
363

www.cmj.hr

Aim To evaluate whether the effect of dendritic cells (DCs) 
on chronic obstructive pulmonary disease (COPD) can be 
relieved by blocking CCL20.

Methods 30 Wistar rats were randomly divided into three 
groups: control, COPD, and COPD treated with CCL20 
monoclonal antibody. In the latter two groups, COPD was 
induced by four-week cigarette smoke exposure and tra-
chea injection of lipopolysaccharide solution on two occa-
sions. CCL20 monoclonal antibody was injected intraperi-
toneally on the first day. All animals were sacrificed on the 
29th day. Pathomorphology of the lung and bronchiole 
was analyzed using hematoxylin and eosin staining. The 
CCR6 content in the bronchoalveolar lavage fluid was de-
tected using ELISA. DC distribution in the lung was exam-
ined by immunohistochemistry for OX62.

Results COPD rat models showed pathological alterations 
similar to those in COPD patients. DCs, CCR6, and the se-
verity of emphysema were significantly increased in the 
COPD group than in controls (all P values <0.001), and 
they were significantly reduced after anti-CCL20 treatment 
compared with the COPD group (all P values <0.05).

Conclusion The interaction between CCR6 and its ligand 
CCL20 promotes the effect of DCs in the COPD pathogen-
esis, which can be reduced by blocking CCL20.
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Cigarette smoking is the primary risk factor for the devel-
opment of chronic obstructive pulmonary disease (COPD), 
the fourth most common cause of death worldwide (1,2). 
The characteristic irreversible airflow limitation of COPD 
and its increasing prevalence worldwide (3) have stimu-
lated much research into its pathogenesis. This disease is 
associated with a specific inflammatory response of the 
small airways, which causes small airway obstruction and 
lung parenchyma destruction. Studies have demonstrated 
that immune system cells play an important role in the in-
flammation response, however, the precise mechanisms 
leading to this type of inflammation remain unknown. The 
organization of lymphocytes into lymphoid follicles and 
the presence of oligoclonal lymphocytes suggest that im-
mune responses in COPD are at least partly driven by spe-
cific antigens (4-6).

Such immune responses are under control of dendritic 
cells (DCs) (7,8). Airway DCs initiate and regulate adap-
tive immune responses in the lung (8). They form a high-
ly sensitive sentinel network around the airways, and are 
able to migrate through the intact epithelium to sample 
foreign antigens within the airway lumen (9). After anti-
gen uptake, DCs migrate to the draining lymph nodes 
to convey antigenic information to specialized lympho-
cytes, which organize an inflammatory response against 
the encountered antigen (8). Thus, the whole process 
of DC migration can be divided into two steps: antigen 
capture and antigen presentation (10). There is growing 
evidence that the information required for the regula-
tion of leukocyte traffic is provided by the differential 
distribution of chemokines, together with the flexible 
usage of chemokine receptors (11). During the first step, 
an important role is played by several chemokines and 
chemokine receptors. The major chemokine that at-
tracts DCs is CCL20, which has been proposed to induce 
LC recruitment at sites of inflammation (12). The only re-
ceptor for CCL20 is CCR6 (13), expressed on immature 
DCs (14).

DCs play a crucial part in the pathogenesis of airway in-
flammation in asthma (15,16). However, there is limited in-
formation on the role of DC and its chemokines in COPD. 
Our previous studies have shown that DCs are accumulat-
ed and CCR6/CCL20 levels are increased in the airways of 
patients with COPD (17,18), which corresponds with find-
ings of other studies (19,20). However, the precise mech-
anism is still unclear. Therefore, we aimed to determine 

whether the effect of DCs on COPD can be relieved by 
blocking CCL20.

Materials and methods

Animals

Homozygous male Wistar WT rats (8 weeks old) were ob-
tained from the experimental animal center of the Third 
Military Medical University (Chongqing, China). 30 rats 
used for this experiment were divided into three groups 
by a random number table method: COPD model, con-
trol, and CCL20 monoclonal antibody treated (MAT) group, 
each consisting of 10 rats. The animal experiments were 
carried out in accordance with the recommendations from 
the Guide for the Care and Use of Laboratory Animals of 
the National Institutes of Health (21), and all in vivo ex-
periments were approved by the Animal Experimentation 
Ethics Committee of the Zunyi Medical College (Guizhou 
Province, China).

