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Abstract: Antimicrobial resistance (AMR) is an increasing global threat that affects human, animal
and, often less acknowledged, environmental health. This complex issue requires a multisectoral One
Health approach to address the interconnectedness of humans, animals and the natural environment.
The prevalence of AMR in these reservoirs varies widely among countries and thus often requires
a country-specific approach. In New Zealand (NZ), AMR and antimicrobial usage in humans are
relatively well-monitored and -understood, with high human use of antimicrobials and the frequency
of resistant pathogens increasing in hospitals and the community. In contrast, on average, NZ is a
low user of antimicrobials in animal husbandry systems with low rates of AMR in food-producing
animals. AMR in New Zealand’s environment is little understood, and the role of the natural
environment in AMR transmission is unclear. Here, we aimed to provide a summary of the current
knowledge on AMR in NZ, addressing all three components of the One Health triad with a particular
focus on environmental AMR. We aimed to identify knowledge gaps to help develop research
strategies, especially towards mitigating AMR in the environment, the often-neglected part of the
One Health triad.
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1. Introduction

Antimicrobial resistance (AMR) is a growing, serious global threat to human, animal
and environmental health associated with antimicrobial use in humans and animals and
waste discharges, including pharmaceutical wastewater [1–3]. AMR describes the adap-
tation of microorganisms, including bacteria, viruses, fungi and parasites, to grow in the
presence of concentrations of antimicrobial agents that previously prevented growth or
were lethal [4,5]. Development of AMR due to excessive or inappropriate antimicrobial
consumption, poor choice of empiric antimicrobial therapy, combined with the spread of re-
sistant bacteria and resistance-encoding mobile genetic elements (e.g., by water, food, poor
sanitation, poor infection controls) accelerated by increased trade, travel and migration
have made AMR a global health crisis [6,7].

There is international recognition that to comprehensively address the risk from
AMR, a “One Health” approach across human health, animal health and the natural
environment is necessary [8,9]. In 2015, a global action plan on AMR was endorsed by the
World Health Assembly [8]. Consequently, countries worldwide developed frameworks
outlining their individual responses to the global crisis. These frameworks naturally differ
widely: in low- and middle-income countries, the focus is on challenges, such as weak
regulation of production and sale of antimicrobials, whereas in high-income jurisdictions
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and countries such as the European Union (EU) and New Zealand (NZ), frameworks and
action plans [10,11] include goals such as strengthening knowledge about AMR through
research and surveillance, improving public awareness of AMR through communication
and education, and aiming to improve infection prevention and control, mostly working
towards “best practice”. To the best of our knowledge, the only action plan specifically
addressing the environmental aspect in sufficient detail is the “European One Health
Action Plan Against Antimicrobial Resistance” [11], which acknowledges the natural
environment as a contributor to the development and spread of AMR, especially in high-
risk areas. These high-risk areas include, but are not limited to, human, animal, and
antimicrobials manufacturing waste. In NZ, compared to other countries, the burden of
AMR is still relatively low, but resistance in a range of pathogens is increasing [12,13].
The “New Zealand National AMR Action Plan” includes five objectives: to improve
awareness and understanding of AMR; to strengthen the knowledge and evidence base;
to improve infection prevention and control measures; to optimise antimicrobial use in
humans, animals and plants (antimicrobial stewardship); and to establish clear governance
and collaboration to sustainably minimise AMR [12,14]. The urgency of tackling the
mounting threat of AMR has resulted in a recent report by the Prime Minister’s Chief
Science Advisor reflecting on the abovementioned objectives and assessing the progress
made in each area [14].

Human, animal and environmental reservoirs contribute to the epidemiology of AMR,
and transmission pathways are plentiful, both within and across the human, animal and
environmental spaces (Figure 1) [15]. AMR transmission occurs via exposure to pathogenic
or non-pathogenic microorganisms carrying AMR genes. These microorganisms may be
either carriers (which play a role in the spread of AMR but cannot colonise the human
or animal body) or vectors (able to colonise and may or may not cause disease) [16].
Pathogenic resistant bacteria may cause disease in humans or animals which can be difficult
to treat. Non-pathogenic bacteria may pass on resistance genes to other bacterial species,
including pathogens. Potential exposure routes to environmental AMR for humans include
consumption/ingestion, inhalation or direct contact with a source [17]. Sources include
environmental water (surface water used for recreation, drinking water, water used for crop
irrigation, and domestic, hospital and industrial wastewater), air (may also contain dust
or water droplets), contact with animals and consumption of contaminated food. Certain
occupations may have an increased risk of exposure to AMR determinants, including
professions working at a slaughterhouse [18], a wastewater treatment plant (WWTP) [19]
or with farm animals [20]. People residing in proximity to these workplaces may also
have an increased risk of exposure [19]. The most important pathway for environmental
transmission of AMR is likely water contaminated with human and/or animal waste [21].
Humans use surface water as an important source for drinking water, irrigation of crops,
stock water supplies and recreational activities. Livestock, pets and wild animals may also
be exposed to AMR bacteria by drinking or foraging in contaminated water (Figure 1).

