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Abstract
With rapidly advancing multi-electrode recording technology, the local field potential (LFP) has again become a popular
measure of neuronal activity in both research and clinical applications. Proper understanding of the LFP requires detailed
mathematical modeling incorporating the anatomical and electrophysiological features of neurons near the recording
electrode, as well as synaptic inputs from the entire network. Here we propose a hybrid modeling scheme combining
efficient point-neuron network models with biophysical principles underlying LFP generation by real neurons. The LFP
predictions rely on populations of network-equivalent multicompartment neuron models with layer-specific synaptic
connectivity, can be used with an arbitrary number of point-neuron network populations, and allows for a full separation of
simulated network dynamics and LFPs. We apply the scheme to a full-scale cortical network model for a ∼1mm2 patch of
primary visual cortex, predict laminar LFPs for different network states, assess the relative LFP contribution from different
laminar populations, and investigate effects of input correlations and neuron density on the LFP. The generic nature of the
hybrid scheme and its public implementation in hybridLFPy form the basis for LFP predictions from other and larger point-
neuron network models, as well as extensions of the current application with additional biological detail.
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Introduction
The local field potential (LFP), the low-frequency component
(≲ 500 Hz) of the extracellular potential recorded in the brain, is
commonly used as a measure of neuronal activity (Buzsáki
et al. 2012; Einevoll et al. 2013). The LFP originates from trans-
membrane currents (Nicholson and Freeman 1975), and at the
single-cell level the biophysical origin of such extracellular
potentials is well understood (see, e.g., Rall and Shepherd 1968;
Holt and Koch 1999; Buzsáki et al. 2012; Einevoll et al. 2013).
However, the interpretation of the LFP remains difficult due to
the large number of neurons contributing to the recorded sig-
nal. In neocortex, for example, the measured LFP is typically
generated by thousands or even millions of neurons near the
recording electrode (Kajikawa and Schroeder 2011; Lindén et al.
2011; Łȩski et al. 2013). Moreover, the LFP reflects also synaptic
input generated by remote populations, for example, inputs
from other cortical or subcortical areas in addition to local net-
work interactions (Herreras et al. 2015). A thorough theoretical
description of the LFP, therefore, needs to account not only for
the anatomical and electrophysiological features of neurons in
the vicinity of the recording electrode, but also for the entire
large-scale neuronal circuitry generating synaptic input to
these cells.

Modeling large-scale neural-network dynamics with individ-
ual spiking neurons is challenging due to the memory required
to represent the large number of synapses. With current tech-
nology and using the largest supercomputers available today,
simulations of neural networks comprising up to 109 neurons
and 1013 synapses (roughly corresponding to the size of a cat
brain) are feasible for simplified model neurons (Diesmann
2013; Kunkel et al. 2014). Typically, these simplified models
neglect the spatial aspects of neuronal morphologies and
describe neurons as points in space (point-neuron models).
Despite their simplicity, point-neuron-network models explain
a variety of salient features of neural activity observed in vivo,
such as spike-train irregularity (Softky and Koch 1993; van
Vreeswijk and Sompolinsky 1996; Amit and Brunel 1997;
Shadlen and Newsome 1998), membrane-potential fluctuations
(Destexhe and Paré 1999), asynchronous firing (Ecker et al. 2010;
Renart et al. 2010; Ostojic 2014), correlations in neural activity
(Gentet et al. 2010; Okun and Lampl 2008; Helias et al. 2013),
self-sustained activity (Ohbayashi et al. 2003; Kriener et al.
2014), and realistic firing rates across laminar cortical popula-
tions (Potjans and Diesmann 2014). Point-neuron networks are
amenable to mathematical analysis (see, e.g., Brunel 2000; Deco
et al. 2008; Tetzlaff et al. 2012; Helias et al. 2013; de Kamps
2013; Schuecker et al. 2015; Bos et al. 2016) and can be effi-
ciently evaluated numerically (Brette et al. 2007; Plesser et al.
2007; Helias et al. 2012; Kunkel et al. 2014). The mechanisms
governing networks of biophysically detailed multicompart-
ment model neurons, in contrast, are less accessible to analysis
and these models are more prone to overfitting. Existing multi-
compartment neuron network models accounting for realistic
cell morphologies are restricted to sizes of ∼104–105 neurons
(Hines et al. 2008; Reimann et al. 2013; Migliore et al. 2014;
Markram et al. 2015). Large-scale models are, however, neces-
sary to include contributions to the LFP from distant popula-
tions in situations where the spatial reach of the LFP is known
to be large (Lindén et al. 2011; Łȩski et al. 2013).

Although point-neuron networks capture many features of
in vivo spiking activity, they fail to predict extracellular poten-
tials that result from transmembrane currents distributed
across the cell surface. According to Kirchhoff’s law of current

conservation, the sum of all transmembrane currents, includ-
ing all ionic and capacitive currents, must be zero for each neu-
ron. In a point-neuron model, all transmembrane currents are
collapsed in a single point in space. The net transmembrane
current, and hence the extracellular potential, therefore
vanishes. Only the spatial separation between current sinks
and sources leads to a nonzero extracellular potential
(Pettersen et al. 2012; Einevoll et al. 2013). A priori, the predic-
tion of extracellular potentials, therefore, requires spatially
extended neuron models accounting for the spatial distribution
of transmembrane currents, commonly handled using multi-
compartment neuron models (De Schutter and Van Geit 2009).
Note that the principle of current conservation implies a cur-
rent sum rule for multicompartment neuron models as well:
the sum of all single-cell transmembrane currents remains
zero, also across neuron populations and the whole column. In
several previous studies (Bazhenov et al. 2001; Hill and Tononi
2005; Ursino and La Cara 2006; Mazzoni et al. 2008; 2010; 2011),
the activity of point-neuron networks (e.g., population firing
rates, synaptic currents and membrane potentials) has never-
theless been used as a proxy for the LFP when comparing with
experiments. In a recent study comparing different candidate
proxies, it was found that a suitably chosen sum of synaptic
currents could provide a good LFP proxy, but only for the case
when the LFP is generated from transmembrane currents of a
single population of pyramidal neurons (Mazzoni et al. 2015). In
cortex, however, several populations in general contribute to
the LFP, and there are spatial cancellation effects when positive
LFP contributions from one population overlap in space with
negative LFP contributions from other populations. This effect
cannot be accounted for by a simple LFP proxy.

In this article, we present a hybrid modeling scheme that
combines the simplicity and efficiency of point-neuron network
models and the biophysical principles underlying LFP gener-
ation captured by multicompartment neuron models with ana-
tomically reconstructed morphologies. The scheme allows for
arbitrary numbers of LFP-contributing populations, and directly
incorporates spatial cancellation effects. Furthermore, the spa-
tially extended LFP-generating neurons assure that effects from
intrinsic dendritic filtering of synaptic inputs are included in
the predicted LFP (Lindén et al. 2010). The scheme assumes
that the spiking activity of the neural network (Fig. 1B) generat-
ing the synaptic input reflected in the LFP is well described by a
point-neuron network model (Fig. 1A). The network spiking
activity serves as synaptic input to a population of mutually
unconnected multicompartment model neurons with realistic
morphologies positioned in 3-dimensional (3D) space (Fig. 1C)
and is thereby translated into a distribution of transmembrane
currents and, hence, an LFP (Fig. 1D). Thus each multicompart-
ment model neuron has its equivalent in the point-neuron net-
work and receives input spikes from the same presynaptic
neurons as this point-neuron equivalent.

In the proposed hybrid modeling scheme, the LFP stems from
the presynaptic spiking activity, but does not affect the spike-
generation dynamics. Thus, the modeling of the spike trains and
the LFP generation are separated so that the effects of the spatial
and electrophysiological properties of the postsynaptic (multi-
compartment) neurons on the LFP can be investigated independ-
ently of the spike-generation dynamics. Due to the linearity of
Maxwell’s equations and volume conduction theory linking
transmembrane currents to extracellular potentials (Pettersen
et al. 2012; Einevoll et al. 2013), the compound LFP results from
the linear superposition of all single-cell LFPs generated by the
collection of neurons in the multicompartment model neuron
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population (Einevoll et al. 2013). Note that this linear superpos-
ition principle applies even for nonlinear cell dynamics (e.g.,
nonlinear synaptic integration, action-potential generation and
active conductances) as in Reimann et al. 2013. As ephaptic
interactions (Anastassiou et al. 2011) are neglected, the LFP con-
tribution from each multicompartment model neuron can be
treated independently from the others. The computational
hybrid LFP scheme proposed here exploits the methodological
and conceptual advantages due to the independence of the con-
tributions to the LFP from each multicompartment model neu-
ron: the evaluation of the LFPs becomes “embarrassingly
parallel” (see Foster 1995) and simulations of the multicompart-
ment model neuron dynamics can be easily distributed in paral-
lel across many compute units (i.e., CPUs). Although tailored
toward use on high-performance computing facilities, the hybrid
simulation can in principle be run on a single laptop.

The hybrid scheme predicts spatially and temporally
resolved neural activity at various scales: spikes, synaptic cur-
rents, membrane potentials, current-source densities (CSD, see
e.g., Nicholson and Freeman 1975; Pettersen et al. 2006; 2008),
and LFPs. It therefore allows for investigation of relationships
between different measures of neural activity. Thus, although
point-neuron networks until now only have connected to
in vivo experiments via measurement of spikes, single-neuron
membrane potentials and currents, the present hybrid scheme
allows for comparison of model predictions also with measured
LFPs (and associated CSDs).

As an illustration, we apply the hybrid scheme to a multi-
layered point-neuron network model of an early sensory

cortical microcircuit (Potjans and Diesmann 2014). We thereby
demonstrate how to obtain LFP predictions from point-neuron
network models using additional spatial connectivity informa-
tion from anatomical data (Binzegger et al. 2004; Izhikevich and
Edelman 2008). The example illustrates how the hybrid scheme
can be used to examine the relation between single-neuron
and population signals, that is, spikes and LFPs, the effect of
network dynamics on the LFP, and the interpretation of the LFP
in terms of underlying laminar neuron populations. We further
use the example to demonstrate that synaptic-input correla-
tions result in a nontrivial dependence of the LFP on the neu-
ron density. Correct LFP predictions can therefore only be
obtained by accounting for realistic neuron densities.

The network model of Potjans and Diesmann (2014) is cho-
sen here since it has a minimum level of detail in the sense
that individual neurons have simplified leaky integrate-and-
fire (LIF) dynamics, but still represents a cortical column with
full density of neurons and connections. The connectivity in
such a full-scale circuit alone suffices to explain realistic firing
rates across populations as well as propagation of activity
through layers (Potjans and Diesmann 2014). Applicability of
the scheme is, however, not restricted to this model as it in
principle can be used for all network models generating spikes.

In Methods and Materials, we detail the components of the
hybrid scheme and their application to the cortical microcir-
cuit model: the point-neuron-network model, the populations
of multicompartment neurons, the synaptic connectivity of
the point-neuron network and the multicompartment model
neuron populations, and the biophysical forward-modeling

A CB D

Figure 1. Overview of the hybrid LFP modeling scheme for a cortical microcircuit model. (A) Sketch of the point-neuron network representing a 1mm2 patch of early

sensory cortex (adapted from Potjans and Diesmann 2014). The network consists of 8 populations of LIF neurons, representing excitatory (E) and inhibitory neurons

(I) in cortical layers 2/3, 4, 5, and 6. External input is provided by a population of TC neurons and cortico-cortical afferents. The color coding of neuron populations is

used consistently throughout this paper. Red arrows: excitatory connections. Blue arrows: inhibitory connections. See Tables 1–2, 5–6 for details on the network model.

(B) Spontaneous ( <t 900 ms) and stimulus-evoked spiking activity (synchronous firing of TC neurons at time t= 900ms, denoted by thin vertical line) generated by

the point-neuron network model shown in panel A, sampled from all neurons in each population. Each dot represents the spike time of a particular neuron.

(C) Populations of LFP-generating multicompartment model neurons with reconstructed, layer-, and cell-type specific morphologies. Cells are distributed within a

cylinder spanning the cortex. Layer boundaries are marked by horizontal black lines (at depths z relative to cortex surface z= 0). Only one representative neuron for

each population is shown (see Fig. 4 for a detailed overview of cell types and morphologies). Sketch of a laminar recording electrode (gray) with 16 contacts separated

by μ100 m (black dots). (D) Depth-resolved LFP traces predicted by the model (cf. Tables 3 and 4). Note that channel 1 is at the pial surface, so that channel 2 corre-

sponds to a cortical depth of 100 μm and so forth.
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scheme of extracellular potentials. We further describe the ana-
lysis of the data generated by the simulations, as well as the
hybridLFPy software implementation. In Results, we apply the
hybrid scheme to the cortical microcircuit model of Potjans and
Diesmann (2014) and study the effects of network dynamics on
the LFP, the contributions of individual cortical subpopulations
to the LFP, the role of correlations and neuron density, and how
well the LFP can be predicted from population firing rates (rather
than from individual spikes). In Discussion, we outline implica-
tions of our work, and in particular future applications and
extensions of the hybrid LFP modeling scheme.

Methods and Materials: Hybrid LFP Modeling
Scheme
Point-Neuron Network Model

The point-neuron network model is a key component of the
hybrid scheme. The hybrid scheme enables LFP predictions
from network models with an arbitrary number of populations
and thus permits application to a large class of networks with
arbitrarily complex single-neuron and synapse dynamics. The
example network of “spike-generators” used here is, except for

some minor adjustments (see below), the multilayered model
of a cortical microcircuit published by Potjans and Diesmann
(2014). The model is implemented and included in NEST (http://
www.nest-simulator.org, Eppler et al. (2015)) and was recently
made freely available (http://www.opensourcebrain.org/
projects/potjansdiesmann2014).

The network model describes 1mm2 of primary sensory cor-
tex and consists of 4 layers with one excitatory (E) and one
inhibitory (I) neuron population each, as illustrated in Fig. 1A.
The network receives modulated thalamic input in addition to
stationary external input. While the neuron (LIF) and synapse
(static, exponential-current-based) model are intentionally left
simple, the focus of this network implementation is on the
complex connectivity which integrates multiple sources of ana-
tomical and electrophysiological data (Potjans and Diesmann
2014). Apart from the layer identity, the model does not expli-
citly account for cell positions. For the full network description,
see Tables 1, 2, and 5. The microcircuit model reproduced
experimentally observed distributions of firing rates across
populations and propagation of activity across layers (Potjans
and Diesmann 2014). It thus forms a suitable starting point for
LFP predictions in a cortical column.

Table 1 Description of point-neuron network for the cortical microcircuit model (continued in Table 2) following the guidelines of Nordlie
et al. (2009)

A Model summary

Structure Multilayered excitatory-inhibitory (E–I) network
Populations 8 cortical in 4 layers, 1 thalamic (TC)
Connectivity Random, independent, population-specific, fixed number of connections
External input Cortico-cortical: constant current with population-specific strength
Neuron model Cortex: LIF; TC: point process
Synapse model Exponential postsynaptic currents, static weights, population-specific weight distributions
Measurements Spike activity, input currents, membrane potential of each neuron

B Network model

Connectivity Connection probability CYX ( ∈ { } × { } ∪X Y, L2 3, L4, L5, L6 E, I TC, =C 0YX for =Y TC)
• Fixed number of synapses KYX between populations X and Y
• Binomial in-/out-degrees

Input Cortico-cortical direct current IY
ext

C Neuron model

Cortex
Type Leaky integrate-and-fire neuron (LIF)
Description Dynamics of membrane potential Vi(t) (neuron ∈ [ ]i N1, ):

• Spike emission at times til with θ( ) ⩾V ti l
i

• Subthreshold dynamics: τ ˙ = − + ( )V V R I ti i im m if τ∀ ∉ ( + ]l t t t: ,l
i

l
i

ref

• Reset + refractoriness: ( ) =V t Vi reset if τ∀ ∈ ( + ]l t t t: ,l
i

l
i

ref

Exact integration with temporal resolution dt (Rotter and Diesmann 1999)
Uniform distribution of membrane potentials at t = 0

Thalamus
Type • DC current for constant background input

• Nonstationary Poisson process for modulation
Description DC current included in external DC input

Types of thalamic input modulation:
• Spontaneous activity: no modulation in activation of thalamic neurons
• Thalamic pulses: fixed-interval coherent activation of all NTC thalamic neurons
• AC modulation: Poisson spike trains with sinusoidally modulated rate profile (discretized with time resolution dt):

ν ν ν π( ) = + Δ ( ) ( )t tfsin 2 18th TC TC TC
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The stationary thalamic Poisson input and cortico-cortical
input to the microcircuit present in the original model of Potjans
and Diesmann (2014) are here replaced by DC currents. DC input
slightly increases the degree of synchrony (see e.g., Brunel
(2000)), but retains network dynamics and firing rate distribu-
tions across populations as in Potjans and Diesmann (2014).

