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Background: Obesity, hypercholesterolemia, elevated triglycerides, and type 2 diabetes are 

major risk factors for metabolic syndrome. Hamsters, unlike rats or mice, respond well to diet-

induced obesity, increase body mass and adiposity on group housing, and increase food intake 

due to social confrontation-induced stress. They have a cardiovascular and hepatic system similar 

to that of humans, and can thus be a useful model for human pathophysiology.

Methods: Experiments were planned to develop a diet-induced Bio F
1
B Golden Syrian 

hamster model of dyslipidemia and associated nonalcoholic fatty liver disease in the metabolic 

syndrome. Hamsters were fed a normal control diet, a high-fat/high-cholesterol diet, a high-

fat/high-cholesterol/methionine-deficient/choline-devoid diet, and a high-fat/high-cholesterol/

choline-deficient diet. Serum total cholesterol, high-density lipoprotein cholesterol, low-density 

lipoprotein cholesterol, triglycerides, glucose, atherogenic index, and body weight were quanti-

fied biweekly. Fat deposition in the liver was observed and assessed following lipid staining 

with hematoxylin and eosin and with oil red O.

Results: In this study, we established a diet-induced Bio F
1
B Golden Syrian hamster model 

for studying dyslipidemia and associated nonalcoholic fatty liver disease in the metabolic syn-

drome. Hyperlipidemia and elevated serum glucose concentrations were induced using this diet. 

Atherogenic index was elevated, increasing the risk for a cardiovascular event. Histological analysis 

of liver specimens at the end of four weeks showed increased fat deposition in the liver of animals 

fed with a high-fat/high cholesterol diet, as compared to animals fed with the control diet.

Conclusion: Our study established that hamsters fed with a high-fat/high-cholesterol diet 

developed fatty liver and mild diabetes. Bio F
1
B hamsters fed with a high-fat/high-cholesterol 

diet may thus be a good animal model for research on the treatment of diet-induced metabolic 

syndrome complicated by nonalcoholic fatty liver disease.
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Introduction
Obesity is exponentially increasing, and its pervasiveness is at epidemic levels in the 

world. Obesity may be the cause of or a precursor to other diseases, such as insulin 

resistance and dyslipidemia (hypertriglyceridemia and reduced high-density lipopro-

tein [HDL] cholesterol). The term “metabolic syndrome” was coined to describe the 

concurrent occurrence of these diseases. Individuals with metabolic syndrome are at 

amplified risk for type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver 

disease.1–3 The liver is a target organ in metabolic syndrome, in which it manifests 

itself as nonalcoholic fatty liver disease, spanning the spectrum of hepatosteatosis to 

hepatocellular carcinoma through steatohepatitis and cirrhosis. Because metabolic 
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syndrome and nonalcoholic fatty liver disease affect the 

same insulin-resistant patients, it stands to reason that there 

would be a similarity between the metabolic syndrome and 

nonalcoholic fatty liver disease in terms of prevalence, 

pathogenesis, clinical features, and outcome.4 The costs of 

treating metabolic syndrome and its associated disorders 

are growing, and the research community is seeking animal 

models that mimic the human phenotype so that potential 

therapies can be tested.

Data from various animal models have provided the con-

ceptual framework for much of the clinical investigations, 

and permit study of the pathophysiology and fundamental 

biological mechanisms of disease. Continued studies in 

animals provide further clarification of the pathogenesis 

of metabolic disorders and may therefore be very useful to 

improve diagnosis and treatment of metabolic syndrome.5–7 

However, the study of the pathophysiologic process of meta-

bolic syndrome and nonalcoholic fatty liver disease is limited 

by the lack of appropriate animal models that can depict 

the combined features of nonalcoholic fatty liver disease 

and the cluster of metabolic abnormalities associated with 

metabolic syndrome.

Obesity is strongly associated with hepatosteatosis 

in humans.8 Nonetheless, it remains unclear whether the 

intake of excessive amounts of food by itself causes fatty 

liver. Because of the pivotal role that diet plays in causing 

metabolic syndrome in humans, most metabolic disease 

animal models use diet as a way to precipitate this syndrome. 

Uncertainty abounds as to whether or not diets that are 

augmented with certain types of food are more likely to 

cause obesity and/or fatty liver than other types of diets. 