The global AMR crisis has led to a considerable increase in the number of studies
investigating AMR in all three One Health-related areas; however, efforts have focused
on human health and animal health and largely neglected environmental health [22–26].
Antimicrobial consumption in humans and animals and the dissemination of AMR are
quite distinct to each culture and/or country [6]. NZ as a country is in a unique position,
being isolated geographically but highly connected with the rest of the world by travel,
trade and migration. Here, we aimed to provide a summary of the current knowledge on
AMR in New Zealand, addressing all three components of the One Health triad with a
particular focus on environmental AMR, and identify knowledge gaps to help develop
research strategies towards mitigating AMR in the environment. The scope of this review
is limited to antimicrobials—with a focus on antibacterial drugs—used as human and
veterinary medicines.
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Figure 1. Schematic of potential transmission pathways of AMR bacteria between human, environ-
mental and animal reservoirs.

2. Human Use of Antimicrobials in New Zealand

In NZ, human antimicrobial consumption is relatively high compared to similar coun-
tries, possibly due, in part, to antimicrobials being commonly prescribed for seasonal viral
respiratory conditions in which antimicrobial treatments have no benefit [27,28]. From
2006 to 2014, the total antimicrobial consumption increased by 50%: from 17.3 defined daily
doses per 1000 population per day (DID) to 25.8 DID in 2014 [28]. In 2014, the most dis-
pensed individual antimicrobials were doxycycline (6.4 DID) and amoxicillin (6.4 DID), ac-
counting for 49.3% of the total consumption, followed by amoxicillin/clavulanate (4.6 DID)
and flucloxacillin (1.7 DID). Compared to the 29 European countries that participated in
antimicrobial surveillance (European Surveillance of Antimicrobial Consumption Network;
ESAC-Net) in 2013, the total antimicrobial consumption in NZ was higher than in 22 of these
countries. However, a recent article highlighted that community prescription of antimicro-
bials in NZ has been dropping each year since 2015, with an average annual reduction of
4.6% [29]. This downward trend in community prescription of antimicrobials may reflect
efforts to reduce antimicrobial use [29]. Between 2015 and 2018, the largest annual reduc-
tions were recorded for amoxicillin/clavulanate (−9.4%), fluoroquinolones (−7.7%) and
macrolides (−6.7%); there was also a reduction in the use of amoxicillin (−3.6%) and tetra-
cyclines (−3.1%), while the use of flucloxacillin was essentially unchanged (−0.4%) [29].
Even with these reductions, the total NZ community dispensing rate in 2018 (22.5 DID)
was still higher compared with countries such as the Netherlands (10.05 DID), Denmark
(13.98 DID) and the UK (18.2 DID) [29]. In addition, prescription of topical antimicrobials
for nonindicated skin conditions may contribute to resistance development [30]. Between
1993 and 2012, dispensing of the topical antimicrobial fusidic acid increased from approxi-
mately 0.2 to 4 community dispensations per 1000 populationper month while dispensing
of mupirocin decreased from about 3 to 2 community dispensations per 1000 population
per month. A clear seasonal pattern was observed with dispensing rates, highest in summer
and autumn [31]. A recent NZ study compared antimicrobial dispensing before and after
public health interventions were introduced in 2020 to reduce the spread of COVID-19 [32].
Duffy et al. [32] found antimicrobial dispensing reduced by 36% during COVID alert levels
3 and 4 (lockdown). These reductions were mainly seen for antimicrobials used to treat
respiratory and urinary tract infections—but hospital admissions due to these infections did
not increase. The authors suggest that “countries with high rates of antimicrobial use could
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significantly reduce their use without an increase in morbidity” [32]. It should be noted,
however, that while changes in service delivery and barriers to accessing primary care
would have contributed to reduced antimicrobial usage during lockdowns, it is likely that
there was also a decrease in the number of infections due to reduced social interactions [33].