The network of Potjans and Diesmann (2014) shows slightly
synchronous behavior due to the E–I network of layer 4 being
close to the synchronous irregular (SI) regime (Brunel 2000; Bos
et al. 2016). In order to reduce synchrony, we here increased
the average synaptic weight from neurons in population L4I
(inhibitory) to L4E (excitatory) neurons by 12.5%, resulting in
attenuated oscillations in layer 4. Taking advantage of the fact
that point-neuron networks are amenable for theoretical ana-
lysis, we derived modified weights based on predictions from
dynamical mean-field theory applied to the microcircuit model
(Bos et al. 2016). Moreover, we found that high-frequency net-
work oscillations seen for Gaussian synaptic weight distribu-
tions are reduced when using lognormally distributed synaptic
weights (Sarid 2007; Iyer et al. 2013; Teramae and Fukai 2014).
This made the dynamics more similar to experimental observa-
tions (Song et al. 2005; Buzsáki and Mizuseki 2014), and we thus
also chose this for our network. Henceforth, we refer to our
modified network as the “reference network”. Modulated activ-
ity of each thalamo-cortical (TC) neuron in the external thal-
amic population was modeled as synchronous spikes or as
independent non-stationary Poisson processes with sinusoid-
ally oscillating rate profiles (cf. Eq. (18)).

Populations of Multicompartment Model Neurons

Cancellation effects from positive and negative contributions to
extracellular potentials and effects of intrinsic dendritic filtering
can only be captured with spatially extended multicompartment

neuron models (Einevoll et al. 2013). In the hybrid scheme, extra-
cellular potentials are estimated from the spiking activity in the
point-neuron network through synaptic activation of popula-
tions of multicompartment model neurons (“LFP generators”). In
principle, these mutually unconnected model neurons mirror
their network counterparts and receive inputs from exactly the
same point neurons.

In addition to the description of the point-neuron network
model, different types of spatial information are thus needed to
predict LFPs. For one, detailed dendritic morphologies are
required for each individual network population (Fig. 2).
Furthermore, the positions of neurons and synaptic connec-
tions must also be specified, as well as the separation of
network populations into morphologically distinct cell types
(Figures 2 and 4).

Availability of detailed cell-type specific connectivity of
neural circuits, especially including information about synapse
positions, is limited due to the substantial experimental effort
involved. However, several ongoing large-scale neuroscience
projects (Kandel et al. 2013) address this issue, and detailed
connectomes are beginning to become publicly available (Jiang
et al. 2015; Reimann et al. 2015; Markram et al. 2015). In the pre-
sent example application, we used the connection probabilities
as given by Izhikevich and Edelman (2008) derived from
Binzegger et al. (2004). Note that the point-neuron network con-
nectivity was partially derived from the same data (Potjans and
Diesmann 2014). Quantitative data were provided for the num-
ber of connections in 5 cortical layers (layer 1 (L1), layers 2 and
3 grouped into a joint layer 2/3 (L2/3), and layers 4 (L4), 5 (L5),
and 6 (L6)) between 17 cortical cell types, cortico-cortical con-
nections from other areas, and 2 TC relay cell types. We follow
the nomenclature of Izhikevich and Edelman (2008), where

=y p23 denotes pyramidal cell types in layer 2/3, =y b23 and
=y nb23 basket interneurons and non-basket interneurons

Table 2 Description of point-neuron network for the cortical microcircuit model (continuation of Table 1)

D Synapse model

Type Exponential postsynaptic currents, static weights
Description Input current of neuron j of synapses formed with presynaptic neurons i:

∑ ∑ τ( ) = ( − ( − − ) ) ( − − ) +I t J t t d H t t d Iexp /j
i

ji
l

l
i

i l
i

i js
ext

• Static synaptic weights = ( )J X Jsgnji YX ( ∈i X, ∈j Y ); ( ) =Xsgn 1 for ∈ { } −X L2 3E, L4E, L5E, L6E, TC , 1 otherwise
• Absolute weights JYX drawn from lognormal distribution

⎛
⎝⎜

⎞
⎠⎟π σ

μ
σ

( ) = − ( − ) ( )p J
J

J1
2

exp
ln

2
19YX

YX YX

YX YX

YX

2

2

or normal distribution

⎛
⎝⎜

⎞
⎠⎟π σ

μ
σ

( ) = − ( − ) ( )p J
J1

2
exp

2
20YX

YX

YX YX

YX

2

2

with μ = g JYX YX and σ σ μ=YX J YX,rel

• Delays =d di X ( ∈i X) drawn from (left-clipped) Gaussian distribution

⎛
⎝⎜

⎞
⎠⎟π σ

μ
σ

( ) = − ( − ) ( )p d
d1

2
exp

2
21X

X

X X

X

2

2

with mean μ = d d,X E I for X exc., inh., standard deviation σ σ μ=X d X,rel and ∈ [ ∞)d td ,X

• ( ) = ⩾H t t1 for 0, and 0 elsewhere.
• External DC input = =I I I kj Y Y

ext ext ext ext ( ∈j Y )
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within the same layer, = ( )y ss4 L23 spiny stellate cells in layer
4 with targets mainly within layer 2/3, =y p4 layer 4 pyramidal
cells and so forth. Out of the 17 covered intracortical cell types
only the =y nb1 cell type is not associated with any point-
neuron network population in our scheme. To account for the
lack of layer 1 neurons in our model, we renormalized the con-
nection probabilities for the remaining 16 cortical cell types
including the 2 TC relay-cell types, such that the occurrences Fy
of all cell types y summed to 100% as given in Table 8.

Furthermore, we assumed that the excitatory point-neuron
network populations within one layer are composed of pyram-
idal cells and spiny stellate cells if both are present in the layer,
and that inhibitory network populations encompass both types
of interneurons. This results in the grouping of cell types y into
postsynaptic populations Y illustrated in Figure 2. The neuron
count Ny of each cell type is then trivially computed from the
frequency of occurrence Fy as given in Table 8 and Figure 2.

Inclusion of cell-type and layer-specific connections in the
present hybrid scheme has some implications for how we pro-
ceed with setting up equivalent populations consisting of

morphologically detailed model neurons. Different cell types
belonging to a particular population may have different spatial
distributions of synapses, or the populations may consist of dif-
ferent morphological classes of neurons (Kisvárday and Eysel
1992; Nowak 2003; Stepanyants et al. 2008). An example is layer
4 in which spiny stellate cells lack apical dendrites, while pyr-
amidal cells have apical dendrites extending into layer 1. To
incorporate some of this morphological diversity, we consid-
ered altogether 16 cell types for the 8 cortical network
populations.

For each of the 16 cell types, we acquired representative
morphological reconstructions of predominantly cat visual
cortex neurons from several sources (Contreras et al. 1997;
Kisvárday and Eysel 1992; Mainen and Sejnowski 1996;
Stepanyants et al. 2008) (cf. Fig. 2, Table 7). Morphology files
were obtained either from NeuroMorpho.org (Ascoli et al.
2007) or through personal communication with the authors.
Constrained by layer boundary depths (Stepanyants et al.
2008) and laminar connectivities (see below) we applied an
intermediate preprocessing step to our pyramidal cell

Table 3 Description of multicompartment-neuron populations for the cortical microcircuit model (continued in Table 4)

A Model summary

Topology Cortical column under 1 mm2 of cortical surface
Populations 8 excitatory and 8 inhibitory cell types
Input Spiking activity of thalamic and cortical populations as modeled by point-neuron network
Neuron model Multicompartment, passive cable formalism
Synapse model Exponential postsynaptic current, static weights
Measurements Current source density (CSD), local field potential (LFP)

B Topology

Type Cylindrical volume with layer-specific distribution of cell types and synapses
Description Cylinder radius r

Laminar, defining upper/lower boundaries of layers 1, 2/3, 4, 5, 6

C Populations

Type Each cell type y assigned to population Y, ∈y Y
Description Populations ∈ { } × { }Y L2 3, L4, L5, L6 E, I (population size NY, cell types ∈y Y )

(e.g., = { ( ) ( )}L4E p4, ss4 L23 , ss4 L4 , cf., Fig. 2).
Cell types y:
• Size = ∑N F Ny y Y Y , Fy is the occurrence of cell type y in the full model
• Morphology My

• Extrapolated according to spatial connectivity data (Table 7)
Somatic placement, population Y:
• Random soma placement in cylindrical volumes with radius r, thickness h
• Volumes centered between boundaries of layers 2/3–6

Morphologies
Type 3D histological reconstructions from slice preparations (see Jacobs et al. 2009; De Schutter and Van Geit 2009) of cat visual

and somatosensory cortices
Description One morphology My per cell type:

• Excitatory and inhibitory cells in layers 2/3–6
• For all cells ∈j y: Mj = My

• For some cell types ′y y, : = ′M My y (limited availability)
Orientations:
• Pyramidal cells: apical dendrites oriented along depth axis with random depth-axis rotation
• Interneurons, stellate cells: random rotation around all axes
Corrections:
• Apical dendrites of pyramidal cells elongated to accommodate spatial connectivity
• Axons removed if present
Reconstructed morphologies (cf., Fig. 2):
• Cat visual cortex (Kisvárday and Eysel 1992; Mainen and Sejnowski 1996; Contreras et al. 1997; Stepanyants et al. 2008)
• Cat somatosensory cortex from NeuroMorpho.org (Contreras et al. 1997; Ascoli et al. 2007).
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morphologies. Assuming that the soma compartments of
each cell type were centered in their corresponding layer,
and noting that the layer-specific connectivity (cf. Table 8)
implies connections to layer 1, we stretched the apical den-
drites along the axis perpendicular to the cortical surface

such that they reached the pial surface. The only exception
was the p6(L4) morphology, which we extended to reach the
center of layer 2/3 in accordance with Stepanyants et al.
(2008) and the observation that Table 8 predicts zero connec-
tions within layer 1 and very few connections in layer 2/3 to

Table 4 Description of multicompartment-neuron populations for the cortical microcircuit model (continuation of Table 3)

D Neuron models

Type Passive, multicompartment, reconstructed morphologies
Description Compartment n membrane potential V jnm of cell j having length ljn, diameter djn and surface area Ajn:

∑ ∑= − ( − ) − ( )
=

C
V

t
I G V E I

d

d
, 22jn

jn

k

m

jkn jn jn
i

jinm
m

1
a L m L

= ( )C c A , 23jn jnm m

( )= − ( )I G V V , 24jkn jkn jk jna a m m

π= ( + ) ( ( + )) ( )G d d r l l4 , 25jkn jk jn jk jna
2 2

a

= ( )G A r , 26jn jnL m

∑= + ( − ) + ( )I C
dV

t
G V E I

d
. 27jn jn

jn
jn jn

i
jinm m

m
L m L

C jnm is compartment capacitance, G jnL its passive leak conductance, EL the passive leak reversal potential, I jkna axial
current between compartment n and neighboring compartment k (out of m compartments), G jkna axial conductance
between n and k, Ijin synaptic currents, and I jnm transmembrane current of compartment n. For specific parameter
values, see Table 6. Membrane potentials and transmembrane currents are computed using NEURON through LFPy

(Carnevale and Hines 2006; Lindén et al. 2014), assuming the extracellular potential to be zero everywhere on the
outside of the neuron, that is, an infinite extracellular conductivity.

E Synapse model

Type Exponential postsynaptic current, static weights
Description Neuron j input current of synapse formed with presynaptic neuron i:

∑ τ( ) = ( − ( − − ) ) ( − − ) ( )I t I t t d H t t dexp / , 28ji ji
l

l
i

i l
i

i,max s

μ= − − ( )I C of point neuron network, 29ji YX,max m

( ) = ⩾ ( )H t t1 for 0, and 0 elsewhere. 30

• Static synaptic weights μ=Jji YX ( ∈j Y , ∈i X) (see Table 2)
• Delays di from Gaussian distribution with mean dX ( ∈i X), relative standard deviation σd,rel

• Synapse activation times: network spike trains plus delay
• No cortico-cortical connections: =I 0ext (cf., Table 5)

F Input

Type Spike times til of spiking neuron network (including thalamic input spikes), no cortico-cortical input
Description Synapse placement, postsynaptic cell ∈ ∈j y y Y, (see Methods):

• Number of synapses from presynaptic population X in layer L: kyXL (Eq. 9)
• Compartment specificity of connections: ∑ ∈A Ajn n L jn, compartment ∈n L
• Synapse locations within layers are chosen randomly among dendritic compartments only

G Measurements

Type Local field potential (LFP) and current source density (CSD)
Description Laminar multi-electrode, see parameter values in Table 6:

• Axis perpendicular to pial surface
• n :contacts number of contacts
• h :contacts intercontact distance
• r :contact contact surface radius
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the p6(L4) cell type. Due to lack of available morphologies of
sufficient reconstruction quality, certain cell types were
represented by the same neuron morphology. Interneuron
types and spiny stellate cells in a given layer shared morph-
ologies, the same interneuron morphology was reused in
both layers 5 and 6, and finally the p5(L23) and p6(L56) cell
morphologies were similar except for the stretching of the
apical dendrites.

Preserving the laminar cell density under 1mm2 surface
area of the point-neuron network model, we created for each
postsynaptic cell type y model populations where somas were
assigned random locations in 3D within cylindrical slabs with
radius = μr 564 m and thickness = μh 50 m, each centered in
their respective layer (illustrated in Fig. 1D, see also Fig. 6E).
Regardless of the vertical offset of the soma of pyramidal cells,
postsynaptic target dendrites were therefore present within the

Table 5 Parameters of the cortical microcircuit model

A Global simulation parameters

Symbol Value Description
T 5200ms Simulation duration
dt 0.1ms Temporal resolution

B Point-neuron network

Populations and external input
Symbol Value Description
X L23E L23I L4E L4I L5E L5I L6E L6I TC Name
NX 20,683 5834 21,915 5479 4850 1065 14,395 2948 902 Size
kX

ext 1600 1500 2100 1900 2000 1900 2900 2100 Ext. in-degree per neuron
Iext τ ν ν =J, 8 Hzsyn bg bg DC ampl. per ext. input
Connectivity
CYX from X

L23E L23I L4E L4I L5E L5I L6E L6I TC
to Y L23E 0.101 0.169 0.044 0.082 0.032 0.0 0.008 0.0 0.0

L23I 0.135 0.137 0.032 0.052 0.075 0.0 0.004 0.0 0.0
L4E 0.008 0.006 0.050 0.135 0.007 0.0003 0.045 0.0 0.0983
L4I 0.069 0.003 0.079 0.160 0.003 0.0 0.106 0.0 0.0619
L5E 0.100 0.062 0.051 0.006 0.083 0.373 0.020 0.0 0.0
L5I 0.055 0.027 0.026 0.002 0.060 0.316 0.009 0.0 0.0
L6E 0.016 0.007 0.021 0.017 0.057 0.020 0.040 0.225 0.0512
L6I 0.036 0.001 0.003 0.001 0.028 0.008 0.066 0.144 0.0196

Connection parameters
Symbol Value Description
J 87.81 pA Reference synaptic strength. All synapse weights are measured in units of J.
σJ,rel Relative width of synaptic strength distribution

3 • for lognormal distribution
0.1 • for Gaussian distribution

gYX Relative synaptic strength:
1 ∈ { }X TC, L23E, L4E, L5E, L6E ,
−4 ∈ { }X L23I, L4I, L5I, L6I , except for:
2 ( ) = ( )X Y, L4E, L23E
−4.5 ( ) = ( )X Y, L4I, L4E

dE 1.5ms Mean excitatory spike transmission delay
dI 0.75ms Mean inhibitory spike transmission delay
σd,rel 0.5 Relative width (stdev/mean) of transmission delay distributions
Neuron model
Symbol Value Description
Rm 40MΩ Membrane resistance
Cm 250 pF Membrane capacitance
τm R Cm m (10ms) Membrane time constant
EL −65mV Resting potential
θ −50mV Fixed firing threshold

( = )V t 0m [ − − ]65, 50 mV Uniformly distributed initial membrane potential
Vreset EL Reset potential
τref 2ms Absolute refractory period
τsyn 0.5ms Postsynaptic current time constant
Thalamocortical (TC) input
Symbol Value Description
νTC 30 s−1 Mean firing rate per TC neuron

νΔ TC 30 s−1 Firing-rate modulation amplitude per TC neuron
fTC 15 Hz Frequency of sinusoidal firing-rate modulation
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∼ μ80 m thick (Stepanyants et al. 2008) uppermost layer 1 except
for cell type p6(L4). For simplicity, each cell type was repre-
sented by a single reconstructed morphology in the present
application. The full specification of the populations is given in
Table 3.