It is difficult to control for all of the complex genetic and 

environmental factors that control energy homeostasis in 

humans. Therefore, studies that manipulate dietary composi-

tion of food and its consumption in animal models may well 

provide vital insights into the role of diet in the pathogenesis 

of obesity-related hepatic steatosis.

In order to gain a greater understanding of human obe-

sity, rodents are the commonly used models. Generally, 

high-fat diets, high sucrose/fructose diets, diets high in 

saturated fats and restricted in certain essential nutrients, 

like choline and methionine, have been shown to cause 

obesity and fatty livers in a number of different strains and 

species of rodents.9 High-fat/high-cholesterol Western diets 

induce extreme hypercholesterolemia and also lead to con-

comitant features of the metabolic syndrome, such as weight 

gain, decreased HDL levels, obesity, hypertriglyceridemia, 

hyperinsulinemia, and insulin resistance.10–12 In addition, 

these diets generate pathologies independent of atheroscle-

rosis, such as changes in fur and skin integrity, changes in 

plasma lipids, and hepatic steatosis.13 This suggests that 

“overnutrition” might play a role in the genesis of obesity-

related fatty liver disease and other risk factors associated 

with metabolic syndrome.14 Unfortunately, it is relatively 

difficult to induce obesity in normal rats and mice.15 Not 

all high-fat diets are the same, because both the level and 

source of fat may differ between diets. Most rodents tend 

to become obese on high-fat diets, but there can be vari-

able responses in insulin resistance, triglycerides, and other 

parameters, depending on the strain and gender, and source 

of dietary fat.14 Normal mice and rats are not ideal models 

in which to raise the levels of circulating total cholesterol 

and low-density lipoprotein [LDL] cholesterol, thereby 

increasing the risk of cardiovascular disease. These mod-

els typically have very low levels of total cholesterol and 

LDL cholesterol, but high levels of HDL cholesterol.14–16 

This is in contrast to humans, in whom the reverse is true. 

Moreover, like human populations, rodent populations dif-

fer in their susceptibility to diet-induced obesity and fatty 

liver, suggesting that subtle strain, age, or gender-related 

variations in genetic factors that regulate intermediary 

metabolism probably influence the response to various 

diets. For example, elevated triglycerides are associated 

with an increase in oxidative stress, and special diets are 

needed to mimic lipid profiles similar to those of humans. 

Therefore, it is clear that there is a necessity to develop an 

animal model of metabolic syndrome expressing fatty liver 

and other cardiovascular risk factors. To achieve this goal, 

we used Golden Syrian hamsters, because they have been 

observed to respond consistently to dietary modulation of 

cholesterol, and have shown a close similarity to the human 

lipoprotein profile in comparison with other animals of 

similar size, eg, rats and mice.17

Materials and methods
Animals
Male Bio F

1
B Golden Syrian hamsters (Mesocricetus 

auratus, 8 weeks old, approximately 90 g) were obtained from 

Biobreeders Inc (Watertown, MA) and housed two per cage in a 

room with controlled temperature (22–24°C), humidity and an 

inverse alternating light and dark cycle (12:12-hour light:dark 

cycle, lights on at 7 pm). All experimental protocols complied 

with the Animal Care Committee of McGill University and 

Canadian Council on Animal Care guidelines.
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Experimental protocol and diets
After arrival, animals were allowed free access to a basal 

diet of commercial rodent ration (LabDiet® rodent labora-

tory chow 5001, Purina Laboratories, St Louis, MO) and 

water for two weeks to allow adaptation to the environment. 

Baseline values of serum total cholesterol were measured 

at the end of two weeks in hamsters that were deprived of 

food overnight. Further, these basal serum total cholesterol 

values were used to assign animals into four groups using 

a randomized block design. The control group continued 

to be fed the reference diet 5001. Each of the other groups 

(n = 8) was from then onwards fed a grain-based, hyper-

cholesterolemic chow diet (Modified LabDiet laboratory 

rodent diets with added cholesterol and 6% coconut oil 

as saturated fat, Purina Laboratories, see Table  1), with 

free access to water for five weeks. Diet consumption and 

body weight were measured every 10 days. Food efficiency 

ratio was computed as g body weight gain/g feed intake. 