Experimental design

The rat model of COPD was established by smoke expo-
sure and intratracheal instillation of lipopolysaccharide 
(LPS) as described previously (22,23). Experimental rats, in-
cluding the COPD group and the CCL20 monoclonal anti-
body treated group, underwent whole body exposure to 
tobacco smoke of 12 cigarettes in a tobacco smoke cham-
ber (90 cm ×40 cm ×30 cm, made of Plexiglas) designed 
by one of the authors (YG) twice a day with 2-hour smoke-
free intervals, every day for four weeks. The smoke expo-
sure experimental box consists of a box body and a cover, 
with a smoke inlet at the bottom part of the box body and 
a smoke outlet on the side wall of the top part. The smoke-
to-air ratio was 1:7, to protect the rats from acute smoke 
toxicity and death. The controls were exposed to air.

Animals from the two smoke-exposed groups were ad-
ministered 200 µg/200 µL of LPS solution intratracheally 
on two occasions, on the first and the 15th day of tobacco 
smoke exposure. Additionally, rats from the CCL20 mono-
clonal antibody treated group were injected intraperitone-
ally with CCL20 monoclonal antibody (100 μg per rat, our 
preliminary experimental results showed this dose contrib-
uted to an ideal effect) on the first day of the experiment. 
All rats were sacrificed on the 29th day. These experiments 
were repeated three times.

Bronchoalveolar lavage (BAL)

Rats were weighed 24 hours after the last smoke exposure 
and sacrificed with an overdose of pentobarbital, and a tra-
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cheal cannula was inserted. 1 mL of Hank’s balanced salt 
solution (HBSS), free of ionized calcium and magnesium 
but supplemented with 0.05 mM sodium EDTA (Sigma, St 
Louis, MO, USA), was instilled four times via the tracheal 
cannula and recovered by gentle manual aspiration. The 
four lavage fractions were centrifuged, the cell pellet was 
washed twice, and resuspended in 1 mL of HBSS.

Histology and morphometric analysis

The left lung was fixated by gentle infusion of fixative (4% 
paraformaldehyde) through the tracheal cannula. After ex-
cision, the lung was immersed in fresh fixative for 2 h. A lung 
lobe was embedded in paraffin and cut in 3-µm transversal 
sections. Lung tissue samples were stained with hematox-
ylin and eosin (HE) and examined by light microscopy for 
histological sections. For each animal, 10 fields at a magni-
fication of 100 × were captured randomly from 4 different 
zones of the left lung (upper, middle upper, middle basal, 
and basal zone) by laboratory technicians using a IPWin32 
image analyzer platform (Leica, Wetzlar, Germany). The 
mean alveolar number (MAN) was obtained and proportion 
of alveolar area (PAA) was measured using Image-Pro Plus 
6.0 software (Media Cybernetics, Rockville, MD, USA).

Measurement of chemokine receptors

Using a commercially available enzyme-linked immuno-
sorbent assay (ELISA) kit (West Tang Biotech, Shanghai, Chi-
na), CCR6 protein level was determined in BAL fluid (BALF). 
BALF samples were centrifuged at 1500 rpm for 10 min, 
and the supernatant was collected for further analysis. The 
detection threshold for this system was 15 ng/L. The main 
process of ELISA method was as follows: We allowed all re-
agents to reach room temperature before use, and then 
gently mixed all liquid reagents before use. We then set up 
blank wells (blank control without samples and HRP-conju-
gate reagent, and the rest of the steps were the same). We 
added 100 µL of prepared standard and sample to wells, 
covered the plate, and incubated it at room temperature 
for 2 hours. Solution from wells was thoroughly aspirated, 
and the liquid was discarded, after which the wells were 
washed 4 times using an automated 96-well plate washer. 
We added 100 µL of diluted detection antibody to wells, 
covered the plate, and incubated it at room temperature 
for 1 hour. Solution from the wells was thoroughly aspi-
rated, the liquid discarded, and the wells were washed 4 
times. 100 µL of diluted HRP-conjugate was added to each 
well and cover plate and incubated at room temperature 
for 30 minutes. The solution from wells was thoroughly as-

pirated, the liquid discarded, and the wells were washed 
4 times. 100 µL of chromogenic substrate was added to 
each well, followed by 100 µL of stop solution. The solu-
tion in the wells should have changed from blue to yel-
low, and the plate had to be evaluated within 30 minutes 
of stopping the reaction. A blank well was taken as zero 
adjustment, and the absorbance of each well was read at 
450 nm. Curve-fitting statistical software was used to plot 
a four-parameter logistic curve fit to the standards and the 
results were then calculated for the test samples.