Whilst there appears to be an effort to reduce human antimicrobial use in NZ over
the past 5–10 years, there is still a need for further reduction. The recent research by
Duffy et al. [32] suggests that a reduction of antimicrobial use is unlikely to result in
adverse health outcomes but will rather improve health outcomes in the long term by
reducing AMR.

3. Veterinary Use of Antimicrobials in New Zealand

NZ is one of the countries with the lowest use of antimicrobials to treat animals in
the Organisation for Economic Co-operation and Development (OECD) [34,35]. In 2012,
NZ ranked third lowest with 9.4 mg of the active ingredient per kg of biomass in food-
producing animals after Norway (3.8 mg) and Iceland (5.9 mg) [35]. Unlike many other
countries where the use and misuse of therapeutic and subtherapeutic doses of antimi-
crobials in agriculture is common practice [36], in NZ the use of antimicrobials as growth
promotors is not permitted, and prophylactic use is only permitted with a prescription by a
veterinarian. It has been shown that prophylactic antimicrobial use in animals results in
heightened selective pressure and a subsequent increase in antimicrobial-resistant bacteria
(ARB) [37–40]. Another reason for low antimicrobial use in NZ is that animal husbandry
systems for the main food-producing animals, such as sheep and beef cattle, are relatively
low in intensity and the use data are averaged across all sectors.

However, some sectors use intensive farming systems or are moving towards intensifi-
cation, which may be contributing to an increase in antimicrobial use. Between 2004 and
2015, the total sales of antimicrobials for agricultural use in NZ increased by about 2.5%
per year, and by another 3% from 2016 to 2017 [35,41]. The pig, poultry and dairy cattle
industries are the biggest users of antimicrobials in NZ agriculture [41,42]. In these more
intensive farming systems, animals live in much closer proximity, resulting in higher rates
of disease and a greater need for antimicrobials. More recently, however, there has been a
decline in total sales of antimicrobials for animal use, falling 4% in 2018 and a further 10.8%
in 2019 due to the effort to reduce antimicrobial use across the veterinary and production
animal sectors [43].

While sales data can be used to estimate antimicrobial use, they may be misleading
as farmers can receive bulk prescriptions, and some veterinary antimicrobials are not
species-specific. In 2015, the NZ Veterinary Association (NZVA) launched the profession’s
aspirational goal that “by 2030 NZ Inc. will not need antimicrobials for the maintenance
of animal health and wellness” [44]. The NZVA is the first veterinary organisation in the
world to make this goal explicit [44,45]. This includes, for example, prescribing dry cow
therapy (treatment of cows at the end of lactation) only for cows with existing infections
and not as a preventive practice [46–48]. About 85% of antimicrobial usage in cattle in NZ
is due to mastitis management [49–51]. Recent data show a steady decline in whole-herd
antimicrobial treatment towards targeted treatment [47]. In addition to aspirational goals,
regulatory controls limiting the prescription of antimicrobials by veterinarians and ongoing
investment by the Government and industry in initiatives to limit AMR are required. NZ
sales data on antimicrobials used as agricultural compounds have been collected by the NZ
Ministry for Primary Industries (MPI) since 2004. In 2019, the total sales decreased by 10.8%
(active ingredient by weight) compared to the previous year. Antimicrobials belonging
to the classes polypeptides (bacitracin), penicillins and clavulanic acid, macrolides and
tetracyclines were the most commonly used in veterinary medicine.

Antimicrobial use for companion and nonproduction animals was at 3.0% of the total
NZ antimicrobial sales in 2019 [41]. Antimicrobial classes sold for use in companion animals
were mainly penicillins and clavulanic acid, first- and second-generation cephalosporins
and amphenicols. A 2012 study reported on 393 veterinarians’ antimicrobial prescriptions



Antibiotics 2022, 11, 778 5 of 26

for 1799 bacterial infections in companion animals: mainly amoxicillin/clavulanic acid
(48%), cephalexin (31%) and fluoroquinolones (11%) were prescribed [52]. Horticultural
use of antimicrobials in NZ accounted for about 2.3% of the total antimicrobial sales in
2019, with two aminoglycoside-based products registered. The use of antimicrobials in
aquaculture is common practice in many countries such as Vietnam, China and Bangladesh,
but in NZ, no antimicrobials are currently registered for use in aquaculture [53–55].