Blood samples were collected once every 14  days from 

food-deprived hamsters (14  hours) that has been mildly 

sedated using 3 µL of 5 mg/mL acepromazine. Briefly, after 

immobilizing the hamster, approximately 150 µL of blood 

was collected from the lateral saphenous vein which runs 

dorsally and then laterally over the tarsal joint with a sterile 

23 gauge/25 mm needle, into Microtainer® serum separator 

tubes from Becton Dickinson (Franklin Lakes, NJ). At the 

end of the experimental period (five weeks), the hamsters 

were euthanized by carbon dioxide asphyxiation and blood 

was withdrawn by cardiac puncture using a 22 gauge/25 mm 

needle and a 5 mL syringe. Cardiac blood was transferred 

into serum separator tubes and allowed to clot prior to 

placement on ice.

Serum cholesterol and triglyceride 
measurements
Blood from hamsters that had been food deprived for 14 hours 

was collected under mild sedation into serum separator 

tubes. The blood was allowed to clot at 23°C for 30 minutes 

and subsequently placed at 4°C until centrifugation. Serum 

was separated by low-speed centrifugation at 2000  g for 

20 minutes at 4°C temperature. Serum was frozen at −85°C 

until analysis for serum total cholesterol, HDL cholesterol, 

LDL cholesterol, triglycerides, and glucose. Serum total 

lipids and glucose were assayed by conventional enzymatic 

methods on a Hitachi 911 automated analyzer from Roche 

Diagnostics (Laval, QC, Canada). Total cholesterol, HDL 

cholesterol, triglycerides, and glucose were measured on the 

Hitachi 911 automated analyzer using reagent kits supplied 

by Roche Diagnostics. The precision performance of these 

assays was within the manufacturer’s specifications. LDL 

Table 1 Profile of the normal and hypercholesterolemic test diets

LabDiet® reference 
rodent laboratory chow

Modified LabDiet laboratory rodent test diet

Nutritional profile 5001 5A4C 5D4F 5D4E
Protein, % 23.9 25 15.1 22.5
Fat (ether extract), % 5 10.3 10 10.2
Total saturated fatty acids, % 1.56 6 6 5.89
Total monounsaturated fatty acids, % 1.6 2.10 1.24 2.10
Polyunsaturated fatty acids, % 1.42 1.15 2.19 0.87
Cholesterol, ppm 200 500 500 500
Linoleic acid, % 1.22 1.57 2.16 1.60
Omega-3 fatty acid, % 0.19 0.19 0.03 0.14
Choline chloride, ppm 2250 2299 0.00 1200
Methionine, % 0.67 0.43 0.13 0.4
Fiber, % 5.1 5.1 0.0 4.6
Nitrogen-free extract, % 48.7 42.5 – 46.4
Starch, % 31.9 28.37 – 36.89
Sucrose, % 3.70 2.21 – 1.34
Total digestible nutrients, % 76 81 – 80.9
Calories provided by:
Protein, % 28.5 27.5 14.4 24.5
Fat, % 13.5 25.6 21.3 25
Carbohydrates, % 57.9 46.9 64.3 50.6

Abbreviations: 5A4C, diet adequate in methionine and choline levels; 5D4F, diet deficient in methionine and devoid of choline; 5D4E, diet deficient in choline but with 
adequate levels of methionine.
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cholesterol was calculated by the Friedewald equation.18 

The atherogenic index was determined as (total cholesterol-

HDL cholesterol)/HDL cholesterol.19

Collection of the liver
The whole liver was excised from each animal, immersed in 

chilled phosphate-buffered saline and blotted dry. A 4 mm 

section of the liver was placed into a histological cassette. 

The cassette containing the liver section of each animal was 

individually immersed in a 10% (v/v) buffered formalin 

phosphate solution for fixing and subsequent staining.

Histology
Liver sections soaked in 10% buffered formalin phosphate 

solution were processed for normal histological section. 

The formalin-fixed, paraffin-embedded tissue samples were 

ultrasectioned (4–5  µm thickness), stained with hema-

toxylin and eosin and Oil red O, and examined under a light 

microscope.

Statistical analysis
Results were expressed as mean ± standard deviation. The 

significance of the difference between the means of test and 

control studies was established by repeated-measures analy-

sis of variance. An alpha level of 0.05 was set to determine 

statistical significance (P , 0.05).