Each neuron is modeled using the multicompartmental,
passive cable formalism (Rall 1964; 2009; De Schutter and Van
Geit 2009), describing the changes in membrane voltage and

the associated transmembrane currents throughout all parts of
the neuron geometry (Table 4). We used (non-plastic) exponen-
tial current-based synapses as in the point-neuron network
model (Table 2). Synapse locations were randomly assigned
onto cell compartments assuming a probability proportional to
the compartment’s surface area divided by the total surface
area of the same cell within the target layer. Tables 4–6 sum-
marize parameters relevant for the synapse models, synapse

Figure 2. Cell types and morphologies of the multicompartment-neuron populations. The 8 cortical populations Y of size NY in the microcircuit network model are

represented by 16 subpopulations of cell type y with detailed morphologies My (Binzegger et al. 2004, Izhikevich and Edelman 2008). Neuron reconstructions are

obtained from cat visual cortex and cat somatosensory cortex (source: NeuroMorpho.org (Ascoli et al. 2007), Contreras et al. (1997), Mainen and Sejnowski (1996),

Kisvárday and Eysel (1992), Stepanyants et al. (2008) cf. Table 7). Each morphology My is here shown in relation to the layer boundaries (horizontal lines). Colors distin-

guish between network populations as in Figure 1. The number of compartments (ncomp), frequencies of occurrence (Fy), relative occurrence (FyY), and cell count (Ny)

are given for each cell type ∈y Y .

BA C

Figure 3. Example LFP responses from single-synapse activations of layer 4 neurons. (A) Illustration of the nontrivial relationship between apical synaptic input (red

circle) onto a reconstructed morphology (black) of a pyramidal cell in layer 4 and the corresponding extracellular potential. The exponential synaptic input current

( )I ti j, (upper inset) results in deflections in the extracellular potential ϕ ( )r t, here shown as time courses at 2 locations in proximity to the input site and the basal den-

drites (green and blue circles, respectively; lower inset). The color-coded isolines show the magnitude of the scalar extracellular potential at t = 2ms (vertical black

line in insets) in the vicinity of the cell. (B) Same as in panel A, however, with the synaptic input current relocated to a basal dendrite, resulting in an extracellular

potential with a different spatiotemporal signature less dependent on the geometry of the apical dendritic tree. At the location denoted by the blue circle, the extra-

cellular potential changes sign with time due to interactions between signal propagation in the passive model neuron and volume conduction. (C) Same as panels B

and C for a spiny stellate cell in layer 4 receiving an excitatory synaptic input on a basal dendrite.
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locations, and passive parameters of the multicompartment
models.

Spatial Synaptic Connectivity

A full description of the connectivity in networks of multicom-
partment model neurons requires a 3D representation, for
example in the form of sparse × ×N N nX Y comp matrices of syn-
aptic weights and spike-transmission delays between pre-
synaptic neurons ∈ [ ]i N1, X and compartments ∈ [ ]n n1, comp of
postsynaptic cells ∈ [ ]j N1, Y . Here, NX and NY denote the num-
ber of presynaptic and postsynaptic neurons in populations X
and Y, respectively, and ncomp the number of compartments of
the postsynaptic cell.

In point-neuron networks, in contrast, connectivity is by
definition only 2-dimensional (2D) as the cell morphology is
collapsed into a single point and, consequently, the specificity
of synapse locations on the postsynaptic morphology is
ignored. In the proposed hybrid modeling scheme, the connect-
ivity within the point-neuron network is consistent with the
connectivity between point neurons and multicompartment
model neurons. Ideally, each multicompartment model neuron
has its equivalent in the point-neuron network and receives
inputs from exactly the same presynaptic sources as its point-
neuron counterpart. Synapses should be positioned on the den-
dritic tree according to anatomical data, and synaptic weights
and time constants should be adapted such that the somatic
membrane potential or somatic current match the point-
neuron counterparts. Such mapping between point neurons
and passive multicompartment neurons is feasible (Koch and
Poggio 1985; Wybo et al. 2013; 2015).

In the current application of the hybrid scheme to the cor-
tical microcircuit model, we make the simplest approximation
to the mapping problem and fixed the current amplitudes Iji,max

and synaptic time constants as in the network model, with
compartment specificity of connections dependent on compart-
ment surface area (see Table 4). We further preserve only the
statistics of connections (average number of inputs, distribu-
tion of spike-transmission delays) for each pair of presynaptic
and postsynaptic neuron populations, exploiting that connec-
tions between network populations are drawn randomly with
fixed probabilities. Finally, we simplify the positioning of
synapses to a layer specificity of connections. The activation
times of each synapse are then given by the spike train of a
randomly drawn point neuron in the network model, with ran-
dom delays consistent with the delay distribution in the net-
work (Tables 2 and 4).

We first show how to derive a 2D point-neuron connectivity
from a given 3D multicompartment-neuron connectivity and
describe the case where the complexity of the point-neuron
network is further reduced by pooling cell types. Then we
describe the opposite procedure, connecting an existing

A B

Figure 4. Constructing spatial synaptic connectivity for the cortical microcircuit model. (A) Illustration of pooling of presynaptic cell types. Presynaptic populations X

in the point-neuron model (left box; here =X L4E) consist of multiple cell types x (here ∈ { ( ) ( )}x p4, ss4 L4 , ss4 L23 ). The layer-specific number of synapses kyXL (dash-

dotted lines) formed between one cell of postsynaptic cell type y (right part of panel A: morphology projected onto cortical layers 1–6; here y = p5(L56)) and a pre-

synaptic population X is given by the sum of all individual cell-type resolved synapse counts kyxL (dotted or dash-dotted lines). (B) Bi-directional cell- and layer-

specific pooling and dispersing of synapses between presynaptic and postsynaptic cell types. Postsynaptic populations Y (right box; here Y = L5E) in the point-neuron

model consist of multiple cell types y (here ∈ { ( ) ( )}y p5 L56 , p5 L23 ). A given presynaptic population X (left box; here X = L4E) containing cell types x (here

∈ { ( ) ( )}x p4, ss4 L4 , ss4 L23 ) forms cell-type and layer-specific connections within Y (black connection tree). For the number of synapses KyXL between population X and

cells of type y in layer L (right-most branching of connection tree) the synapse count KYX between all cells in X and Y can be obtained by pooling all synapses onto cell

types ∈y Y and input layers L. Conversely, for a given total number of synapses KYX between all cells in X and Y, the number of synapses KyXL onto a specific cell

type y and layer L can, as described by Equation (9), be obtained by calculating the cell-type and layer specificity of connections yX and yXL (see Fig. 5) from anatom-

ical data (Table 7).

Table 6 Parameters of the multicompartment model neuron popula-
tions and calculations of extracellular potentials

Multicompartment model neurons

Symbol Value Description

cm 1.0 μFcm−2 Membrane capacity
rm τ cm m Membrane resistivity
ra 150Ωcm Axial resistivity
EL EL Passive leak reversal potential
Vinit EL Membrane potential at t = 0ms
λf 100 Hz Frequency of AC length constant
λd 0.1 Factor for d_lambda rule

(Hines and Carnevale 2001)
σe

−0.3 Sm 1 Extracellular conductivity
r π μ1000 m2 Population radius
h 50 μm Soma layer thickness
ncontact 16 Number of electrode contacts
helec 100 μm Laminar-electrode intercontact

distance
rcontact 7.5 μm Electrode contact-point radius

Values for τ Eandm L are inherited from network parameters in Table 5.

4470 | Cerebral Cortex, 2016, Vol. 26, No. 12



(published) point-neuron network with a predefined 2D con-
nectivity to a population of multicompartment model neurons
such that the resulting 3D connectivity is as consistent as pos-
sible with anatomical data sets accounting for the compart-
ment specificity of connections (e.g., the layer specificity of
connections as in the anatomical data published by Binzegger
et al. 2004). The procedures outlined below allow a reduction of
complexity within the point-neuron network while accounting
for the full diversity in cell types and synapse locations for
multicompartment-neuron populations which is essential for
predicting extracellular potentials (Fig. 3).

Construction of Point-Neuron Network Connectivity
For our example point-neuron network model, the cortical
microcircuit model by Potjans and Diesmann (2014), the con-
nectivity is to a large extent based on anatomical data from cat
visual cortex (Binzegger et al. 2004; Izhikevich and Edelman
2008) (cf. Table 8).

From Table 8 we obtain 1) the number Ny of neurons belong-
ing to cell type y, 2) the average total number kyL of synapses on
all compartments in layer L (input layer) of a single postsynap-
tic neuron of type y, and 3) the fraction pyxL of the kyL synapses
formed with presynaptic neurons of cell type x. The quantity

= ( )k p k 1yxL yxL yL

defines the number of synapses between all presynaptic cells
of type x and a single postsynaptic cell of type y in input layer L
(cf. network connectivity in Izhikevich and Edelman 2008). The
number of synapses between all neurons in x and all neurons
in y, irrespective of the input layer L, is given by

∑= ( )K N k . 2yx y
L

yxL

The number Kyx of connections in combination with a cho-
sen connectivity model (e.g., random graphs with binomially
distributed (Erdős and Rényi 1959) or fixed in-/out-degree
(Newman 2003) or random graphs with defined higher order
statistics (Song et al. 2005; Zhao et al. 2011)) is sufficient for set-
ting up the point-neuron network. Assuming independently

drawn synapses (allowing multiple connections between neu-
rons), the probability Cyx of at least one connection between a
neuron of type x and a neuron of type y can be obtained from
Kyx as (Potjans and Diesmann 2014)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟= − − ( )C

N N
1 1

1
. 3yx

x y

Kyx

In our case, the point-neuron microcircuit model consists of
excitatory and inhibitory populations X Y, (see Tables 1 and 2)
pooling different presynaptic and postsynaptic cell types ∈x X
and ∈y Y (cf. Fig. 4). Given a single multicompartment model
neuron of type y, we compute the number kyXL of incoming
connections (in-degree) from cell types x in each presynaptic
population X in a given layer L by pooling all connections as
illustrated in Figure 4A as

∑= ( )
∈

k k . 4yXL
x X

yxL

The total number of connections onto postsynaptic cells y
from cells in X is then

= ( )K N k . 5yXL y yXL

The layer-specific connection probability CyXL (Fig. 5B) can be
derived from Equation (5) analogous to Equation (3) for a pre-
synaptic population size NX (here, = ∑ ∈N NX x X x).

In order to obtain the connectivity within the point-neuron
network, that is, between populations X and Y, we also need to
pool over all synapses of input layers L and cell types y within
the postsynaptic population Y (dashed/dotted lines in Fig. 4B).
Thus

∑ ∑ ∑= = ( )
∈ ∈

K K K , 6YX
y Y

yX
y Y L

yXL

which yields the connectivity of the simplified network struc-
ture CYX (cf. Eq. 3, Fig. 5A).

Table 7 Morphology types and file names used for each cell type in the model (p — pyramidal cell, ss — spiny stellate, i — interneuron)

Morphology files

Cell type y Morphology My File Source Online source

p23 p23 oi24rpy1.hoc (Kisvárday and Eysel 1992) #NMO_00851 (#NMO_10045)
b23 i23 oi38lbc1.hoc (Stepanyants et al. 2008) —

nb23 i23 oi38lbc1.hoc (Stepanyants et al. 2008) —

p4 p4 oi53rpy1.hoc (Kisvárday and Eysel 1992) #NMO_00855 (#NMO_10040)
ss4(L23) ss4 j7_L4ste.hoc (Mainen and Sejnowski 1996) #MDB_2488 (#NMO_00905)
ss4(L4) ss4 j7_L4ste.hoc (Mainen and Sejnowski 1996) #MDB_2488 (#NMO_00905)
b4 i4 oi26rbc1.hoc (Stepanyants et al. 2008) —

nb4 i4 oi26rbc1.hoc (Stepanyants et al. 2008) —

p5(L23) p5v1 oi15rpy4.hoc (Kisvárday and Eysel 1992) #NMO_00850 (#NMO_10046)
p5(L56) p5v2 j4a.hoc (Mainen and Sejnowski 1996) #MDB_2488
b5 i5 oi15rbc1.hoc (Stepanyants et al. 2008) —

nb5 i5 oi15rbc1.hoc (Stepanyants et al. 2008) —

p6(L4) p6 51–2a.CN.hoc (Contreras et al. 1997) #NMO_00879
p6(L56) p5v1 oi15rpy4.hoc (Kisvárday and Eysel 1992) #NMO_00850 (#NMO_10046)
b6 i5 oi15rbc1.hoc (Stepanyants et al. 2008) —

nb6 i5 oi15rbc1.hoc (Stepanyants et al. 2008) —

Online source numbers #NMO_* refer to NeuroMorpho.org identifiers, #MDB_* refer to ModelDB identifiers.
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Table 8 Spatial distribution of cell types and synapses of the cortical microcircuit model adapted from Binzegger et al. (2004) and Izhikevich and Edelmann (2008). Note that occurrences are renor-
malized between cell types within layers 2/3, 4, 5 and 6 so that ∑ =F 100%y y

Postsynaptic Layer Occurr. Num. Presynaptic populations X and cell types x

pop. cell type syn. L23E L23I L4E L4I L5E L5I L6E L6I TC

p23 b23 nb23 ss4(L4) ss4(L23) p4 b4 nb4 p5(L23) p5(L56) b5 nb5 p6(L4) p6(L56) b6 nb6 TCs TCn

Y y L Fy (%) kyL pyxL (%)

L23E p23 2/3 26.7 5800 59.9 9.1 4.4 0.6 6.9 7.7 — 0.8 7.4 — — — 2.3 — — 0.8 — —

1 1306 6.3 0.1 1.1 — — 0.1 — — 0.1 — — — — — — — — 4.1
L23I b23 2/3 3.2 3854 51.6 10.6 3.4 0.5 5.8 6.6 — 0.8 6.3 — — — 2.1 — — 0.7 — 0.5

nb23 2/3 4.3 3307 48.6 11.4 3.3 0.5 5.5 6.2 — 0.8 5.9 — — — 1.8 — — 0.6 — 0.7
L4E ss4(L4) 4 9.4 5792 2.7 0.2 0.6 11.9 3.7 4.1 7.1 2 0.8 0.1 — — 32.7 — — 5.8 1.7 1.3

ss4(L23) 4 9.4 4989 5.6 0.4 0.8 11.3 3.8 4.3 7.2 2.1 1.1 0.1 — — 31.1 — — 5.5 1.7 1.3
p4 4 9.4 5031 4.3 0.2 0.6 11.5 3.6 4.2 7.2 2.1 1.2 0.1 — — 31.4 0.1 — 5.9 1.7 1.3

2/3 866 63.1 5.1 4.1 0.6 7.2 8.1 — 0.6 7.8 — — — 2.5 — — 0.8 — —

1 806 6.3 0.1 1.1 — — 0.1 — — 0.1 — — — — — — — — 4.1
L4I b4 4 5.5 3230 5.8 0.5 0.8 11 3.8 4.2 8.4 2.4 1.1 — — — 30.3 — — 5.4 1.6 1.2

nb4 4 1.5 3688 2.7 0.2 0.6 11.7 3.6 4 8.2 2.3 0.8 0.1 — — 32.2 — — 5.7 1.7 1.3
L5E p5(L23) 5 4.8 4316 45.9 1.8 0.3 3.3 2 7.5 — 0.9 11.7 1 0.8 1.1 2.3 2.1 — 11.5 0.1 0.4

4 283 2.8 0.1 0.7 12.2 3.8 4.2 5.2 1.5 0.8 0.1 — — 33.7 — — 5.9 1.8 1.4
2/3 412 63.1 5.1 4.1 0.6 7.2 8.1 — 0.6 7.8 — — — 2.5 — — 0.8 — —

1 185 6.3 0.1 1.1 — — 0.1 — — 0.1 — — — — — — — — 4.1
p5(L56) 5 1.3 5101 44.3 1.7 0.2 3.2 2 7.3 — 0.8 11.3 1.2 0.8 1.1 2.3 2.5 0.3 11.3 0.2 0.5

4 949 2.8 0.1 0.7 12.2 3.8 4.2 5.2 1.5 0.8 0.1 — — 33.7 — — 5.9 1.8 1.4
2/3 1367 63.1 5.1 4.1 0.6 7.2 8.1 — 0.6 7.8 — — — 2.5 — — 0.8 — —

1 5658 6.3 0.1 1.1 — — 0.1 — — 0.1 — — — — — — — — 4.1
L5I b5 5 0.6 2981 45.5 2.3 0.2 3.3 2 7.5 — 1.1 11.6 1 0.9 1.3 2.3 2 — 11.4 0.1 0.4

nb5 5 0.8 2981 45.5 2.3 0.2 3.3 2 7.5 — 1.1 11.6 1 0.9 1.3 2.3 2 — 11.4 0.1 0.4
L6E p6(L4) 6 14.0 3261 2.5 0.1 0.1 0.7 0.9 1.3 — 0.1 0.1 4.9 — 0.3 1.2 13.2 7.7 7.7 0.6 2.9