DC study by immunohistochemistry

Serial sections obtained from formalin-fixed, paraffin-em-
bedded lung lobes were stained by immunohistochemis-
try with an antibody against the DC marker OX62 (CD103) 
using a modified protocol. In brief, sections were deparaf-
finized, rehydrated, and submerged in methanol 10% H

2O2 
to block endogenous peroxidase activity. The sections 
were then washed with phosphate buffered saline (PBS) 
and a microwave antigen retrieval was performed (middle 
fire, 10 min). Then, sections were washed with PBS and in-
cubated (10 min) with universal blocking solution (Labora-
tory Vision Corp, Fremont, CA, USA) and normal goat se-
rum (30 min) to block any nonspecific antibody binding. 
Subsequently, sections were incubated with the mouse 
anti-rat OX62 (1/100) antibody (Thermo Fisher Scientific 
Inc, Waltham, MA, USA) overnight in a humidity chamber 
at 4°C. They were washed in PBS and treated (30 min) with 
EnVisionTM Detection Kit (the secondary antibody sys-
tem produced by Gene Tech, Shanghai, China). Afterward, 
they were washed in PBS and visualized using the EnVi-
sionTM DAB+ Chromogen stained for 7 min for the anti-
OX62 immunostaining, counterstained with hematoxylin 
and mounted in an aqueous medium. As negative con-
trols, other sections were incubated with PBS instead of 
the primary antibody. The morphology and distribution of 
stained cells were analyzed under light microscopy. Inte-
gral optical density (IOD) of the positive areas was analyzed 
using IPWIN60 software (Media Cybernetics, Inc, Rockville, 
MD, USA) and the results were used as semiquantitative 
DC amounts.

Statistical analysis

Data are presented as mean ± standard deviation. Statisti-
cal analyses were performed with SPSS software (version 
17.0; SPSS Inc., Chicago, IL, USA). All data were tested for 
normality of distribution using Shapiro-Wilk test. Be-
cause the data were normally distributed, a one-way 
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analysis of variance (ANOVA) was performed to compare 
means among the three groups. A value of P < 0.05 was 
considered significant.

Results

Pathological changes in the lungs

Rats in the COPD model group and CCL20 monoclonal an-
tibody treated group showed lassitude, loss of hair luster, 
and less activity. Microscopic analysis of lung tissue sec-
tions revealed a considerable degree of chronic bron-
chitis and emphysema, and clearly induced alveolar wall 
destruction (Figure 1). HE staining showed that the patho-
logical changes in the COPD group were similar to those of 
COPD patients (24,25). In controls there was no inflamma-
tory cell infiltration and the gland in the small bronchus, 
the alveolar wall was intact, and the alveolar structure was 
complete and continuous (Figure 1A). In the COPD group, 
alveolar intervals were widened, with lymphocytes, mono-
nuclear cells, and neutrophil infiltration. Capillary dilation 
and congestion were found in the intervals, and partial al-
veolar wall destruction was clearly induced (Figure 1B). In 
the CCL20 monoclonal antibody treated group, the alve-
olar septa were widened, accompanied by inflammatory 
cell infiltration and alveolar space expansion. However, the 
extent of the lesion was considerably reduced compared 

with the COPD group (Figure 1C). MAN was significantly 
lower in the COPD group than in controls (283.0 ± 26.52 
vs 68.23 ± 20.74; P < 0.001) and significantly higher in the 
CCL20 monoclonal antibody treated group than in the 
COPD group (115.8 ± 14.44 vs 68.23 ± 20.74; P = 0.021). PAA 
was significantly greater in COPD group than in the con-
trol group (76.64 ± 4.179 vs 39.63 ± 2.848; P < 0.001) and 
significantly smaller in the CCL20 monoclonal antibody 
treated group than in the COPD group (62.39 ± 3.422 vs 
76.64 ± 4.179; P = 0.010). (Table 1)

DC morphology and distribution

OX62+ cells were located mainly in the subepithelial areas 
of the airway wall, distributed between the lamina propria 
and adventitia, especially congregated around the air pas-
sage (Figure 2). Positive cells were stained as brown in their 
cytoplasm (Figure 3).

Immunohistochemistry study for OX62

The number of IOD-comprising OX62+ cells was signifi-
cantly increased in the COPD group compared with con-
trols (17.07 ± 1.35 vs 73.45 ± 2.21; P < 0.001), and was sig-
nificantly decreased in the CCL20 monoclonal antibody 
treated group compared with the COPD group (37.58 ± 1.55 
vs 73.45 ± 2.21; P < 0.001) (Figure 4, Figure 5).

Table 1. Morphologic indices of pulmonary emphysema in controls, rats with chronic obstructive pulmonary disease (COPD), and 
rats treated with CCL20 monoclonal antibody (MAT) (mean ± standard deviation)

Group Mean alveolar number ( × 106/m2) Proportion of alveolar area (%)

Controls 283.0 ± 26.52 39.63 ± 2.848
COPD group   68.23 ± 20.74* 76.64 ± 4.179*
CCL20 MAT group 115.8 ± 14.44† 62.39 ± 3.422‡

*P < .001 vs controls.
†P = 0.021 vs COPD group.
‡P = 0.010 vs COPD group.