Results
Following a two-week acclimatization to the basal control 

diet, the animals were sorted into control and diet groups 

based on basal serum total cholesterol concentrations to start 

the experimental period. During the four-week experimental 

acute feeding period, the animals were divided into four 

groups, including control animals that received a normal 

diet. Three different hypercholesterolemic-hyperlipidemic 

diets were tested during the study, ie, a diet with adequate 

methionine and choline levels (5A4C), a diet deficient in 

choline but with adequate levels of methionine (5D4E) and, 

lastly, a diet which was deficient in methionine and devoid 

of choline (5D4F).

Body weight and general health
The body weights of all animals were monitored at 10-day 

intervals and are presented in Figure 1. Animals in all treat-

ment groups showed an increase in body weight over the 

duration of study, which could be attributed to the normal 

growth phase and the hyperlipidemic diets. The animals fed 

on the 5D4E diet showed the highest increase in body weight 

(21.3%), with each hamster putting on 7.25 g per week. The 

5A4C diet induced a 16% increase in body weight over the 

four-week period, with each animal gaining an average of 

5.25 g per week. The normal diet leads to an 8.6% increase 

in body weight, corresponding to a weight gain of 2.75 g per 

animal per week. In contrast, hamsters fed on the 5D4F diet 

did not show any significant weight gain during the experi-

mental period. Diets deficient in methionine and choline have 

been proven to lead to weight loss in rodent models studied 

earlier.20 However, the hamsters fed on this choline-devoid 

diet showed marked differences in their physical appearance. 

These animals showed crusting of the upper lip, loss of fur 

texture with the hair appearing wet or greasy, and were gener-

ally very sluggish. The animals fed on the other diets were all 

very active and appeared to be in good health. Food intake 

was significantly lower in hamsters on diets which were either 
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choline.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2011:4 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

199

Diet-induced hamster model for fatty liver

deficient or devoid of choline (Figure 1) compared with the 

other two diets. Methionine-deficient and choline-deficient 

diets have been associated with lower food intakes in prior 

studies on rodents.21,22 The 5D4E diet showed the best food 

efficiency ratio among the diets evaluated.

Serum total cholesterol levels
Compared with the baseline control level, serum total choles-

terol levels were elevated in all groups of animals on the test 

diets (Figure 2A). As other short-term studies have shown, 

this elevation of serum total cholesterol concentration likely 

resulted from the dietary cholesterol ingested.23,24 Hamsters 

fed the 5D4E diet showed a dramatic increase (232%) in 

serum total cholesterol levels (P , 0.0001). The 5A4C diet 

led to a 25% increase in total cholesterol levels over the four-

week study (P = 0.084). Total cholesterol levels in hamsters 

on the 5D4F diet increased during the first two weeks, but 

reduced during the next two weeks, showing a 16% reduction 

in serum total cholesterol levels (P = 0.038).

Serum HDL and LDL cholesterol  
and triglycerides
HDL cholesterol decreased over the study period in all the 

experimental diet groups compared with the group on the 

normal diet (Figure 2B). The 5D4F diet showed the highest 

decrease in serum HDL cholesterol levels (P  ,  0.0001), 

followed by the 5D4E (P = 0.0006) and 5A4C (P = 0.0014) 

diets. In contrast, hamsters fed with the 5D4E diet showed 

a dramatic increase in LDL cholesterol levels (P , 0.0001) 

during the study, compared with those on a normal diet, the 

values for which remained stable (Figure 2C). The 5A4C diet 

had a similar effect on LDL cholesterol levels (P = 0.0049) 