5 1066 46.8 0.8 0.3 3.4 2.1 7.7 — 0.6 11.9 1 0.6 0.8 2.3 2.1 — 11.7 0.1 0.4
4 1915 2.8 0.1 0.7 12.2 3.8 4.2 5.2 1.5 0.8 0.1 — — 33.7 — — 5.9 1.8 1.4
2/3 121 63.1 5.1 4.1 0.6 7.2 8.1 — 0.6 7.8 — — — 2.5 — — 0.8 — —

p6(L56) 6 4.6 5573 2.5 0.1 0.1 0.7 0.9 1.3 — 0.1 0.1 4.9 — 0.3 1.2 13.2 7.8 7.8 0.6 2.9
5 257 46.8 0.8 0.3 3.4 2.1 7.7 — 0.6 11.9 1 0.6 0.8 2.3 2.1 — 11.7 0.1 0.4
4 243 2.8 0.1 0.7 12.2 3.8 4.2 5.2 1.5 0.8 0.1 — — 33.7 — — 5.9 1.8 1.4
2/3 286 63.1 5.1 4.1 0.6 7.2 8.1 — 0.6 7.8 — — — 2.5 — — 0.8 — —

1 62 6.3 0.1 1.1 — — 0.1 — — 0.1 — — — — — — — — 4.1
L6I b6 6 2.0 3230 2.5 0.1 0.1 0.7 0.9 1.3 — 0.1 0.1 4.9 — 0.4 1.2 13.2 7.7 7.7 0.6 2.9

nb6 6 2.0 3230 2.5 0.1 0.1 0.7 0.9 1.3 — 0.1 0.1 4.9 — 0.4 1.2 13.2 7.7 7.7 0.6 2.9
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From Pooled to Specific Network Connectivity
In case of an already existing point-neuron network model, the
reverse task of creating a spatial connectivity CyXL from a given
point-neuron network connectivity CYX is necessary. This
inverse procedure compared with pooling over cell types and
input layers entails introducing the cell-type specificity

 = ( )
K

K
, 7yX

yX

YX

which describes the fraction of synapses between populations
X and Y that are formed with a specific postsynaptic cell type y
(Fig. 5C), and the layer specificity of connections

 = ( )
K

K
, 8yXL

yXL

yX

denoting the fraction of synapses between population X and all
cells of cell type y formed in a particular layer L (Fig. 5D). The

product  yX yXL defines the probability of a synapse between
populations X and Y formed with a specific postsynaptic cell
type y in a particular layer L (Fig. 4B). Thus, if KYX is given, the
total number of connections in layer L onto postsynaptic cells y
from cells in X is

 = ( )K K . 9yXL YX yX yXL

If KYX is constructed from the same data as yX and yXL,
Equations (7–9) are fully consistent. However, KYX can also be
computed from any given point-neuron network connectivity
CYX. This is particularly relevant for the network connectivity
CYX (Fig. 5A) of Potjans and Diesmann (2014) that includes add-
itional data sets for which spatial information on synapse loca-
tions is not available. Here the number of synapses kyXL from
population X established in layer L on each multicompartment
model neuron of type y is obtained from Equation (9) as

=k K NyXL yXL y.

A B

C D

Figure 5. Connectivity of the cortical microcircuit model. (A) Connection probability CYX between presynaptic population X and postsynaptic population Y of the cor-

tical microcircuit model by Potjans and Diesmann (2014) given in Table 5. Zero values are shown as gray here and in subsequent panels. (B) Layer- and cell-type spe-

cific connectivity map CyXL, where X, y, and L denote presynaptic populations, postsynaptic cell types, and the synapse location (layer), respectively. This map is

computed from the connectivity of the point-neuron network (panel A), cell-type (panel C), and layer specificity (panel D) of connections. (C) Cell-type specificity yX

of connections quantified as the fraction of synapses between presynaptic and postsynaptic populations X and Y formed with a specific postsynaptic cell type y. (D)

Layer specificity yXL of connections denoting the fraction of synapses between population X and cell type y formed in a particular layer L. Both yX and yXL in

panels C and D, respectively, are calculated from anatomical data (Binzegger et al. 2004, Izhikevich and Edelman 2008), cf. Table 8.
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Forward Modeling of Extracellular Potentials

The LFP signal reflects transmembrane currents weighted
according to the distance from the source to the measurement
location (Einevoll et al. 2013), and here we compute the LFP from
the model neurons using a now well-established forward-model-
ing scheme combining multicompartment neuron modeling and

electrostatic (volume-conduction) theory (Holt and Koch 1999;
Gold et al. 2006; Pettersen et al. 2008; Lindén et al. 2010; 2011;
Reimann et al. 2013; Lindén et al. 2014; Tomsett et al. 2014).

Each morphology was spatially discretized into compart-
ments using the d_lambda rule (Hines and Carnevale 2001) with
electrotonic length constants computed at f = 100 Hz.

DCBA

E F G

Figure 6. Overview of output signals obtained from application of the hybrid scheme to a cortical microcircuit (spontaneous activity). Point-neuron network: (A) Spiking

activity. Each dot represents the spike time of a point neuron (color coding as in Figure 1). (B) Population-averaged firing rates for each population. (C) Population-

averaged somatic input currents (red: excitatory, blue: inhibitory, black lines: total). (D) Population-averaged somatic voltages. Averaged somatic input currents and

voltages are obtained from 100 neurons in each population. Multicompartment model neurons: (E) Somas of excitatory (triangles) and inhibitory (stars) multicompart-

ment cells and layer boundaries (gray/black ellipses). Illustration of a laminar electrode (gray) with 16 recording channels (black circles). (F) Depth-resolved CSD

obtained from summed transmembrane currents in cylindrical volumes centered at each contact. (G) Depth-resolved LFP calculated at each electrode contact from

transmembrane currents of all neurons in the column. Channel 1 is at pial surface, channel 2 at μ100 m depth, etc.
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In this forward modeling scheme, localized synaptic activa-
tion of a morphologically detailed neuron results in spatially
distributed transmembrane currents across the neuronal mem-
brane as calculated using standard cable theory, see, for
example, De Schutter and Van Geit (2009). The extracellular
potentials, including the LFP, are in turn given as a weighted
sum of transmembrane currents as described by volume con-
duction theory (Holt and Koch 1999; Einevoll et al. 2013).

The cable-equation description is summarized in box D in
Table 4. Equation (27) relates synaptic-input currents Ijin onto
compartment n in a neuron j from presynaptic neurons i, the
membrane voltages V jnm and transmembrane currents I jnm , and
is derived from the assumption (Kirchoff’s law) of current bal-
ance in the intracellular node of the equivalent electrical circuit
of a cylindrical compartment n with m neighboring
compartments.

We use the standard convention that a positive membrane
current is a positive current from the intracellular to the
extracellular space across the membrane. I jnm is assumed to
be homogeneously distributed across the outer surface of the
cylindrical compartment, and the calculation assumes that
the electrical potential on the outside boundary of the mem-
brane is zero at all times. Hence, there are no mutual interac-
tions (i.e., ephaptic coupling (Anastassiou et al. 2011)) between
the extracellular potential estimated using volume conduction
theory, the transmembrane currents, and intracellular
potentials.

The associated extracellular potential resulting from the
transmembrane currents is calculated based on volume con-
duction theory (Nunez and Srinivasan 2006; Einevoll et al.
2013). In the present application where the signal frequencies
are well below 1000 Hz, this calculation is simplified by apply-
ing the quasistatic approximation to Maxwell’s equations, that
is, terms with time derivatives of the electrical and magnetic
fields are omitted, cf. (Hämäläinen et al. 1993). Furthermore, we
assume the extracellular medium to be linear, isotropic, homo-
geneous, and ohmic (Pettersen et al. 2012; Einevoll et al. 2013)
and represented by a scalar extracellular conductivity σe.

Given a time-varying point current source with magnitude
I(t) at position ′r , the scalar extracellular potential ϕ ( )tr, at pos-
ition r and time t is then given by (Nunez and Srinivasan 2006;
Lindén et al. 2014)

ϕ
πσ

( ) = ( )
− ′

( )t
I t

r
r r

,
4

. 10
e

Contributions to the extracellular potential from multiple
current sources, that is, transmembrane currents of all individ-
ual compartments n from all cells j in a population of N cells
sum linearly. In accordance with the assumed homogeneous
current distribution along each cylindrical compartment, the
line-source approximation is used for dendritic compartments
(Holt and Koch 1999). The line-source forward-modeling for-
mula is obtained by integrating Equation (10) along the cylin-
drical axis of each compartment n, and summing the
contributions from all ncomp compartments (Holt and Koch
1999; Pettersen et al. 2008; Lindén et al. 2014):
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Presently, we approximate the thick soma compartments as
spherical current sources, and thus combine the point-source

equation (Eq. 10) with the line-source formula (Eq. 11) for den-
drite compartments, obtaining (Lindén et al. 2014):
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Here, Δsjn denotes compartment length, ⊥r jn the perpen-
dicular distance from the electrode point contact to the axis
of the line compartment, hjn the longitudinal distance mea-
sured from the start of the compartment, and = Δ +l s hjn jn jn

the longitudinal distance from the other end of the compart-
ment. If the distance between electrode contacts and den-
dritic current sources becomes smaller than the radius of the
dendritic segment, an unphysical singularity in our extracel-
lular potential may occur. In these cases, singularities are
avoided by setting ∣ − ∣r rj,soma or ⊥r jn equal to the compartment
radius.

Electrode contacts of real recording devices have finite spa-
tial extent and are not point contacts as assumed above.
However, the recorded signal can be well approximated as the
mean of the potential averaged across the uninsulated surface
(Robinson 1968; Nelson et al. 2008; Nelson and Pouget 2010;
Ness et al. 2015), at least for current sources positioned further
away than an electrode radius or so (Ness et al. 2015). Here we
employed the disc-electrode approximation to the potential
(Camuñas Mesa and Quiroga 2013; Lindén et al. 2014; Ness et al.
2015):

∬ ∑ϕ ϕ ϕ( ) = ( ′ ) ′ ≈ ( ) ( )
=

t
A

t d
m

tr r r r,
1

,
1

, . 13
S S

h

m
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2

1

We further considered circular electrode contacts with a
radius of = μr 7.5 mcontact , and we averaged the point-contact
potential in Equation (12) over m = 50 random locations rh

across the contact surface S, AS being the surface area. The cho-
sen locations were distributed with uniform probability on cir-
cular discs representing each contact surface, with surface
vectors oriented perpendicular to the electrode axis (Lindén
et al. 2014). Calculations of extracellular potentials were facili-
tated by LFPy (http://LFPy.github.io, Lindén et al. 2014), in
which NEURON simulation software is used for calculations of
transmembrane currents (i.e., solving Eq. (27)) (Hines and
Carnevale 2001; Hines et al. 2009; Carnevale and Hines 2006).

Data Analysis and Software

Model Measurements
The main simulation output of the hybrid scheme consists of
spike trains of each neuron in the point-neuron network,
“ground-truth” CSD and LFP of each neuron in the morpho-
logically detailed postsynaptic model populations (see Tables 3
and 4). Here the term “ground-truth” refers to the fact that the
CSD is computed from transmembrane currents rather than
estimated from the LFP.

As the transmembrane current of each compartment (Eq. 27)
is known at each simulation time step, we follow the procedure
of Pettersen et al. (2008) to compute the “ground-truth” CSD
in addition to the LFP. From N model neurons with ncomp
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compartments having membrane currents ( )I tjnm and lengths
Δsjn, we calculate the CSD signals ρ ( )tr, inside cylinder ele-
ments ( )ρV r centered around each electrode contact as

( )∑ ∑ρ
π
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Δ
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r
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comp

Δ ( )s rjn,inside denotes the length of the line source contained
within ( )ρV r . In contrast to Pettersen et al. (2008), we do not
apply a spatial filter to the CSD. The volumes have radii equal
to the population radius r and heights equal to the electrode
separation helec (cf. Table 6).

In the present example application, the extracellular potential
is computed at locations corresponding to a laminar multi-
electrode array with 16 recording electrodes with an interelec-
trode distance of = μh 100 melec , positioned at the cylindrical
axis of the model column with the topmost contact at the pial
surface (cf. Fig. 1D, see Table 6 for details). Each electrode contact
is set to have a radius of μ7.5 m (cf. Eq. (13)). In the network, we
also record membrane voltages and input currents from a subset
of cells in each of the eight cortical populations (see Table 9).

We ran our simulations for a total duration of T=5200ms
using a temporal resolution of dt=0.1ms (cf. Tables 5 and 11).
However, LFP and CSD signals were resampled prior to file stor-
age to a temporal resolution of =ψtd 1 ms by 1) applying a
fourth-order Chebyshev type I low-pass filter with critical fre-
quency =f 400 Hzc and 0.05 dB ripple in the passband using a
forward–backward linear filter operation, and 2) then selecting
every 10th time sample.

Post-processing and Data Analysis
As the contributions to the CSD and LFP of the different cells
sum linearly (cf. Eq. 12), we compute population-resolved sig-
nals as the sum over contributions from all cells in a popula-
tion, and the full compound signals as the sum over all
population signals (see Table 9). In Results, we derive a rescaled
“low-density predictor” ϕ ( )γξ tr, of the LFP from random subsets
of neurons in all populations. Thereby, we make a downscaled
LFP-generating model setup with the same column volume, but
with neuron density reduced to a factor γ ∈ ( )0, 1 of the original
density, while preserving the in-degrees, that is, the number of
synaptic connections onto individual neurons. The LFP from
the downscaled setup is multiplied by an overall scaling factor
ξ chosen to roughly preserve the LFP from the full-scale model.
For analysis and plotting, the initial 200 ms of results after
simulation onset was removed, and the signal mean was sub-
tracted from LFP and CSD traces emulating DC filtering during
experimental data acquisition. The contribution from each
population to the overall LFP signal was assessed by computing
and comparing the signal variances (see Table 10).

Cross-correlations between single-cell LFPs ϕ ( )tr,i were
quantified by analyzing the power spectrum of the compound
extracellular signals. Given that the compound LFP/CSD is a lin-
ear superposition of single-cell LFP/CSD contributions, the
power spectrum of the compound signal ( )ϕP fr, can be
obtained as the sum of all single-cell power spectra ( )ϕP fr,i and
all pairwise cross-spectra ( )ϕ ϕC fr,i j , or equivalently from the
average single-cell power spectrum ( )ϕP fr, , the average pair-
wise cross-spectrum ( )ϕC fr, , and the total cell count N, as

Table 9 Measurements and derived signals obtained from the hybrid scheme for LFP simulations

Measurements and derived signals

Measurements

Symbol Description Number of recorded units

( )I ti
ex Excitatory synaptic input current of neuron i 100 per population X

( )I ti
in Inhibitory synaptic input current of neuron i 100 per population X
Vi(t) Somatic voltage of neuron i 100 per population X
si(t) Spike train of neuron i NX neurons
ϕ ( )tr,i Single-cell LFP generated by neuron i NX neurons
ρ ( )tr,i Single-cell CSD generated by neuron i NX neurons
Derived signals
Symbol Definition Description
Ii(t) ( ) + ( )I t I ti i

ex in Total synaptic input current of neuron i

( )I tX
ex ∑ ( )∈ I t

n i X
n

i
1

av
av ex Average excitatory synaptic input current of population X ( =n 100av )

( )I tX
in ∑ ( )∈ I t

n i X
n

i
1

av
av in Average inhibitory synaptic input current of population X ( =n 100av )

( )I tX ∑ ( )∈ I t
n i X

n
i

1

av
av Average total synaptic input current of population X ( =n 100av )

( )V tX ∑ ( )∈ V t
n i X

n
i

1

av
av Average membrane voltage of population X ( =n 100av )

ν ( )tX
( )nX t

t

s

bin
Instantaneous population (X) firing rate, with ( )n tX

s being the number
of spikes in ( + )t t t, bin of all cells in population X, =t 1 msbin

ν ( )tX
ν ( )X t
NX

Average instantaneous firing rate of population X
ϕ ( )tr,X ϕ∑ ( )∈ tr,i X i Population LFP of population X
ρ ( )tr,X ρ∑ ( )∈ tr,i X i Population CSD of population X
ϕ ( )tr, ϕ∑ ( )tr,X X Compound LFP of all cells
ρ ( )tr, ρ∑ ( )tr,X X Compound CSD of all cells
Rescaled signals
ϕ ( )γ tr, ϕ∑ ∑ ( )∈ ′⊂ tr,X i X X i Compound LFP signal from subset of neurons ∈ ′ ⊂i X X with γ=′N NX X,

γ ∈ [ ]0, 1
ϕ ( )γξ tr, ξϕ ( ) ( )γ tr, 31 Compound LFP signal from subset of neurons ∈ ′ ⊂i X X with γ=′N NX X,

γ ∈ [ ]0, 1 , rescaled by factor ξ
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shown in Table 10. Note that ( )ϕC fr, and hence the average
pairwise single-cell LFP coherence κ ( )ϕ fr, (Eq. 35) are real,
while ( )ϕ ϕC fr,i j is complex. Note that this definition allows for
negative values of κ ( )ϕ fr, . In the sum over all i and j in
Equation (34), the imaginary parts of ( )ϕ ϕC fr,i j and ( )ϕ ϕC fr,j i

cancel because *( ) = ( )ϕ ϕ ϕ ϕC f C fr r, ,i j j i (∗ denotes the complex
conjugate). The power spectrum ( )ϕγξP fr, of the compound sig-
nals of the “downscaled” network (i.e., low-density LFP

predictor, see above) is given by the reduced cell count γN, the
average single-cell power spectrum ( )ϕγξP fr, , and the average
pairwise single-cell cross-spectrum ( )ϕγξC fr, calculated from
that subset of neurons (see Table 10). These single-cell averages
are the same as the respective single-cell averages of the full-
scale model setup, apart from variability due to subsampling.

