, and 0.8 (Table 3). The AUPRC and AUROC were 0.777
and 0.889 (Figure 2A), respectively. We also tried to build the LR model without using
radiomics, and the results were shown in Figure 2C and Table 3.

Figure 2. Receiver operating characteristic curve for the logistic regression (LR) model in training,
validation, and test sets with (A) or without (C) radiomic features. (B) The relationship between sen-
sitivity, positive predictive rate, F1 score, and threshold values of the LR model in the validation set.
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4. Discussion

To the best of our knowledge, this is the first study to propose a predictive model of
RILD, based on the combination of radiomic, clinical, and dose-volumetric parameters in
HCC patients receiving SBRT. The proposed models have a high F1 score, AUPRC, and
AUROC for predicting RILD. In the RF-based model, the F1 score, AUPRC, and AUROC
were 0.857, 0.764, and 0.956, respectively, while the corresponding values for the LR-based
model were 0.800, 0.777, and 0.889, respectively (Table 3).

The prevalence of RILD varies from 10 to 36% in HCC patients [4,5,19], and its poor
prognosis is universal. Baseline liver function remains the only established risk factor for
RILD; it is captured by CP class [4,6,7] or ALBI grade [20,21]. Other factors including V5
to V40 [8], male sex [5], hepatitis B status [4], and D700 to 900 cc [9] remain controversial.
Besides, only a few studies have constructed predictive models based on these risk factors.

Dawson et al. [5] proposed a model that captures the dose-volume relationship of
the liver and RILD risk in a 3D conformal RT (3DCRT) with conventional fractionation,
using the Lyman–Kutcher–Burman normal tissue complication probability (NTCP) model.
The accuracy, F1 score, sensitivity, and PPV values of the model were 87.1, 0.25, 25, and
25%, respectively, in CP class A patients [5,10]. Similarly, Xu et al. generated a modified
NTCP model to estimate the risk of RILD in PLC patients treated with hypofractionated
(5–6 Gy per fraction) 3DCRT [10]. The accuracy, F1 score, sensitivity, and PPV values of
the model were 72, 0.35, 87.5, and 21.9%, respectively, in CP class A patients. Moreover,
using a similar patient cohort, Zhu et al. also developed an artificial neural network (ANN)
model to predict RILD [22]. However, as a powerful deep learning algorithm, the ANN
model requires big datasets. Thus, the performance of this ANN model was not better
than that of the modified NTCP model; its accuracy, F1 score, sensitivity, and PPV values
were in the range of 79.6 to 88.2, 0.39 to 0.61, 75 to 87.5%, and 26.1 to 41.2%, respectively.
The modified NTCP model and the ANN model presented with high sensitivity but low
PPV. These findings may not translate into the clinical setting, given the false-positive rate
of approximately 70%, which may lead to under-treatment because the risk of RILD is
overestimated. Additionally, Su et al. [23] developed models and nomograms to predict
radiation-induced hepatic toxicity based on a multivariable logistic regression formula
with better sensitivity and specificity. The nomogram was made up of two factors, namely
a pre-CP score and a dosimetric parameter, such as V15. However, we knew that the
prescribed dose and fraction size may vary in the clinical practice to each HCC case, which
makes it difficult to define the identical dose constraints to the normal liver [24], because
the impact of “V15” may be different from the perspective of the biologically effective dose.
Therefore, we believe that adding radiomics in to the predictive model can increase its
stability and accelerate the progress of seeking individualized dose constraints.

Since the traditional NTCP model was not suitable for extreme hypofractionated
RT (>5 Gy per fraction), which includes SBRT, our predictive model using the LR or RF
algorithm was based on the clinical, dose-volumetric, and radiomic parameters. In addition,
to balance the importance of sensitivity and PPV, we evaluated our model using the F1
score. In the RF-based model, the accuracy, F1 score, sensitivity, and PPV were 94.4, 0.857,
100, and 75%, respectively, in the test set. The corresponding test set values in the LR-based
model were 94.4, 0.8, 66.7, and 100%, respectively (Table 3). The high sensitivity of the
present models suggests this model may detect patients at high risk of RILD before SBRT,
allowing us to modify further treatment plans accordingly. Moreover, the high PPV and
low false-positive rate of our models may help reduce the risk of under-treatment due to
the relatively conservative prescribed dose or small PTV.