although not to the same extent as did the 5D4E diet. Serum 

LDL cholesterol values for animals fed with the 5D4F diet 

showed a decreasing trend (P = 0.82). Hamsters fed with 

the 5D4E diet (P = 0.0007), 5D4F diet (P = 0.27), and the 

normal diet showed an increase in serum triglycerides, while 

the triglyceride values decreased for those with the 5A4C 

diet (P = 0.086, Figure 2D).
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Figure 2 Changes with time in serum A) total cholesterol, B) HDL cholesterol, C) LDL cholesterol, and D) triglycerides of hamsters (n = 8 per group) fed with a normal 
diet, 5A4C, 5D4F, or 5D4E. Animals were sacrificed after having been fed the respective diets ad libitum for four weeks. Liver triglycerides and serum lipoproteins were 
determined biweekly. Each point represents the mean ± standard deviation.
Notes: *P , 0.0001 for total cholesterol; *P = 0.0006 for HDL cholesterol; *P , 0.0001 for LDL cholesterol; and *P = 0.0007 for triglycerides.
Abbreviations: HDL, high-density lipoprotein; LDL, low-density lipoprotein; 5A4C, diet adequate in methionine and choline; 5D4F, diet deficient in methionine and choline; 
5D4E, diet adequate in methionine and deficient in choline.
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Glucose and atherogenic index
Glucose levels were elevated in all animals to varying 

extents. These doubled in the hamsters fed on the 5D4E 

diet (P , 0.0001), while those on the 5A4C diet showed an 

increase of 85% compared with baseline values (P = 0.011). 

In comparison, serum glucose levels showed a 48% and 25% 

increase in hamsters fed with the 5D4F diet (P = 0.0046) and 

normal diets, respectively (Figure 3A). The atherogenic index, 

which is correlated with cardiovascular disease, increased 

over five-fold in animals on the 5D4E diet (P , 0.0001), 

and by 50% in animals on the 5A4C diet (P = 0.0008). It 

remained stable in animals on the normal and 5D4F diets 

(P = 0.0020, Figure 3B).

Histopathology
Histopathological analysis of hamster liver samples through 

H&E and Oil red O staining show marked differences 

between the diets studied. Hematoxylin and eosin staining 

demonstrated elevated amounts of fat deposits in liver tissue 

from animals fed on the test diets (Figures 4B, 4C, and 4D) 

compared with the normal diet (Figure 4A). Macrovesicular 

deposition of fat and hepatocellular ballooning was observed 

in hamsters fed on the 5D4F (Figure  4B) while microve-

sicular fat deposits and ballooning to a lesser extent were 

found in hamsters on diets of 5A4C (Figure 4C) and 5D4E 

(Figure 4D). Oil red O staining of the liver tissue samples 

substantiate these results (Figure  5). A very high amount 
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Figure 3 Effect on A) atherogenic index and B) serum glucose on Bio F1B hamsters (n = 8 per group) on administering a normal diet, 5A4C, 5D4F, or 5D4E. Each point 
represents the mean ± standard deviation.
Notes: *P , 0.0001 for serum glucose and atherogenic index.
Abbreviations: 5A4C, diet adequate in methionine and choline; 5D4F, diet deficient in methionine and choline; 5D4E, diet adequate in methionine and deficient in 
choline.
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of fat deposition was found in hamsters fed on diet 5D4F 

(Figure 5C), followed by 5D4E (Figure 5D). Histological 

analysis confirm the development of fatty liver in animal 

models fed with the three test diets, compared with those on 

a normal diet. However, there were no signs of fibrosis.

Discussion
Animal models offer a convenient medium to investigate 

and understand the pathophysiology of disease and facilitate 

development of means to prevent or treat the studied disease. 

Studies on such models greatly contribute towards enhancing 

knowledge in the field. Animal models that express clinical 

manifestations of metabolic syndrome, such as insulin resis-

tance, fatty liver, and dyslipidemia, will be of immense value 

in understanding metabolic syndrome. We have investigated 

induction of metabolic syndrome in male Bio F
1
B Golden 

Syrian hamsters through nutritional intervention. The use of 

only male hamsters was encouraged to avoid gender-related 

response due to female hormones on a fatty acid diet.25

Serological and histopathological changes in hamsters fed 

on hyperlipidemic diets varying in methionine and choline 

levels in comparison with a normal diet were evaluated dur-

ing this study. Our results suggest that BioF1B Golden Syrian 

hamsters are a potential model for diet-induced metabolic 

syndrome with associated non-alcoholic fatty liver disease.