Throughout this paper, signal power spectra are estimated
using Welch’s average periodogram method (Welch 1967) (with
the matplotlib.mlab.psd implementation in Python, see
Table 11). Temporal cross-correlations are quantified as the
zero time-lag correlation coefficient (Eq. 32 in Table 10).
Distributions of chance correlation coefficients were deter-
mined using surrogate data that preserved the overall spectra.
We generated this data by transforming one input vector to the
Fourier domain, assigned a random phase π∈ [ )0, 2 to each fre-
quency >f 0, and transformed the data back to the time
domain prior to computing the correlation coefficients
(Schreiber and Schmitz 2000). We show 1% significance levels
obtained by computing the 99th percentile of chance correl-
ation coefficients across 1000 trials. Spike-trigger-averaged LFP
(stLFP) signals are computed as the cross-covariance between
the time-resolved population spike rate ν ( )tX and the com-
pound LFP ϕ ( )tr, , divided by the total number of spikes (i.e.,

∫ ν ( )t td
T

X
0

).

The hybridLFPy Python Package
To facilitate usage of the hybrid scheme by other users, a novel
Python software package, hybridLFPy, has been made publicly
available under the General Public License version 3 (GPLv3,
http://www.gnu.org/licenses/gpl-3.0.html) on GitHub (http://
github.com/INM-6/hybridLFPy). Compatibility with a host of dif-
ferent machine architectures and operating systems (∗nix, OSX,

Table 11 Post-processing and data analysis parameters

Post-processing

Parameters

Symbol Value Description

Ttrans 200ms Start-up transient

ψtd 1ms Signal resolution

Power spectral density settings
Method plt.mlab.psd* Welch’s average

periodogram
Symbol Value Description
Tψ 5000ms Signal length
NFFT 256 Number of data points

used in
each block for the FFT

Fs 1 kHz Sampling rate
noverlap 128 Number of overlapping

data
points between blocks

window plt.mlab.window_hanning* Window filter (* plt
denotes matplotlib)

Table 10 Data analysis of model output signals

Data analysis

Symbol Definition Description

ψ ψ ′, ψ ψ ϕ ϕ ϕ ρ ρ ρ ν′ ∈ { }, , , , , , ,i X i X X Signal (LFPs, CSDs, firing rates)
μ ( )ψ r ψ∑ ( )= h tr, dt

T h
T td

1
d Temporal mean of signal ψ ( )tr,

( )ψψ ′ rcov ψ ψ μ μ∑ ( ) ′( ) − ( ) ( )ψ ψ= ′h t h tr r r r, d , dt
T h

T td
1
d Temporal covariance of signals ψ ψ( ) ′( )t tr r, , ,

σ ( )ψ r2 ( )ψψ rcov Temporal variance of signal ψ ( )tr,

( )ψψ ′cc r ( ) ( )σ σ( ) ( )′ ′ψψ ψ ψr r rcov 322 2 Zero time-lag correlation coefficient of signals ψ ψ( ) ′( )t tr r, , ,

( )ψψ ′C fr, ψ ψ[ ]( )* [ ′]( )f fr r, , (implemented using Welch’s method) Pairwise cross-spectral density of signals ψ ψ( ) ′( )t tr r, , , , ψ[ ]: ourier
transform of ψ

( )ψP fr, ( )ψψC fr, PSD of signal ψ ( )tr,

( )ϕP fr, ∑ ( ) ( )ϕ=
P fr, 33

N i

N1

1 i
Average single-cell LFP power spectrum

( )ϕC fr, ∑ ∑ ( ) ( )ϕ ϕ( − ) = =
≠

C fr, 34
N N i

N
j
j i

N1
1 1

1 i j
Average cross-spectrum between single-cell LFPs

κ ( )ϕ fr, ( ) ( ) ( )ϕ ϕC f P fr r, , 35 Average LFP coherence between cells

( )ϕP fr, ( ) + ( − ) ( ) ( )ϕ ϕNP f N N C fr r, 1 , 36 PSD of the compound LFP

( )ϕP fr,0 ( ) ( )ϕNP fr, 37 PSD of the compound LFP signal omitting pairwise cross-correlations
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Windows) is ensured with the freely available, object-oriented
programming language Python (http://www.python.org).
Python adds tremendous flexibility in terms of interfacing a
large number of packages and libraries, for example, for per-
forming numerical analysis and data visualization, such as
numpy (http://www.numpy.org) and matplotlib (http://www.
matplotlib.org), while several other neural simulation softwares
also come with their own Python interfaces, such as NEST

(http://www.nest-initiative.org, Eppler et al. 2008) and NEURON

(http://www.neuron.yale.edu, Hines et al. 2009).
The source code release of hybridLFPy provides a set of

classes implementing the hybrid scheme, as well as example
network simulation codes implemented with NEST (Eppler et al.
2015) (at present a simplified two-population network (Brunel
2000) and the full cortical microcircuit model of Potjans and
Diesmann (2014) adapted from public codes). The class
hybridLFPy.CachedNetwork uses an efficient sqlite3 data-
base implementation for reading in all point-neuron network
spike events and interfacing network spike events with the
main simulation in which the LFP and CSD are calculated. The
class hybridLFPy.Population defines populations of multi-
compartment model neurons representing each cell type,
assigns synapse locations across the laminae, selects spike
trains for each synapse location from the appropriate pre-
synaptic population, and calculates the LFP and CSD. The
single-cell calculations are handled using LFPy (http://LFPy.
github.io) (Lindén et al. 2014), which builds on NEURON

(Carnevale and Hines 2006; Hines et al. 2009). As there are no
mutual interactions between the multicompartment model
neurons in the calculation of LFPs, these calculations remain
embarrassingly parallel operations. Finally, the class
hybridLFPy.PostProcess constructs the full compound sig-
nals in terms of LFPs and CSDs created by multiple instances of
the Population class, and performs the main analysis steps as
described above. Reproducible simulation and data analysis are
assured by tracking code revisions using git and by fixing ran-
dom number generation seeds and the number of parallel pro-
cesses. Further documentation and information on installing
and using hybridLFPy is provided online, see http://github.
com/INM-6/hybridLFPy.

The present implementation of hybridLFPy (v.0.1.3) and cor-
responding simulations were made possible by Open MPI

(v.1.6.2), HDF5 (v.1.8.13), sqlite3 (v.3.6.20), Python (v.2.7.3) with
modules Cython (v.0.23dev), NeuroTools (v.0.2.0dev), SpikeSort
(v.0.13), h5py (v.2.5.0a0), ipython (v.0.13), matplotlib (v.1.5.x),
mpi4py (v.1.3), numpy (v.1.10.0.dev-c63e1f4), pysqlite (v.2.6.3)
and scipy (v.0.17.0.dev0–357a1a0). Point-neuron network simu-
lations were performed using NEST (v.2.8.0 ff71a29), and simula-
tions of multicompartment model neurons using NEURON (v.7.4
1186:541994f8f27f) through LFPy (dev. v.d393d7). All software was
compiled using GCC (v.4.4.6). Simulations were performed in par-
allel (256 threads) on the Stallo high-performance computing
facilities (NOTUR, the Norwegian Metacenter for Computational
Science) consisting of 2.6 GHz Intel E5–2670 CPUs running the
Rocks Cluster Distribution (Linux) operating system (v.6.0).

Results: LFP Generated by a Cortical
Microcircuit
To illustrate the application of the hybrid scheme for predic-
tions of LFPs from point-neuron networks, we here present
results for a modified version of the point-neuron network
model of Potjans and Diesmann (2014) with ∼78, 000 neurons
mimicking a 1mm2 patch of cat primary visual cortex (see

Methods). The microcircuit model has realistic cell density and
deliberately neglects many biological details on the single-cell
level, focusing on the effect of the connectivity on the local net-
work dynamics in such circuits. Despite this simplicity, the
model displayed firing rates across populations in agreement
with experimental observations (Potjans and Diesmann 2014),
as well as propagation of spiking activity across layers.
Likewise, the microcircuit model in conjunction with simpli-
fied, passive multicompartment populations is used here to
study the effect of the (spatial) connectivity on the laminar pat-
tern of spontaneous and stimulus-evoked CSD and LFP signals.
For this, CSD and LFP signals for a laminar multi-electrode
recording at different cortical depths are computed. The large
network size of the model is further used to illustrate the effect
of correlations and neuron density on CSD and LFP predictions.

Spontaneous vs. Stimulus-Evoked LFP

We first consider the LFP generated by spontaneous network
activity. The output of our hybrid scheme covers various scales
and measurement modalities, from spikes of each neuron
(Fig. 6A), population-averaged firing rates (Fig. 6B), excitatory,
inhibitory, and total synaptic-input currents (Fig. 6C), and mem-
brane voltages (Fig. 6D), to the compound CSD and LFP stem-
ming from all populations of different cell types (Fig. 6E–G). For
spontaneous activity, that is, no modulated thalamic input (cf.
Table 1), we observe asynchronous irregular spiking in all popu-
lations (Fig. 6A) and firing rates similar to the original model
(Potjans and Diesmann 2014) (Fig. 6B). In particular, layer 2/3
exhibits low firing rates, and in general inhibitory neurons fire
with higher rates than excitatory neurons of the respective
layers. The network is in a balanced regime (Brunel 2000),
reflected by the substantial cancellation of population-
averaged excitatory and inhibitory input currents (Fig. 6C). The
population-averaged membrane potential fluctuates below the
fixed firing threshold θ = −50 mV down to ∼ −80 mV (Fig. 6D).

The corresponding compound CSD and LFP signals with
contributions from all cortical populations are shown in Figure
6F andG, respectively. As expected for spontaneous cortical
network activity, the LFP signal amplitudes are small, ≃ 0.1 mV
(intriguingly close to what has been seen in experiments, see,
e.g., Fig. 1 in Maier et al. 2010 for macaque visual cortex, Fig. 7
in Hagen et al. 2015 for mouse visual cortex), and exhibit strong
cross-channel covariance and coherence in line with experi-
mental observations, for example Einevoll et al. 2007; Maier
et al. 2010; Riehle et al. 2013; Hagen et al. 2015. In the model,
these correlations stem from dendritic cable properties and vol-
ume conduction effects (Pettersen et al. 2008; Lindén et al. 2011;
Łȩski et al. 2013). The correlations across channels are, as
expected, generally less visible in the more localized CSD signal
where volume conduction effects are absent (Nicholson and
Freeman 1975; Pettersen et al. 2006; 2008).

LFP and associated CSD studies have commonly been used
to investigate stimulus-evoked responses in sensory cortices,
see, for example, Mitzdorf and Singer (1979); Mitzdorf (1985); Di
et al. (1990); Swadlow et al. (2002); Einevoll et al. (2007); Sakata
and Harris (2009); Szymanski et al. (2009); Maier et al. (2010); Jin
et al. (2011); Szymanski et al. (2011), as well as Einevoll et al.
(2013) and references therein. To model the situation with a
sharp onset of a visual stimulus (or direct electrical stimulation
of the TC pathway (Mitzdorf and Singer 1979)), we drive the net-
work with a short thalamic pulse mimicking a volley of incom-
ing spikes onto primary visual cortex from the visual thalamus
(lateral geniculate nucleus). The activation targets populations
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in layers 4 and 6 (see Fig. 1A or Fig. 5A,B) and propagates in the
network to populations in layers 2/3 and 5 (Fig. 7A,B). At the
level of spiking activity, the results match the behavior of the
original model (Potjans and Diesmann 2014) and even agree
qualitatively with experimental findings in rodents from
stimulus-evoked activation of auditory cortex (Sakata and
Harris 2009) and somatosensory cortex (Armstrong-James et al.
1992; Einevoll et al. 2007; Reyes-Puerta et al. 2015). This points
to a general biological plausibility of this generic network mod-
el, based largely on data from cat V1.

The corresponding CSD and LFP profiles across depth asso-
ciated with this spiking activity are determined by the synapse
locations and dendritic filtering by cell-type specific morpholo-
gies (see Figs 3 and 5D). For the CSD (Fig. 7C), a complex alter-
nating spatiotemporal pattern of current sinks (negative CSD)
and sources (positive CSD) is observed. Due to volume conduc-
tion, this detailed spatial pattern is largely smeared out in the
LFP profile (Fig. 7D), which displays a strong positivity across
the middle layer around t = 910ms. We also note the different
spatiotemporal profiles of the spiking activity (Fig. 7A,B) com-
pared with laminar CSD and LFP profiles. Not only do the CSD
and LFP signals typically fade out 5–10ms later than the spik-
ing, the spatial profiles are also very different. For example, the
LFP signal is very weak between channels 11 and 12 (i.e.,
between 1100 and μ1200 m depth), even if the firing rate of layer
5 positioned between these channels is very high. We also note
that the predicted LFP magnitudes are an order of magnitude
larger compared with the LFP predicted for spontaneous activ-
ity, that is, ∼ 1mV for stimulus-evoked versus ∼ 0.1mV for
spontaneous activity.

Although the present example has not been tuned to
address specific experiments, we nevertheless observe that the
model predictions display several features seen in experiments.
For example, stimulus-evoked LFP amplitudes on the order of
1mV are similar to the maximal amplitudes (∼ 1–3mV)
observed in cat V1 following electric stimulation of TC axons

(optical radiation) (Mitzdorf 1985) and ventroposterior lateral
pathway axons projecting to rat somatosensory cortex (Castro-
Alamancos and Connors 1996, Fig. 3), and in rat somatosensory
(barrel) cortex following whisker flicks (Di et al. 1990; Einevoll
et al. 2007; Reyes-Puerta et al. 2015). Also some qualitative fea-
tures of the spatiotemporal LFP and CSD patterns from the cat
visual cortex experiments of Mitzdorf (1985) can be recognized.
One example is the early CSD sink around layer 4 (i.e., at chan-
nel 6 close to the boundary between layers 2/3 and 4), another
is the large positivity in LFP extending through most of the
layers following the initial response to the thalamic input
volley.

The observed time courses of the LFP and CSD in our simu-
lations with δ-pulse thalamic activations are not as directly
comparable with experimental stimulus-evoked activity, where
the input is temporally filtered by several cell populations
before reaching thalamus on the way to cortex. However, we
note that very swift stimulus-evoked responses lasting not
much longer than the ∼ 10ms response volleys seen in our
simulations also are observed in the somatosensory system (Di
et al. 1990; Einevoll et al. 2007; Reyes-Puerta et al. 2015).

Effect of Network Dynamics on LFP

The spiking activity in the microcircuit model is highly sensi-
tive to modification of intrinsic model parameters and external
input (Bos et al. 2016). In general LFPs reflect synaptic input
both from local and distant neurons (Herreras et al. 2015), and
also depend on network state (see, e.g., Kelly et al. 2010; Gawne
2010). With the hybrid scheme, we first illustrate as an example
the dependence of the spontaneous LFP, that is, the LFP with-
out thalamic input, on local network dynamics as determined
by intrinsic network parameters. In particular, we compare our
reference network model with the original model proposed by
Potjans and Diesmann (2014) where the strength of connec-
tions from L4I to L4E neurons is weaker and the synaptic

DCBA

Figure 7. Network activity following transient activation of TC afferents. (A) Raster plot of spiking activity before and after δ-shaped thalamic stimulus presented at

t = 900ms (vertical black line in panels A, C, and D). (B) Population-averaged firing rate histogram for each population (color coding as in panel A). (C) Depth-resolved

compound CSD of all populations (shown both in color and by the black traces). (D) Depth-resolved compound LFP (shown both in color and by the black traces) at

each electrode channel as generated by all populations. Channel 1 is at pial surface, channel 2 at 100 μm depth, etc.
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weights are drawn from a Gaussian distribution. We next
investigate the LFP when the network is stimulated by sinus-
oidally modulated thalamic input.

For spontaneous activity (Fig. 8A–E), the spiking (Fig. 8A) is
asynchronous irregular in all populations. The firing-rate power
spectra (Fig. 8B) vary from relatively flat to more band-pass-like
with a maximum power at ∼ 80 Hz. The suppressed power at
lower frequencies arises from active decorrelation due to
inhibitory feedback (Tetzlaff et al. 2012). In combination with
the low-pass filtering involved in the generation of LFPs from
spiking activity (Lindén et al. 2010; Łȩski et al. 2013), the firing-
rate spectra translate into an LFP power spectrum that, depend-
ing on recording depth, has either low-pass or band-pass filter
characteristics (Fig. 8D). The notably sharper attenuation of the
LFP power spectra compared with the firing-rate power spectra
above ≳ 100 Hz is expectedly due to the intrinsic dendritic filter-
ing effect (Lindén et al. 2010). As the effect of this filtering
depends on the position of the electrode compared with the
neuronal morphology (Lindén et al. 2010), the result is a variable
LFP power spectral density (PSD) profile across cortical depths,
even in the absence of any structured external input (Fig. 8E).