Figure 1. Photomicrographs of hematoxylin and eosin stained lung tissue of (A) controls, (B) chronic obstructive pulmonary disease 
models, and (C) CCL20 monoclonal antibody treated group (original ×100, scale bar: 100 µm)
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CCR6 levels in the BAL fluid

The content of CCR6 in BALF was significantly increased 
in the COPD group compared with controls (105.81 ± 1.58 
ng/L vs 43.57 ± 3.18 ng/L; P < 0.001) and significantly de-
creased in the CCL20 monoclonal antibody treated group 
compared with the COPD group (79.84 ± 6.49 ng/L vs 
105.81 ± 1.58 ng/L; P < 0.001) (Figure 6).

Discussion

Our study showed that COPD symptoms and pathomor-
phology were relieved in rats injected intraperitoneally 
with CCL20 monoclonal antibody, and that DC number 
and CCR6 level were lower than in COPD rats. This might 
be due to the lack of CCL20, combined with the CCL20 
monoclonal antibody.

Smoke-induced alterations to pulmonary DCs lead to the 
development of inappropriate immunological responses 
in susceptible smokers and an abnormal inflammatory 
reaction to antigens, favoring the development of COPD 
(26). Infection is also an important factor in the COPD 
pathogenesis (27), with considerable prevalence among 
COPD patients (28). Thus, we established a rat COPD mod-
el by cigarette smoke exposure and LPS solution injection 
through the trachea, which could imitate the COPD patho-
genesis in humans better than exposure to cigarette smoke 
or LPS injection alone (29). Since smoking and infection are 
the two most important environmental factors that cause 
the COPD development, our method is more similar to the 
natural process of COPD pathogenesis. Furthermore, this 
model is more stable and less time-consuming (30). Few studies have investigated the role of DCs in the COPD 

pathogenesis. Some animal models (20,31-33) of emphy-
sema showed an increase in DC number, while others 
showed a decrease. Patients with COPD were shown to 
have significantly increased small airway langerin+ DCs 
(19). We showed that OX62+ DCs number in the lungs 
and CCR6 levels were elevated in rats with COPD. Howev-
er, these parameters were decreased in the CCL20 mono-
clonal antibody treated group compared with the COPD 
group. OX62 (also known as CD103), first found in the 
lymphoid tissue of rats, has been recognized as a specific 
marker for rat DC (34,35).

The elevated number of pulmonary DCs following COPD 
occurrence suggests a possible role for these cells in the 
COPD pathogenesis. Clearly, DCs play a major role in the 
innate immune response and are the most powerful 
antigen-presenting cells in the respiratory tract. The 

Figure 3. (A) A negative control (sections incubated with phosphate buffered 
saline instead of the primary antibody). (B) Dendritic cells identified as brown-
stained cells by using immunohistochemistry for OX62 expression (immunoposi-
tive cells were stained as brown in their cytoplasm) (chronic obstructive pulmo-
nary disease group, original ×400, scale bar: 30 µm).

Figure 2. (A) Photomicrograph of hematoxylin and eosin stained tissue. (B) 
Dendritic cells identified as brown-stained cells by using immunohistochemistry 
for OX62 expression in paraffin-embedded rat lung sections (chronic obstructive 
pulmonary disease model group, original ×100, scale bar: 120 µm).

Figure 4. OX62 expression in the lung tissue of controls, 
chronic obstructive pulmonary disease group, and CCL20 
monoclonal antibody treated group (n = 10 per group). Values 
in black bars are mean ± standard deviation. *P < 0.001 vs 
controls, #P < 0.001 vs chronic obstructive pulmonary disease 
group.
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DC network within and under the epithelium of the con-
ducting airways is ideally positioned to perform a sentinel 
role against harmful inhalants. The traffic of DCs is facilitat-
ed by a sequence of chemotactic stimuli, and the expres-
sion of corresponding chemokine receptors on DCs (10). 
Our study also indicates that CCR6/CCL20 played a critical 
role in DC accumulation into epithelial tissues when COPD 
occurred.

A limitation of the study may be the absence of a control 
group with an already used treatment in COPD rat model, 
but this was not of the utmost importance for the purpos-
es of this study. Also, further investigation into the intracel-
lular molecular regulating mechanism is needed.

In summary, using a rat COPD model we demonstrated 
that CCL20 blocking impaired DCs accumulation in the 
rat lung. This may in part indicate that the interaction of 

CCR6 with its ligand CCL20 contributes to the COPD 
pathogenesis. In addition, CCL20 monoclonal anti-

body might provide a possible treatment option for pa-
tients with COPD. However, the selected dose of the an-
tibody is different in different species (36), which is why 
further studies are needed to determine its therapeutic ef-
fect and optimal dosage in humans.
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