Among the three test diets, the choline-deficient 5D4E 

diet provided optimal induction of metabolic syndrome, 

while the methionine-deficient/choline-devoid 5D4F lead 

to some undesirable effects on the normal well being of the 

animals. The hamsters displayed several manifestations of 

the human metabolic syndrome. The hyperlipidemic effects 

of the diets were visibly demonstrated in the increased 

body weight and lipid profile of serological samples from 

hamsters fed on the test diets. The animals showed hyper-

glycemia and an elevated atherogenic index, which are 

commonly associated with metabolic syndrome. In addition, 

histopathological analysis revealed extensive diet-induced 

hepatocellular fat deposition and ballooning in the liver 

samples from the hamsters, while the control hamsters had 

normal liver histology. However, the spectrum of conditions 

characterized by fatty change in the liver had not progressed 

to necrosis, fibrosis, or inflammation. In comparison with the 

normal diet, the hyperlipidemic diets were also associated 

with elevated serum total cholesterol levels, decreased HDL 

cholesterol, and hyperglycemia and hypertriglyceridemia, 

thereby confirming the induction of metabolic syndrome and 

nonalcoholic fatty liver in the hamsters.

It is evident that special diets are needed to develop and 

study an animal model of metabolic syndrome. However, no 

phenotype of any animal model is guaranteed, and cautious 

choosing of the species and strain as well as satisfactory 

control over environmental factors is important. In this paper, 

we have shown that BioF1B Golden Syrian hamsters can be 

used as a model that develops clinical and histopathological 

manifestations of the human metabolic syndrome through 

dietary intervention. It is known that the dietary factors 

may promote multiple phenotypes,26,27 for example, the use 

A B

C D

Figure 4 Hematoxylin and eosin staining of liver tissue from hamsters fed with 
hyperlipidemic diets. Magnification 400×. A) Normal diet, B) diet adequate in 
methionine and choline (5A4C), C) diet deficient in methionine and choline (5D4F), 
and D) diet adequate in methionine and deficient in choline (5D4E). Hepatocytes 
are filled with microvascular and macrovesicular fat deposits, leaving the nuclei in a 
central position, and the hepatocytes have assumed a very foamy appearance.

A B

C D

Figure 5 Oil red O staining of liver tissue from hamsters fed on hyperlipidemic 
diets. Magnification 400×. A) Normal diet, B) diet adequate in methionine and 
choline (5A4C), C) diet deficient in methionine and choline (5D4F), and D) diet 
adequate in methionine and deficient in choline (5D4E). Hamster hepatocytes are 
filled with microvesicular and/or macrovesicular fat deposits; they are depicted as 
reddish-orange deposits, as shown with Oil red O staining.
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of high-fat diets induces obesity, insulin resistance, and 

hyperglycemia and the use of high-fructose diets promote 

insulin resistance, hypertriglyceridemia, and hypertension. 

However, we did not monitor for reversion of the phenotypic 

characteristics of the animal model by replacing their diet 

from hyperglycemic to normal diet. In addition, it should be 

noted that the hamster diet, although adequate for the pro-

posed work, does not represent an actual human diet that can 

potentially stimulate nonalcoholic fatty liver disease. Thus, 

this study opens up new approaches to investigate further the 

long-term effects of choline deprivation on the animal model. 

This concurrent advance of diseases is not unexpected, given 

the multifaceted interactions and relationships between these 

diseases. At present, diet-induced animal models of metabolic 

syndrome are still being developed, and there may not be one 

single model that will satisfy all metabolic disease research 

needs. Ongoing research using different species/strains along 

with existing and new purified ingredient diet formulations 

should lead to the development of more and more useful 

metabolic syndrome phenotypes.

Conclusion
In conclusion, we have developed a successful model of 

metabolic syndrome in BioF1B Golden Syrian hamsters. This 

metabolic syndrome model with hyperlipidemia and insulin 

resistance was established (along with nonalcoholic fatty 

liver) in hamsters fed a high-fat, high-cholesterol, inadequate 

methionine- and choline-containing diet. This model may be 

useful for the evaluation of preventive medicine, including 

food factors, for obesity-induced metabolic syndrome. The 

increasing prevalence of obesity, diabetes and insulin resis-

tance, and nonalcoholic fatty liver disease within Western 

society makes research in this field vital. In addition, using 

this model, it may be possible to elucidate the mechanisms 

involved in the development of metabolic syndrome, espe-

cially the association between lipid accumulation-induced 

dysfunction of hepatocytes and the induction of insulin 

resistance. It is only through better understanding of patho-

genic mechanisms that novel therapies targeting the cluster 

of diseases in metabolic syndrome may be discovered.
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