There is experimental evidence that cortical microcircuits
receive oscillating input at various frequencies from remote
areas and subcortical structures (Bastos et al. 2015, van
Kerkoerle et al. 2014; Ito et al. 2014). To illustrate the effect of an
oscillatory external input in our model, we model thalamic input
as independent realizations of non-stationary Poisson processes
with a sinusoidal rate profile (see Table 5, Fig. 8F–J). The spiking
activity of all populations as well as the CSD and LFP across
depth are sensitive to thalamic input, showing that the network
response goes beyond the layers receiving thalamic input, that
is, layers 4 and 6. The stimulus-evoked spiking activity follows
the 15Hz modulated rate of the thalamic input (Fig. 8F). The
15Hz oscillation is reflected in the firing-rate spectrum as a peak
at ∼15Hz (Fig. 8G) and is robustly transferred to the LFP (Fig. 8H–
J). The LFP oscillation strength varies with depth and is greatest
in channels 1 and 2 and channels 8–14, while the oscillation is
barely seen in channels 3–6. Populations L4E/I and L6E/I receive
thalamic inputs around the depths of channels 8–10 and chan-
nels 14 and 15, and these channels are strongly affected by the
stimulus. However, recurrent connections between populations,
dendritic propagation of currents, and volume conduction pro-
duce strong LFP oscillations also in other channels.

The LFP amplitudes are not only influenced by the temporal
structure of the external input, but also by synaptic weights in
two ways: first via their influence on the spiking dynamics in
the point-network simulation and second via the influence on
the size of the synaptic currents setting up the transmembrane
currents in the multicompartment models in the LFP-
computing step. In order to illustrate the weight dependence,
we compare the LFP under spontaneous activity in our refer-
ence network model (Fig. 8A–E) with the corresponding spon-
taneous LFP in the original model by Potjans and Diesmann
(2014) (Fig. 8K–O). The lower inhibition from population L4I
onto L4E and the narrow weight distribution compared with
our model gives a higher degree of spike synchrony in all popu-
lations. Although our model exhibits asynchronous irregular
activity (Fig. 8A), the original model is closer to an SI regime
(Brunel 2000) (Fig. 8K), resulting in high-frequency oscillations
∼80 Hz and in the 300–400Hz band (Fig. 8L), both associated
with delay loops in the multilayered network (Bos et al. 2016).
The 80Hz oscillation also appears in the LFP and its corre-
sponding power spectra (Fig. 8M–O), but the magnitude of the
peak is not constant across depth. The lowest magnitudes are

located in the vicinity of layers 2/3 and 5 (in channels 3 and 4
and channels 11–13).

Contributions from Individual Populations to CSD and
LFP

The direct interpretation of CSD and LFP signals in terms of the
underlying activity of different populations or input pathways
is inherently ambiguous and thus difficult: for example, a CSD
sink observed in cortical layer 2/3 can alternatively stem from
excitatory synaptic inputs to the basal dendrites of layer 2/3
cells, similar inputs into the apical dendrites of layer 5 cells, or
even return currents from appropriately placed inhibitory
inputs onto the same cells (Lindén et al. 2010, Einevoll et al.
2013). Several schemes for decomposition of CSD and LFP data
into contributions from cortical populations have thus been
proposed: principal component analysis (Di et al. 1990), laminar
population analysis (LPA, Einevoll et al. 2007), and independent
component analysis (Łȩski et al. 2010; Makarov et al. 2010;
Głąbska et al. 2014; Herreras et al. 2015). In our model, we have
the benefit of having the contributions from the various popu-
lations, connections, or different synapse types to the CSD and
LFP signals directly accessible.

Here, we focus on the LFP and CSD contributions from indi-
vidual populations and different synapse types. To quantify the
contributions from each postsynaptic population, that is, the
CSD and LFP stemming from the transmembrane currents of a
population, we simply summed all single-cell CSD and LFP con-
tributions from all neurons in the population. Results for spon-
taneous network activity are shown in Figure 9. As different cell
types are assigned appropriate morphologies and cortical depths
based on available anatomical data, a trivial consequence is that
the neurons in each population make their main contributions
to the CSD and LFP at depths spanned by their dendrites (Fig. 9B,
C for post-synaptic populations L23E and L6E, respectively). For
example, L6E neurons have a high density of afferent synapses
on apical dendrites in layer 4, and as a consequence, the ampli-
tude of CSDs and LFPs generated by population L6E (Fig. 9C) is
large in the vicinity of layer 4 and not just in layer 6.

To quantify the relative contributions from the various
populations, we show in Figure 9D,E the CSD and LFP variances
across time (corresponding to PSDs summed over all nonzero
frequencies) for all depths (Lindén et al. 2011, Łȩski et al. 2013).
For the compound CSD, only the L23E neurons contribute sub-
stantially in the superficial channels (channels 1–4) (Fig. 9D). At
deeper contacts, the main contributing population is L6E. L4E
and L5E populations make sizable contributions only in the
channels closest to their somatic location reflecting that the
net associated return currents of their distributed synaptic
inputs are largely restricted to somatic regions (Lindén et al.
2010). The bulk of the variance of the CSD in layer 5 arises in
about equal parts from the L6E and relatively sparse L5E popu-
lations. The magnitude of the depth-resolved CSD variances of
each layer’s inhibitory population (L23I, L4I, ...) is consistently
one order of magnitude or more smaller than that of the corre-
sponding excitatory cell populations. Moreover, they span com-
paratively small depth ranges as determined by the maximum
extent of the dendrites.

The depth-resolved LFP variance (Fig. 9E) has similar features
as the CSD variance, as expected from their common biophysical
origin. However, volume conduction has some qualitative
effects, such as the reduced relative contribution from the L6E
population in layer 2/3. As correlated synaptic inputs are known
to amplify and increase the spread of the LFP generated from a

4480 | Cerebral Cortex, 2016, Vol. 26, No. 12



A B C D E

F G H I J

K L M N O

Figure 8. Effect of network dynamics on LFP. Comparison of two different thalamic input scenarios and two different networks. Top: Reference network, spontaneous

activity. Center: Reference network, oscillatory thalamic activation. Bottom: Original model by Potjans and Diesmann (2014), spontaneous activity. (A,F,K) Population-

resolved spiking activity. (B,G,L) Population-averaged firing rate spectra. (C,H,M) Depth-resolved LFP. (D,I,N) LFP power spectra in layer 1 and at typical somatic depths

of network populations. (E,J,O) LFP power spectra across all channels. Channel 1 is at pial surface, channel 2 at 100 μm depth, etc.
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cortical population (Lindén et al. 2011, Łȩski et al. 2013), this may
reflect that the synaptic inputs to the L23E population are more
correlated than to the L6E population.

Overall, we conclude that for the spontaneous activity in our
network, the L23E and L6E populations dominate the compound
LFP and CSD with only smaller contributions from the other exci-
tatory populations. The signal variances from the inhibitory popu-
lations are typically much smaller than the contributions from
the excitatory populations, suggesting that they can be safely
neglected, in line with recent findings of Mazzoni et al. (2015).

Although transmembrane currents in inhibitory neurons
provide little of the observed CSD and LFP, the inhibitory syn-
aptic inputs onto excitatory neurons provide a substantial con-
tribution. In the present network, inhibitory synaptic currents
have a 4-fold larger amplitude compared with most excitatory
synapses (Table 5), inhibitory neurons have higher overall firing
rates compared with excitatory neurons (Potjans and
Diesmann 2014), and inhibition specifically targets soma-
proximal sections (Markram et al. 2004). Since our LFP-
generating model is linear (passive cable formalism and linear

A B C D E

F G H I J

Figure 9. Composition of CSD and LFP during spontaneous activity. (A) Representative morphologies of each population Y illustrating dendritic extent. (B) LFP (black

traces) and CSD (color plot) produced by the superficial population L23E for spontaneous activity in the reference network. (C) Similar to panel B for population L6E (sum-

ming over contributions of ∈ { ( ) ( )}y p6 L4 , p6 L56 ). (D) CSD variance as function of depth for each individual subpopulation (colored lines) and for the full compound sig-

nal (thick black line). (E) Same as in panel D, but for LFPs. Variances σ < −10 mV2 7 2 not shown. (F) Compound LFP (black traces) and CSD (color plot) resulting from only

excitatory input to the LFP-generating multicompartment model neurons. (G) Conversely, LFP (black traces) and CSD (color plot) resulting from only inhibitory input to

the neurons. (H) Full compound LFP (black traces) and CSD (color plot) resulting from both excitatory and inhibitory synaptic currents. (I) Compound CSD variance as a

function of depth with all synapses intact (thick black line), or having only excitatory (red) or inhibitory synapse input (blue). (J) Same as in panel I, but for the LFP signal.
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synapse model), we can decompose the compound signal into
contributions from each synapse type. For example, selective
removal of either inhibitory or excitatory synaptic currents in
the CSD and LFP modeling (Fig. 9F,G) shows that the CSD and
LFP signals (Fig. 9H) are dominated by inhibitory synaptic cur-
rents and their associated return currents (Fig. 9I,J) when the
network operates in the spontaneous asynchronous irregular
firing regime. Furthermore, at most depths the variance of the
signal arising from inhibitory input exceeds the compound
variance, implying that the inhibitory component is generally
negatively correlated with the excitatory component (Fig. 9I,J).
Visual inspection of Figure 9F–H also reveals that the inhibitory
dominance appears particularly strong at high frequencies, in

accordance with the firing-rate PSDs in Figure 8B showing less
power of inhibitory spiking, and thus inhibitory synaptic-input
currents, at low frequencies.

The relative contribution from excitation and inhibition to
the CSD and LFP depends on thalamic input and network
state, however. For oscillatory thalamic input, the CSDs and
LFPs from excitatory (Fig. 10A) or inhibitory synapses
(Fig. 10B) alone show much stronger oscillations than the
compound signals (Fig. 10C). This follows from the observa-
tions that the contributions to the CSD and LFP from excita-
tory and inhibitory synapses are anticorrelated, which, in
turn, is a consequence of the dynamical balance between
excitation and inhibition in asynchronous-irregular states of

A B C D E

F G H I J

Figure 10. Decomposition of CSD and LFP into contributions due to excitatory and inhibitory inputs for thalamic activation. (A–E) Oscillatory thalamic activation

(f= 15 Hz). (F–J) Transient thalamic activations at = + ·t n900 1000 ms for ∈ { }n 0, 1, 2, 3, 4 . Same row-wise figure arrangement as in Figure 9F–J.
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balanced random networks (Hertz 2010; Renart et al. 2010;
Tetzlaff et al. 2012).

For transient thalamic activation, the same cancellation of
excitation and inhibition can be observed (Fig. 10F–H), although
it is more pronounced at some depths (layers 5 and 6, i.e., chan-
nels 11–13) than at others, depending on whether excitation
and inhibition are in phase or not (Fig. 10I,J). For such strong
and transient thalamic input, the network activity is briefly
imbalanced as inhibition cannot keep up with thalamic excita-
tion on the short-time scales. Since thalamic input is most
prominent in layer 4 (channels 7–10), fewer cancellation effects
are present here: in channel 9 in Figure 10I the total CSD vari-
ance is, for example, seen to be larger than the individual con-
tributions from inhibitory and excitatory synapses.

Effect of Input Correlations

Synaptic inputs to two neighboring cells are typically correlated
because 1) they receive, to some extent, inputs from the same
presynaptic sources (“shared-input correlation”), and 2) the
spike trains of the presynaptic neurons may be correlated
(“spike-train correlation”). The net synaptic-input correlation is
determined by the interplay between these two contributions,
shared-input correlations and spike-train correlations (Renart
et al. 2010; Tetzlaff et al. 2012). As the LFP is largely generated
by synaptic inputs, synaptic-input correlations result in corre-
lated single-cell LFP contributions ϕ ( )tr,i (for details, see
Lindén et al. 2011; Łȩski et al. 2013). As outlined in the follow-
ing, these single-cell LFP correlations play a dominating role for
the spectrum of the compound LFP.

The power spectrum ( )ϕP fr, (Eq. 36) of the compound LFP
ϕ ϕ( ) = ∑ ( )=t tr r, ,i

N
i1 of a population of N neurons is given by

κ( ) = ( ) + ( − ) ( ) ( ) ( )ϕ ϕ ϕ ϕP f NP f N N P f fr r r r, , 1 , , . 15

Here ( )ϕP fr, is the average single-cell LFP power spectrum
(Eq. 33) and κ ( )ϕ fr, the average pairwise single-cell LFP

coherence (Eq. 35), a measure for cross-correlations, across all
cells. Note that, while the first term in Equation (15) scales lin-
early with the number of neurons N, the second term is propor-
tional to ( − ) ≈N N N1 2 for large N. Hence, for large N, even
small cross-correlations may dominate the spectrum of the
compound LFP. Here, we investigate this situation by calculat-
ing the power spectrum ( )ϕP fr,0 of the compound LFP under the
assumption of zero cross-correlation (where it simply reduces
to a sum over single-cell spectra ( )ϕP fr,i ), and compare to the
true spectrum ( )ϕP fr, . The ratio between these quantities is
given by

( )
( )

κ= + ( − ) ( ) ( )ϕ

ϕ
ϕ

P f

P f
N f

r

r
r

,

,
1 1 , . 16

0

With weak or no cross-correlations, that is, κ( − ) ( ) ≪ϕN fr1 , 1,
the ratio approaches unity, and the power of the compound
LFP is essentially the sum of the power of the single-cell LFPs.
For κ ( ) ≫ϕN fr, 1, that is, in the correlation-dominated regime,
this ratio is instead proportional to the number of neurons N.
Note also that anti-correlated signals (κ ( ) <ϕ fr, 0) may lead to a
ratio ( ) ( ) <ϕ ϕP f P fr r, , 10 .

In the example application, both for spontaneous (Fig. 11A,
B) and for evoked activity (Fig. 11C,D) the compound power
spectra ( )ϕP fr, are systematically (across channels and fre-
quencies) larger than ( )ϕP fr,0 , demonstrating the importance of
cross-correlations in the present network. Depending on the
recording depth and frequency, the ratio varies from ∼ 1 to 103

(see Fig. 11B,D). For spontaneous activity (see Fig. 8A–E), the lar-
gest effects of cross-correlations are typically found at higher
frequencies (Fig. 11A,B). At low frequencies, cross-correlations
are suppressed by inhibitory feedback (cf. Fig. 8B, Tetzlaff et al.
(2012)). The thalamic sinusoidally modulated input to the net-
work (Fig. 8F–J) synchronizes single-cell CSDs and LFPs at the
stimulus frequency and gives a large boost of the LFP power at
this frequency (see peak in Fig. 11C,D). Close inspection reveals

A B C D

Figure 11. Effect of single-cell LFP cross-correlations on compound-LFP power spectra during spontaneous activity (A,B) and for oscillatory thalamic input (C,D). A,C

Compound-LFP power spectra ( )ϕP fr, (black traces) and compound spectra ( )ϕP fr,0 (red traces) obtained when omitting cross-correlations between single-cell LFPs

(red traces; computed for 10% of the cells and multiplied by a factor 10) at recording channels corresponding approximately to the centers of layers 1, 2/3, 4, 5, and 6.

B,D Depth and frequency-resolved ratio ( ) ( )ϕ ϕP f P fr r, ,0 of LFP power spectra, cf. Equation (16).
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that there is also in fact a boost of the power at ∼ 80Hz, but
much less so than at ∼ 15Hz. Note that the external activation
hardly affects the single-cell spectra (see red curves in Fig. 11A,
C). LFP synchronization is thus mainly encoded in the phase of
ϕ ( )tr,i .

In conclusion, cross-correlations between single-cell LFP
contributions play a pivotal role in shaping the compound LFP
spectra (similar for CSD spectra, results not shown). To account
for the dominant features of the LFP (CSD) in such models, it is
therefore essential to include the main factors determining the
synaptic-input correlations, that is, realistic correlations in pre-
synaptic spike trains and shared-input structure. The findings
presented here for the cortical microcircuit model hold in gen-
eral in the presence of correlated activity. Only the details of
the spectra depend on the specific underlying network
dynamics.

Network Downscaling

Due to the computational cost associated with modeling LFPs,
it would be desirable to downsize the postsynaptic populations
of multicompartment model neurons to a fraction γN (γ ∈ ( )0, 1 )
while leaving the point-neuron network at full size (N) and at
the same time preserve the in-degrees, that is, the number of
inputs, of each postsynaptic cell. The power spectrum of the
full-scale LFP can indeed be estimated from the population-
averaged single-cell power spectra ( ) ≈ ( )ϕ ϕγP f P fr r, , and coher-
ences κ κ( ) ≈ ( )ϕ ϕγ f fr r, , computed for downsized networks by
means of Equation (15). These quantities are preserved except
for deviations due to smaller sampling size γN (Eq. 36 in
Table 10). However, due to lack of phase information in the
power spectra, one cannot estimate the LFP time course.