In contrast to the human consumption of antimicrobials, veterinary use has been low,
and concerted efforts have been made to control the use of antimicrobials in NZ compared
to other OECD countries. It will be important to maintain this controlled approach in
agriculture and aquaculture in the future.

4. Antimicrobial Residues in the Environment

Antimicrobials are used in community and hospital settings, veterinary clinics and on
farms and for agriculture purposes, and thus these compounds are continuously released
into the environment. Pathways for antimicrobial residues into the environment include
discharges from WWTPs, including hospital sewage, antimicrobial manufacturing plants
and agricultural wastes such as manure.

Antimicrobials are only partly metabolised by humans and animals, and thus a certain
proportion is excreted as the active parent chemical in faeces and urine, contaminating
wastewater and manure [56]. Some antimicrobial metabolites may be bioactive, or they
may be transformed back into the parent compound or another bioactive substance [57,58].
Consequently, WWTPs are considered to be among the main “hot spots” of potential
evolution and spread of AMR into the environment via different disposal routes for effluents
and solids [59]. Removal rates for antimicrobials at WWTPs were found to range from
zero to almost 100% and depend on the chemical characteristics of the compound and the
operating conditions of the treatment system [59,60]. In NZ, no information on removal
rates of antimicrobials (or AMR bacteria or genes) has been published yet. Due to the huge
impact of site-specific conditions on removal rates and the high variability of treatment
systems within NZ, it is not possible to extrapolate results from comparable countries.

Antimicrobials may be discharged in the environment via medicine manufacturing
sites. In NZ, there are five medicine manufacturing sites that are licensed for production of
antimicrobials and preparations of antimicrobials [61]. If and how much these production
facilities contribute to concentrations of antimicrobials in the environment is currently
unclear. Internationally, discharges from the pharmaceutical industry have been found to
release higher antimicrobial concentrations into the local environment than other pollution
sources [62–64]. Pollution from antimicrobial manufacturing sites has been mostly reported
for Asia, with limited information available for Europe and other countries. Generally, due
to much higher local concentrations in manufacturing effluents, the risks differ from those
posed by municipal discharges [62]. Numerous effects on the biota have been reported,
including resistance development and taxonomy changes in bacteria [65–67], immobility
of water fleas [68], changed gene expression in fish [69] and stunted growth and changed
behaviour in frogs and fish [62,70].

Antimicrobials in the natural environment are of concern as they not only deteriorate
environmental or water quality, but also impact the natural communities present. Their
presence and persistence can affect all trophic levels, from soil microbes to plants, and
thus food production. Even low, subinhibitory concentrations of antimicrobials have been
shown to affect several physiological reactions in microorganisms: changes in transcription
levels [71]; initiation of conjugation [72]; and changes in the soil microbial community
structure [73]. The persistence of antimicrobials in soil is highly variable, ranging from a
few days to months [74,75]. In addition to soil texture, low temperatures and low light
exposure play key roles in the fate of antimicrobials in soil environments [76,77].

There are concerns that antimicrobials in the environment exert selection pressure
and add to the evolution and dissemination of AMR [78,79]. However, Karkman et al.
suggest that the presence of both resistance genes and antimicrobials in wastewater and
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wastewater-polluted environments relates to faecal pollution levels and not necessarily
to the selection pressure occurring in these environments [80]. Selective concentrations
are thought to be well below minimal inhibitory concentrations (MICs), which are those
completely inhibiting bacterial growth [81–83]. Predicted no-effect concentrations (PNECs)
could be used as a measure to determine which concentrations of antimicrobials present
a risk and which concentrations are unlikely to induce resistance evolution and may be
regarded as “safe” [84]. It has been proposed that PNECs for 111 common antimicrobials
range between 8 ng/L and 64 µg/L [84]. Murray, et al. [85] recently developed a framework
for environmental risk assessments of antimicrobials with the aim to ensure discharges
are safe—both regarding potentially contributing to resistance development and other
environmental impacts.