The present study differed from previous studies in that we apply radiomic fea-
tures as predictive factors, which may detect the histopathological changes in the liver
through images. The pathogenesis of RILD included complex responses related to vascular
changes, increased collagen synthesis, and the sequential activation of growth factors and
cytokines, leading to the deposition of the extracellular matrix and liver fibrosis [25,26].
Histopathological changes in classical RILD were similar to those observed in vein occlusive
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disease [27]. The obstruction of the outer cavity of the hepatic vein was possibly caused by
radiation-induced endothelial cell damage [28], and the mechanism of non-classic RILD
involved hepatocellular loss, hepatic sinusoidal endothelial death, and the activation of
myofibroblast-like hepatic stellate cells [29]. Therefore, radiomic features on simulation
CT images may identify the high-risk liver for RILD development, such as the liver with
regenerating hepatocytes-loss or initially obstructed veins. This observation could par-
tially account for the higher F1 scores and AUROC when combining radiomic features
in our model (Figures 1 and 2 and Table 3). Representative cases in Table S2 also demon-
strated that a predictive model with radiomic features helps detect the high-risk patient of
RILD more accurately compared to those only judged by the clinical and dose-volumetric
characteristics. Besides, we calculated the feature importance score of our RF model by
the Shapley additive explanation (SHAP) model [30], which revealed that the influence
of radiomics is second only to ALBI (Figure S1). Overall, the ALBI grade was the most
important influential feature. Patients with a higher ALBI grade, lower value of difference
average, or strength, increased the chances of RILD occurrence. However, V5 showed a
nonlinear trend that a low or high feature value may reduce the chance of RILD, but the
intermediate values may have a high chance of RILD. Finally, V30 showed less impact on
the model decision because of its narrower distribution compared to other features.

This study had several limitations. First, it was a retrospective study and included
patients from a single medical center, resulting in a relatively small sample size and the lack
of an external validation set. Therefore, to examine our model reliability, we divided our
sample into training, validation, and test sets at the beginning. We evaluate the performance
of our model by the independent test set. Though the number of HCC patients receiving
SBRT is still small compared to those receiving TACE or RFA in clinical practice, the role
of SBRT has been more and more important in HCC recently, and the RILD significantly
affected the outcome of these patients. Thus, we hoped this study could be at least a pioneer
study for RILD prediction with radiomics.

Second, we decided not to apply filters to develop a response map to calculate more
radiomic features, because features derived from response maps may lack robustness.
However, we may also miss some RILD-related features at the same time. Third, we
applied the SMOTE to the training set to redress the class imbalance but oversampling the
minority might result in model overfitting. Nevertheless, it seemed that we achieved the
acceptable bias-variance trade-off, since the AUROC between different sets was similar
(Figures 1 and 2A), which suggested little possibility of overfitting. In addition, most of the
performance indexes were comparable between the estimations using cross-validation data
and the originally proposed hold-out approach, especially for the random forest model.
These results may also indicate that there were no concerns of overfitting in the proposed
models (Table S1). Fourth, the median tumor size was 5.6 cm in our study, which was
larger compared to some studies [7,9]. This information may remind readers to be cautious
when extrapolating our model to the patient with a much smaller HCC. Thus, to reduce
the possible biases, we also included the GTV volume and the dose-volumetric parameters
when analyzing the predictive factors of the RILD. It seemed that there was no direct
relationship between GTV volume and RILD development in our study.

5. Conclusions

In the present study, we identified five key risk factors for SBRT-related RILD: ALBI
grade, difference average, strength, V5, and V30. Based on these factors, we developed the
first radiomic-based predictive model for SBRT-related RILD in patients with HCC; our RF
and LR models had high sensitivity, PPV, and F1 scores. The present model may benefit
treatment strategies in clinical practice by detecting patients at high risk of RILD before
undergoing SBRT. Our results emphasized the possibility to accurately predict RILD with a
radiomic-based model, though it still required a large dataset and prospective validation to
confirm the clinical feasibility.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10030597/s1, Table S1: Model performance for
prediction of RILD using random forest and logistic regression models for hepatocellular carcinoma
treated with SBRT; Table S2: Representative cases for the predictions of RILD (Test Case #15 and
#16); Figure S1: Color labeling of each sample point indicates the feature value (red for the high
values and blue for low values). The horizontal axis represents the SHAP value reflecting the imapct
of feature on model decision. Combining the feature values (color of points) and its distribution
along the horizontal axis, we could observe the association of feature value with the possibility of
RILD occurrence.
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