One could attempt to obtain a time-course estimate ϕ ( )γξ tr, ,
that is, a “low-density LFP prediction”, of the full-scale signal
ϕ ( )tr, by upscaling single-cell LFPs ϕ ( )tr,i computed in the
downsized setup by a scalar factor ξ (cf. Eq. 31). Such a naive
upscaling can grossly recover the amplitude of the full-scale
LFP ϕ ( )tr, , but it still only partially reconstructs its detailed
time course (Fig. 12A,E). Also, this approach does not generally
give accurate power spectra as the two terms in Equation (15)
scale differently with ξ: The rescaling introduces a prefactor ξ2

in the population-averaged single-cell power spectra
ξ( ) ≈ ( )ϕ ϕγξP f P fr r, ,2 , while the coherences κ κ( ) ≈ ( )ϕ ϕγξ f fr r, , are

unchanged. Thus, the compound spectra ( )ϕP fr, and ( )ϕγξP tr, of
the full-size LFP and the low-density LFP predictor, respectively,
differ. Their ratio
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demonstrates that in the general case there is no scaling factor
ξ which allows for the recovery of the full-size compound LFP
power, that is, makes the ratio in Equation (17) equal to one for
all spatial positions r and frequencies f. This can only be done
in the special case where κ (ϕ fr, ) is a constant c. Here the two
extreme cases correspond to no correlation (κ ( ) =ϕ fr, 0 with
ξ γ= 1 ) and full correlation between all single-cell signals
(κ ( ) =ϕ fr, 1 with ξ γ= 1 ).

The substantial scaling effects observed for our microcircuit
model in the asynchronous state (Fig. 12A–D) suggest that cor-
relations cannot be neglected even when modeling the LFP for

spontaneous network activity. Choosing the scaling factor
ξ γ= 1 corresponding to κ ( ) =ϕ fr, 0 (red lines in Fig. 12A,C)
leads to a severe underestimation of the full-size compound
power spectrum (Fig. 12C,D). Even though the correlation (i.e.,
Pearson’s correlation coefficients) between the full-size LFP sig-
nals and low-density LFP predictions are quite high (Fig. 12B),
the power ratios (Fig. 12D) reveal that the rescaled signals are
systematically wrong in frequency bands where single-cell LFPs
are most strongly correlated (i.e., the frequencies for which the
compound spectra are much larger than the predictions when
omitting cross-correlations (Fig. 11A,B)). Assuming the full-
correlation scaling factor ξ γ= 1 , however, typically overesti-
mates the full-size compound power spectrum (cf. gray spectra
in Fig. 12C), particularly at low frequencies.

The results for the sinusoidally stimulated network (Fig. 12E–H)
are quite similar to the spontaneous-activity results, except
around the stimulation frequency 15Hz where the modulated
input leads to strongly correlated single-cell LFP contributions and
a strong boost of the compound LFP. The approximate downscal-
ing procedure assuming the full-correlation scaling factor ξ γ= 1
thus essentially agrees with the full-size compound spectrum for
15Hz (while giving a strong overestimation for frequencies other
than ∼ 15 and ∼ 80Hz).

We note in passing that in contrast to the power spectra,
the computation of the spike-trigger-averaged LFP (stLFP)
(Swadlow et al. 2002; Nauhaus et al. 2009; Jin et al. 2011; Denker
et al. 2011) in downsized networks do not have a principled
problem due to cross-correlations between single-cell LFPs. As
stLFPs are linearly dependent on the single-neuron LFP contri-
butions, the only principled problem with downsizing is
increased noise in the estimates due to sampling over fewer
postsynaptic neurons.

LFP Prediction from Population Firing Rates

An important question in systems neuroscience is to what
extent the dynamics of networks of thousands or millions of
neurons can be described by much simpler mathematical
descriptions in terms of neural populations (Deco et al. 2008;
Blomquist et al. 2009). Likewise, we here ask the question of
whether LFPs can be predicted from knowledge of the popula-
tion firing rate (Einevoll et al. 2007; Moran 2008; Einevoll et al.
2013). The hybrid scheme is excellently suited for testing and
development of simplified numerical schemes for LFP predic-
tion as the ground truth, that is, the LFP from the full network,
is available as benchmarking data.

The use of current-based synapses and passive dendrites in
the present application of the hybrid scheme renders synaptic
events independent of each other in the LFP prediction. This
inherent linearity results in a unique spatio-temporal relation

τ( )H r,X
i for τ ∈ [ −∞ ∞], between a spike event of a point neu-

ron i in population X and its contribution to the compound LFP
ϕ ( )tr, from all its postsynaptic multicompartment model neu-
rons. In this scheme, the link is causal, that is, the spikes drive
the LFP, so that τ( ) =H r, 0X

i for τ < 0 (as in LPA (Einevoll et al.
2007)). τ( )H r,X

i encompasses connectivity, spike transmission
delays and all postsynaptic responses including effects of
synaptic-input currents and passive return currents. With a lin-
ear, current-based model such as our example cortical column,
it is in principle possible by linear superposition to fully recon-
struct the compound LFP if τ( )H r,X

i and the spike times til are
known for all neurons i in each population of the network.
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It is, however, in the case of large networks impractical
to assess each τ( )H r,X

i , as the LFP response needs to be
determined for every neuron separately. In contrast, a large
reduction in dimensionality can be achieved by determin-
ing the population-averaged LFP responses τ( )H r,X of a
spike within each population X. We thereby ignore hetero-
geneity in kernels τ( )H r,X

i due to the variability in the con-
nections from neurons in population X. An approximate

compound LFP *ϕ ( )tr, based on population firing rates
(Einevoll et al. 2007) can be computed from these extra-
cted population kernels by means of the convolution

*ϕ ν( ) = ∑ ( * )( )t H tr r, ,X X X , where ν ( )tX are the instantaneous
population firing rates.

Here we estimate the population LFP kernels by computing
the response to synchronous activation of all neurons in a
population (Fig. 13). The spatio-temporal kernels τ( )H r,X are

BA C D

FE G H

Figure 12. Prediction of LFPs from downsized networks. Top row: Spontaneous activity. Bottom row: Oscillatory thalamic activation. (A,E) Full-scale LFP traces ϕ ( )tr,
(black) and low-density predictors ϕ ( )γξ tr, (red) obtained from a fraction γ = 0.1 of neurons in all populations and upscaling by a factor ξ γ= −1/2. (B,F) Correlation coef-

ficients (gray bars) between full-scale LFP and low-density predictor shown in panels A and E, respectively. The dashed lines denote 1% significance levels obtained

after computing the chance correlation coefficients for 1000 trials. (C,G) Power spectra ( )ϕP fr, and ( )ϕγξP fr, of full-scale LFPs (black) and low-density predictors with

γ = 0.1 and ξ γ= −1/2 (red) or ξ γ= −1 (gray). (D,H) Ratio ( ) ( )ϕ ϕγξP f P fr r, / , between power spectra of full-scale LFP and low-density predictor with γ = 0.1 and ξ γ= −1/2

(cf. Eq. 17).
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extracted from time slices [ − + ]t t20 ms, 20 msX X of the com-
pound LFP response ϕ ( )t Nr, X, where NX is the number of neu-
rons in a presynaptic population. The procedure results in
unique kernels τ( )H r,X for each excitatory and inhibitory popu-
lation in the network (Fig. 13A).

In the example application, the population kernels τ( )H r,X

differ significantly between populations. Excitatory spike
events result in prominent LFP negativities at depths where

most connections are made, such as in layer 4 (channels 7–10)
for TC connections ( τ( )H r,TC , column 1 in Fig. 13A, cf. Fig. 5C).
In contrast, spikes of inhibitory point neurons on average pro-
duce prominent LFP positivities in their corresponding layer,
such as in layer 2/3 (channels 3–6) for population L23I (column
2 in Fig. 13A). In all cases, the signatures of opposite-sign return
currents and also other, weakly connected populations are
seen across depth.

A

C D E F G H

B

Figure 13. Linear prediction of LFPs from population firing rates. (A) LFP responses τ( )H r,X (kernels) to simultaneous firing of all neurons in a single presynaptic popu-

lation X (see subpanel titles) at time τ = 0ms, normalized by size NX of the presynaptic population (red/blue: responses to firing of excitatory/inhibitory presynaptic

populations). (B) Spike-trigger-averaged LFPs (stLFP) triggered on spikes of L5E neurons during spontaneous activity (left) and oscillatory thalamic network activation

(right), averaged across all L5E spikes (T = 5000ms simulation time). (C,F) LFP traces of the full model (black) compared with predictions (red) obtained from superpos-

ition of linear convolutions of population firing rates νX with LFP kernels τ( )H r,X shown in panel A. (D,G) Correlation coefficients (gray bars) between LFPs and

population-rate predictors shown in panels C and F. The dashed lines denote 1% significance levels obtained after computing the chance correlation coefficients for

1000 trials. (E,H) Power spectra of LFPs (black) and the population-rate predictors (red) for different recording channels. Panels C–E and F–H show results for spontan-

eous activity and oscillatory thalamic activation, respectively.
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As seen in Figure 13C,F the population-rate predictions are
in good qualitative agreement with the ground-truth LFP for
both spontaneous and sinusoidally modulated network activity
with correlation coefficients (cc) between 0.48 and 0.94 for spon-
taneous activity (Fig. 13D) and 0.52 and 0.98 for thalamically
evoked oscillations (Fig. 13G). Overall, the population-rate pre-
dictions appear to be best for the lower frequencies (Fig. 13E,H),
while the inherent variability in the individual point-neuron
kernels τ( )H r,X

i (which is not accounted for in the population
approximation) has a larger effect on the higher frequencies.
This can be understood on biophysical grounds, as the lower
frequencies are expected to mainly reflect the gross anatomical
features of the postsynaptic populations and their presynaptic
connections patterns where the individual variability plays a
lesser role (Lindén et al. 2010; Pettersen et al. 2012). The correl-
ation coefficients and power spectra of the population-rate pre-
diction thus show that the population-rate LFP predictor is
more accurate than the low-density LFP predictors (Fig. 12C,F)
in case of substantial downscaling.

Although the spike-trigger-averaged LFP (stLFP) (Swadlow
et al. 2002; Nauhaus et al. 2009; Jin et al. 2011; Denker et al. 2011),
calculated as the cross-covariance between the population spike
rate ν ( )tX and the compound LFP ϕ ( )tr, divided by the total num-

ber of spikes (i.e., ∫ ν ( )t td
T

X
0

), is related to our LFP population

kernels, it measures very different aspects of cortical dynamics.

The population kernels τ( )H r,X are causal and independent of
effects of spike-train correlations. The stLFP, however, is non-
causal and strongly depends on spike-train correlations, and
thus also network state (Einevoll et al. 2013). The stLFP is thus

not only very different from τ( )H r,X , it also varies strongly
between the spontaneous and sinusoidally modulated network
state (see example for L5E neurons in Fig. 13B).

Discussion
We have here described a hybrid modeling scheme for comput-
ing the LFP incorporating both large-scale neural-network
dynamics and the biophysics underlying LFP generation on the
single-neuron level. The hybrid modeling scheme was illu-
strated with a full-scale network model of a cortical column in
early sensory cortex (Potjans and Diesmann 2014), and the
impact of individual populations, network dynamics, and cell
density on the mesoscopic LFP signal was investigated.

The Hybrid LFP Modeling Scheme

The hybrid scheme combines the simplicity and efficiency of
point-neuron network models with the biophysics-based mod-
eling of LFP by means of multicompartment model neurons
with detailed dendritic morphologies. The neuronal network
dynamics are governed by the point-neuron network model
independent of LFP predictions. The spikes of the point-neuron
network are distributed to the synapses of the multicompart-
ment model neurons with realistic cell-type and layer-specific
connectivity. Synapse activation results in spatially distributed
transmembrane currents, which are mapped to an LFP signal
according to well-established volume-conduction theory.

A main motivation for developing the hybrid LFP modeling
scheme was to obtain the ability to compute LFPs for a key
class of network models that are amenable to mathematical
analysis and can provide intuitive understanding of emerging
network dynamics, namely point-neuron models. Similar to
networks of anatomically and biophysically detailed neuron

models, point-neuron networks can generate realistic spiking
activity. In addition, the hybrid modeling scheme brings a sub-
stantial computational advantage: with present-day computing
and software technologies, point-neuron networks with
∼ 100, 000 neurons can be modeled with laptop computers, and
networks comprising millions of point neurons can be routinely
simulated on high-performance compute facilities (Helias et al.
2012; Kunkel et al. 2014). Until now, the largest simulation of
LFPs based on networks of multicompartmental neuron models
with reconstructed morphologies, in contrast, comprised 12, 000
neurons and was done on a Blue Gene/P supercomputer with
4096 CPUs (Reimann et al. 2013). The linearity of electromag-
netic theory allows for the implementation of the LFP hybrid
modeling scheme as an “embarrassingly” parallel operation
(Foster 1995). Therefore, the results for the cortical microcircuit
application with ∼ 78,000 neurons were obtained with only 256
CPUs, and could even be acquired with much smaller computing
architectures.

A full implementation of the hybrid scheme is provided by
the freely available Python module hybridLFPy (http://github.
com/INM-6/hybridLFPy). Our model implementation in
hybridLFPy relies on the publicly available NEURON software
(Carnevale and Hines 2006) as a simulation backend Python

with LFPy (Lindén et al. 2014) for calculating single-cell LFP
contributions. This ensures flexibility and compatibility with a
large library of existing neuron models, with or without active
channels and with morphologies of arbitrary levels of detail,
obtained from ModelDB (Hines et al. 2004), NeuroMorpho.org
(Ascoli et al. 2007), or other resources. While we did use NEST

(Eppler et al. 2015) for simulating our reference network, the
hybridLFPy module can be used in combination with any other
neural-network simulation software.

The present hybrid LFP scheme involves several assump-
tions with respect to 1) the generation of realistic spiking activ-
ity, 2) forward modeling of extracellular potentials, and 3) the
combined use of point-neuron networks and multicompart-
ment modeling. In the following, we review the main assump-
tions and discuss potential extensions:

1. Spike-train generation by point-neuron networks: Although
highly simplified, single-compartment models of individual
neurons (point-neuron models) can mimic realistic spiking for
a variety of cell types (Izhikevich 2003; Kobayashi et al. 2009;
Yamauchi et al. 2011) and can make accurate predictions of
single-cell firing responses under in-vivo like conditions (Jolivet
et al. 2008; Gerstner and Naud 2009). Moreover, networks of
point neurons can reproduce a number of activity features
observed in vivo, such as spike-train irregularity (Softky and
Koch 1993; van Vreeswijk and Sompolinsky 1996; Amit and
Brunel 1997; Shadlen and Newsome 1998), membrane-potential
fluctuations (Destexhe and Paré 1999), asynchronous firing
(Ecker et al. 2010; Renart et al. 2010; Ostojic 2014), correlations
in neural activity (Gentet et al. 2010; Okun and Lampl 2008;
Helias et al. 2013), self-sustained activity (Ohbayashi et al. 2003;
Kriener et al. 2014), and realistic firing rates across laminar cor-
tical populations (Potjans and Diesmann 2014). Recently
Rössert et al. (2016) demonstrated that the multicompartment-
neuron network of Markram et al. (2015) could be reduced to a
point-neuron network using an automated step-by-step work-
flow without significantly affecting the spiking statistics in the
network. Nevertheless, under circumstances where simple
point neurons may fail to produce plausible spike patterns for a
particular input, for example, in the presence of highly non-
linear shaping of postsynaptic responses or dendritic computa-
tion (reviewed, e.g., by London and Häusser 2005), more
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sophisticated point neurons (Breuer et al. 2014) may be
required. However, the present hybrid scheme makes no
assumptions on generators of spiking activity. In principle, net-
work spikes could, as an example, be replaced by statistical
models of spike generation (Lindén et al. 2011; Łȩski et al. 2013),
multicompartment neuron spikes or even experimentally mea-
sured spiking activity.

2. Biophysical forward modeling of LFPs: The biophysical for-
ward model described by Equation (10), implemented in LFPy

(Lindén et al. 2014), underlies the presently used computational
scheme for LFPs of point-neuron networks. This forward model
is based on well-established volume conductor theory (Rall and
Shepherd 1968; Holt and Koch 1999) and assumes an infinite, iso-
tropic (same in all directions), homogeneous (same in all posi-
tions), and ohmic (frequency-independent) extracellular
medium represented by a scalar conductivity σe. However, one
could generalize the forward model in a straightforward man-
ner to account for anisotropy (Nicholson and Freeman 1975;
Logothetis et al. 2007; Goto et al. 2010), or jumps in conductiv-
ities at tissue interfaces, for example, using the so-called meth-
od of images (Pettersen et al. 2006; Gold et al. 2006; Hagen et al.
2015; Ness et al. 2015). For even more complicated geometrical
spatial variations of the conductivity, the forward modeling
problem can always be solved by means of finite element mod-
eling (Ness et al. 2015). Recent experiments have only found a
small frequency dependence of the extracellular conductivity
σe at LFP frequencies ( ≲f 500 Hz, Logothetis et al. 2007;
Wagner et al. 2014), but see Gabriel et al. (1996; 2009), Bédard
and Destexhe (2009). In any case the forward model could still
be applied with frequency-dependent conductivity by means of
Fourier decomposition where each frequency component of the
LFP signal is considered separately. For more information on
possible generalizations of the biophysical forward-modeling
scheme, see Pettersen et al. (2012). Finally, we assumed the so-
called disc-electrode approximation and averaged the com-
puted LFP signal across the electrode surface (Moulin et al.
2008; Lindén et al. 2014; Ness et al. 2015). Although electrode
impedance will affect the measurement, it appears that con-
founding effects from this can easily be avoided with present-
day LFP recording techniques (Nelson and Pouget 2010), hence
few compelling reasons exist to incorporate additional tem-
poral filters.

3. Combined use of point-neuron and multicompartmental models:
The key approximation in the hybrid LFP scheme comes from
the combined use of point-neuron (single-compartment) and
multicompartmental neuron models. The multicompartment
neurons are mutually unconnected, have no outgoing (efferent)
connections, and are solely used to compute the LFP.
Furthermore, due to dendritic filtering, the somatic postsynap-
tic potentials in the multicompartment model neurons are not
identical to those of their point-neuron counterparts. This
inconsistency could, at least partially, be resolved by adjusting
the amplitudes and temporal shapes of the synaptic currents
in either the multicompartment neurons or the point neurons
(Koch and Poggio 1985; Wybo et al. 2013; 2015).

Applications of the Hybrid LFP Scheme

The hybrid scheme is not limited to the example point-neuron
network model and the particular multicompartment neuron
models chosen here. It can be applied to networks 1) of arbi-
trary topology (graph structure, distance dependencies, and
dimensions), 2) with any number of populations, 3) with arbi-
trarily complex point-neuron (e.g., LIF, Izhikevich, MAT, and

Hodgkin-Huxley) and synapse dynamics (e.g., current-based,
conductance-based, static, and plastic), and 4) any level of bio-
physical detail in multicompartment neuron models (e.g.,
morphologies and active channels).

For illustration, we used the hybrid scheme to compute LFPs
along a virtual laminar multi-electrode from activity in a multi-
layered spiking point-neuron network, modeling signal pro-
cessing in a patch of primary visual cortex. The network
consisted of ∼ 78, 000 neurons organized in 4 layers, each with
an excitatory and an inhibitory population, representing a cor-
tical patch of ∼ 1mm2 (Potjans and Diesmann 2014). Altogether
16 different cell types and 10 different morphologically recon-
structed neurons were used in the LFP calculation. This cortical
microcircuit model is well suited for the illustration of the
hybrid scheme due to its 1) minimum level of detail in single-
neuron dynamics of both point neurons (LIF) and multicom-
partment neurons (passive membranes), 2) realistic neuron
density allowing investigation of the effects of correlations and
scaling of network size, and 3) its spatial organization of mul-
tiple populations across cortical layers which yields cancella-
tion effects not captured by LFP proxies such as in Mazzoni
et al. (2015).

Even though the example application was based on a gen-
eric network model biased toward cat visual cortex and not
tuned to address specific experiments, its spiking activity
nevertheless matched experimental findings on distributions of
firing rates, asynchronous irregular activity and propagation of
evoked activity (Potjans and Diesmann 2014). We even
observed the predicted LFP to be in qualitative accordance with
LFP measurements in primary sensory cortices from a variety
of animal species and sensory modalities in terms of 1) LFP
amplitude, for both spontaneous (≃ –0.1 1 mV, see Maier et al.
2010; Hagen et al. 2015; Reyes-Puerta et al. 2016), electrically sti-
mulated activity (∼ –1 3 mV, see Mitzdorf 1985; Castro-
Alamancos and Connors 1996) and 2) stimulus-evoked spatio-
temporal LFP and CSD patterns (Di et al. 1990; Einevoll et al.
2007; Reyes-Puerta et al. 2015). The fact that our spontaneous
and evoked LFP amplitudes are comparable to the observed
amplitudes supports the overall biological plausibility of the
hybrid LFP scheme.

For the present example, the LFP was dominated by synaptic
inputs, and their associated return currents, on excitatory neu-
rons, in particular onto pyramidal cells in layers 2/3 and 6.
Furthermore, contributions from inhibitory synaptic inputs typ-
ically dominated the contributions from the excitatory inputs,
particularly for LFPs stemming from spontaneous network
activity. Although the main point of employing the present
example was to illustrate the use of the hybrid LFP scheme and
not to make predictions for specific neural systems, we note in
passing that a dominance of inhibitory synaptic inputs appears
to be in agreement with LFPs generated in the CA3 region of
hippocampus as observed in an in vitro setting (Bazelot et al.
2010) and in cortex of both humans and macaque in vivo
(Telenczuk et al. 2016). In accordance with a previous study
(Lindén et al. 2011), we found that correlations in synaptic
input play a major role in determining the CSD and LFP stem-
ming from the network activity, for both spontaneous and
stimulus-evoked activity. We further showed that due to inevit-
able correlations between synaptic-input currents the main
features of the LFP can only be correctly predicted by a full-
scale model. As our ambition is to compute LFPs also for
extended point-neuron networks with millions of neurons cov-
ering, for example, entire cortical areas, we finally demon-
strated how the hybrid modeling scheme can predict LFPs from
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population firing rates rather than from spikes of individual
neurons (Einevoll et al. 2007).

The present microcircuit model application involving sim-
plified, passive multicompartment populations was here used
to study the effect of the spatial connectivity on the laminar
pattern of spontaneous and stimulus-evoked CSD and LFP sig-
nals. The application thus represented a minimal approach
incorporating spatial features in LFP predictions of multilami-
nar point-neuron networks. However, several of the simplifying
model assumptions made in the present example application
can straightforwardly be generalized. In particular, such gener-
alizations concern 1) the synaptic connectivity between point
neurons and the equivalent multicompartment neurons, 2) the
absence of active conductances, 3) the positioning of the cells,
4) the reconstructed morphologies, 5) the representation of
external inputs, and 6) the fact that the model only encom-
passed the local circuitry of a ∼ 1mm2 patch of cortex.

(1) Synaptic connectivity: While the population-specific con-
nection probabilities, delay distributions, synapse time con-
stant and mean synaptic weights were identical for the
connections in the point-neuron network and those between
point neurons and LFP-generating multicompartment neurons,
the exact realizations of the two types of connectivities were
different. In contrast to the point-neuron network, each cell of
a particular type had a fixed in-degree, that is, a fixed number
of synaptic inputs, a fixed synaptic current amplitude and a
layer-specific synapse positioning that depended on compart-
ment surface area, in the LFP modeling step. The use of the
hybrid LFP scheme, however, is not restricted to these or any
other specific assumptions about the synaptic connectivity pat-
terns. One could, for example, gather all point-neuron network
connections and corresponding weights and delays for use
with the LFP-generating multicompartment neuron popula-
tions. However, for large networks this would require add-
itional computing and memory resources as the number of
recorded connection weights and delays grow proportionally to
N2 in a network of N neurons with fixed connection probabil-
ities. The present layer-specific synapse positioning could also
be specialized further, for example, to account for dendrite-
specific connections that may be relevant for LFP predictions in
particular if nonlinear synapse and dendrite models are used.

(2) Active conductances: In the present study, we neither
included the active channels underlying spike generation, nor
active dendritic conductances in the multicompartment neuron
models (Remme and Rinzel 2011). Experiments suggest that the
contribution to the LFP from the former is small in stimulus-
evoked recordings from sensory cortex, at least for the low fre-
quencies of the LFP (Pettersen et al. 2008), but see Ray and
Maunsell (2011). In any case the contribution of the spikes to the
extracellular potentials, including the LFP, could be included in
the present scheme by giving each spike produced in the point-
neuron network simulations a cell-type-specific spatiotemporal
signature in the computation of the extracellular potential (e.g.,
as calculated in Holt and Koch 1999; Hagen et al. 2015).
Substantial effects of active dendritic conductances on the LFP
were observed in a two-layered model by Reimann et al. (2013),
but this should be further explored. Recent modeling results
(Ness et al. 2016) suggest that for the purposes of LFP prediction,
active dendritic conductances can, at least for subthreshold
potentials, be effectively described by means of “quasi-active lin-
earized” theory (Sabah and Leibovic 1969; Koch 1984; Remme
and Rinzel 2011; Ness et al. 2016). This simplifies the LFP model-
ing substantially and makes the computation similar in com-
plexity to the present case with purely passive membranes.

(3) Soma positioning: For model conciseness, the somas of all
neurons belonging to the same specific cortical network popu-
lations were set to have the same range across cortical depth,
see Figure 6E. By instead assuming a biologically more plausible
distribution of soma depths, the CSD profiles are expected to be
spatially smoothed compared with the profiles seen for the pre-
sent distributions, for example, in Figure 6F. Also the LFP pro-
files will be affected, but to a lesser degree since the LFP
profiles already are spatially smoothed due to volume conduc-
tion effects.

(4) Reconstructed morphologies: We further chose to rely on a
small number of highly detailed reconstructed dendritic
morphologies from experimental preparations, and partly
reused morphologies across neural populations. Obviously, lar-
ger sets of distinct reconstructed dendritic morphologies can be
used in future studies as they become available. The effect of
dendritic morphologies on generated LFP can be further
assessed by the use of stylized (Tomsett et al. 2014; Głąbska
et al. 2014) or artificially grown morphologies resembling real
neurons (Cuntz et al. 2010; 2011; Torben-Nielsen and De
Schutter 2014; Mazzoni et al. 2015). While our morphologies
were used as is, effects on the predicted LFP from varying
morphologies could be quantified using our present measures
of LFP power spectra and variance across depth. Such measures
could also be extended to include effects of lateral displace-
ment of the recording electrode (Lindén et al. 2011; Einevoll
et al. 2013; Łȩski et al. 2013; Tomsett et al. 2014), but also cross-
channel coherences and stLFPs should be considered as well.

(5) External input: In our point-neuron network modified
from Potjans and Diesmann (2014), we assumed the depolariz-
ing input from surrounding cortex and remote areas to be
represented by deterministic, fixed-amplitude input currents
(DC inputs) rather than independent Poisson spike trains. We
thus avoided the generation and storage of ( )O 105 high-rate
uncorrelated Poisson spike trains and distributing the corre-
sponding spike events onto the multicompartment model neu-
rons, but this can be introduced in future applications.

(6) Scale: Our network model represents only an isolated cor-
tical column under ∼ 1 mm2 of pial surface (Potjans and
Diesmann 2014), but work is underway to extend the network
to a larger scale, for example, by incorporating additional cor-
tical areas (Schmidt et al. 2016) and extending the network size
in the lateral directions (Senk et al. 2015). In addition to allow-
ing for predictions of LFPs at several lateral positions as mea-
sured by multishank electrodes, the anticipated outcome is
also an altered network dynamics and consequently altered
LFPs. The present columnar model lacks structured input from
other parts of cortex which corresponds to ∼ 50% of all excita-
tory synapses (see Potjans and Diesmann (2014) and references
therein). For example, accounting for different cortical areas
and their interactions would allow for the detailed investiga-
tion of pathway-specific LFP contributions as recently reviewed
in hippocampus by Herreras et al. (2015).

Effects of Correlations and Network Size

Synaptic inputs to neurons are typically correlated, and as
shown in this article and in earlier studies (Lindén et al. 2011;
Łȩski et al. 2013), these correlations have a major impact on the
properties of the generated LFP (and corresponding CSD). There
are different contributions to these input correlations, shared
presynaptic neurons and correlations in the presynaptic spiking
activity, see, for example, Renart et al. (2010), Tetzlaff et al.
(2012), and correct LFP predictions require that both effects are
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properly taken into account. The generation of presynaptic spike
trains with realistic correlation structure requires networks of
realistic size (van Albada et al. 2015). The contribution from
shared presynaptic input can only be accounted for by using
realistic statistics of inputs to the LFP-generating multicompart-
ment model neurons, that is, realistic synaptic connection prob-
abilities resulting in realistic statistics of shared inputs. If these
two requirements are fulfilled, the properties of single-cell LFPs
as well as the correlations between pairs of single-cell LFPs, will
be correctly accounted for.

Given synaptic inputs with realistic statistics from suffi-
ciently large point-neuron networks, do we actually need to
represent the full population of LFP generating neurons in order
to predict a realistic compound LFP? Or can we alternatively get
a good estimate of the compound population-LFP signal from a
downscaled population of neuronal LFP generators if we know
the correct single cell and pairwise LFP statistics, thereby redu-
cing computational costs? As shown in this article, the answer
is negative: in the presence of (even tiny) synaptic-input corre-
lations, a realistic compound LFP can only be generated by mul-
ticompartmental neuron populations with realistic size and
cell densities.

The hybrid modeling scheme allows one to account for
both, that is, realistic sizes of networks to generate spike trains
with correct correlation structure and realistic sizes and cell
densities of the LFP-generating multicompartmental neuron
populations. This can be achieved since point-neuron networks
can be simulated very efficiently, and the multicompartmental
neurons are independent and can be simulated serially (or in
an embarrassingly parallel manner).

Outlook

While we here have focused on the computation of the LFP
based on output from spiking point-neuron networks, a similar
hybrid approach could be used when the network dynamics is
rather modeled in terms of firing rates or even neural fields
(Deco et al. 2008). For our example case of a 4-layered cortical
network with an excitatory and an inhibitory population in each
layer, the present scheme could be adapted directly by replacing
the set of spike trains for each population with the correspond-
ing population firing rates (Schuecker et al. 2015) in the LFP-
generating step. However, the feasibility and prediction accuracy
of such a scheme would have to be investigated in detail.

Another natural development would be to consider other
measurement modalities. The present LFP scheme already
incorporates the prediction of ECoG (electrocorticography) sig-
nals, that is, the electrical signals recorded at the cortical sur-
face, although the LFP forward-modeling scheme may have to
be adjusted to account for the discontinuity in electrical con-
ductivity at the cortical surface (Nunez and Srinivasan 2006).
One straightforward method to account for discontinuities in
our predictions is the so-called method of images, as previously
used with our present forward modeling scheme (Hagen et al.
2015; Ness et al. 2015). An extension to EEG (electroencephalog-
raphy) and MEG (magnetoencephalography) would in principle
also be straightforward as the key variable linking single-neuron
activity and the measured signal is the single-neuron current
dipole moment (Hämäläinen et al. 1993; Nunez and Srinivasan
2006). This dipole moment can be computed from multicompart-
mental neuron models when the transmembrane or axial cur-
rents are known (Lindén et al. 2010; Ahlfors and Wreh 2015).
Given the magnitude and orientation of the current dipole
moments for all contributing neurons, the EEG and MEG signal

can be computed by a linear superposition of single-cell contri-
butions given an appropriate extracellular volume conductor
model for the EEG signal. EEG dipole-source localization techni-
ques and EEG forward models have sometimes assumed simpli-
fied spherical head models composed of N concentric shells,
each with different conductivities (Nunez and Srinivasan 2006).
Such models could be used also in the present hybrid scheme as
well as realistic head models (Kaiboriboon et al. 2012). Note that
MEG signal prediction from the current dipole moment is simpli-
fied due to its independence on conductivity, and that the vari-
ation in magnetic permeability is insignificant across soft tissue,
bone, and air (Hämäläinen et al. 1993). Another measurement
that could be modeled is voltage-sensitive dye imaging (VSDi)
where the signal largely reflects average membrane potentials of
dendrites close to the cortical surface. The spatial profile of the
weights in the averaging procedure of the VSDi forward model
will be determined by the spatial distribution of dye and the
propagation of light in the neural tissue (Chemla and Chavane
2010a, 2010b; Tian et al. 2011).

Even though the LFP has been measured for more than half
a century, the interpretation of the recorded data has so far
largely been qualitative (Einevoll et al. 2013). The biophysical
origin of the signal on the single-cell level appears well under-
stood (Rall and Shepherd 1968; Holt and Koch 1999; Gold et al.
2006; Linden 2010; Buzsáki et al. 2012; Pettersen 2012; Einevoll
et al. 2013), and several modeling studies have explored the
link between neuron and network activity (Pettersen et al. 2008;
Lindén et al. 2010; 2011; Łȩski et al. 2013; Reimann et al. 2013;
Tomsett et al. 2014; Głąbska et al. 2014). However, the computa-
tion of LFPs from network activity has until now been too cum-
bersome and computer intensive to allow for practical
exploration of the links between different types of network
dynamics and the resulting LFP. Thus, a validation of network
models against measured LFP data has essentially been absent.
With the present hybrid LFP scheme, accompanied by the
release of the simulation tool hybridLFPy, we believe that a
significant step has been taken toward the goal of making com-
bined modeling and measurement of the LFP signal a practical
research tool for probing neural circuit activity.
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