There are few published studies investigating the presence and concentration of
antimicrobials in NZ environmental or wastewater samples. To the best of our knowl-
edge, only one preliminary study investigating pharmaceuticals, including ten antimicro-
bials, in the NZ environment (marine sediments at 13 locations around Auckland) has
been conducted [86]. Four antimicrobials were above the limit of quantification: clar-
ithromycin (range, 0.82–2.98 ngg−1), roxithromycin (range, 0.48–3.73 ngg−1), sulfamet-
hazine (0.44 ngg−1, one site) and trimethoprim (range, 0.07–0.88 ngg−1). According to
Bengtsson-Palme and Larsson [84], the measured concentrations are well below the PNEC.
Studies are underway to close the knowledge gaps around key antimicrobials in NZ raw
sewage and their fate throughout WWTPs [87].

To understand the long-term impacts on the environment, especially those related to
effluent and wastewater disposal, more data are required. Consideration needs to be taken
of both the immediate and cumulative effects across all trophic levels and the potential
impacts on human health through the food chain and other transmission pathways.

5. Antimicrobial Resistance in Humans and the Clinical Environment

Resistance to many common antimicrobials is endemic in NZ, in both community and
healthcare settings [88]. While NZ is isolated geographically, it is highly connected with
the rest of the world by travel and migration leading to the import of resistant pathogens
from other countries. Pathogens with resistance to antimicrobial classes such as penicillins,
third-generation cephalosporins and fluoroquinolones are often found in NZ hospitals
and, with increasing frequency, in the community [88–91]. Surveillance is one of the
key components to fight emergence and spread of AMR to identify priority areas for
intervention and monitor their impact, to inform policy makers and to develop suitable
guidelines [28]. In NZ, public health surveillance for antimicrobial resistance is conducted
by the Institute of Environmental Science and Research Ltd. using EUCAST interpretation
standards, if available. Reports are available online: https://surv.esr.cri.nz/antimicrobial/
antimicrobial_resistance.php (accessed on 20 April 2022). Antibiograms from most NZ
diagnostic laboratories, who almost all use EUCAST interpretation standards, are available
online: https://www.nzmn.org.nz/antibiograms/ (accessed on 20 April 2022).

There are several key groups of AMR bacteria of significance to human health in NZ.
The increased appearance of Enterobacterales (recent taxonomic changes have narrowed
the definition of the family Enterobacteriaceae; some genera previously included in the
family Enterobacteriaceae (e.g., Hafnia, Morganella, Proteus, Providencia, Serratia and Yersinia)
are now included in other families in the order Enterobacterales; we, therefore, now use
the order name Enterobacterales to cover the genera previously included in the family
Enterobacteriaceae) with production of carbapenemases conferring resistance to carbapen-
ems (e.g., meropenem, imipenem) or production of extended-spectrum beta-lactamases
(ESBLs) leading to resistance against third-generation cephalosporins (e.g., ceftazidime)
is concerning both in NZ and worldwide [92,93]. Both carbapenemase-producing and
ESBL-producing Enterobacterales are included in the World Health Organisation’s (WHO)
priority pathogens list with priority 1 “Critical” [94].

https://surv.esr.cri.nz/antimicrobial/antimicrobial_resistance.php
https://surv.esr.cri.nz/antimicrobial/antimicrobial_resistance.php
https://www.nzmn.org.nz/antibiograms/
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Carbapenemase-producing organisms isolated from humans are continually moni-
tored in NZ with hospital and community laboratories requested to refer all isolates to the
national Antibiotic Reference Laboratory at ESR for confirmation and further characterisa-
tion. The majority of reported infections with carbapenemase-producing Enterobacterales
(CPE) in NZ are associated with a history of international travel. However, there is increas-
ing transmission reported within NZ and CPE in patients with no overseas travel history.
In 2019, travel history was reported for 87 of the 104 CPE patients, with 79% reporting over-
seas travel as the likely place of infection. In 2020, travel history was recorded for 66 of the
80 CPE patients, with 80% reporting overseas travel as the likely place of infection. Over the
last 10 years, the number of patients diagnosed with CPE has been increasing steadily (with
the exception of 2020, likely due to travel restrictions due to COVID-19) [95], with types
mostly belonging to New Delhi metallo-β-lactamases (NDM) and OXA-48-like carbapene-
mases. Sometimes more than one class of carbapenemase is identified in individual CPE
isolates. Reports on the confirmed CPE isolates since the first isolate was identified in 2009
are available online (https://surv.esr.cri.nz/antimicrobial/AccqEnterobacteriaceae.php/
(accessed on 20 April 2022)).

Numbers of ESBL-producing isolates from clinical infections have reached a level
where continuous surveillance is no longer undertaken at the national level. Since surveil-
lance of ESBL-producing isolates started in NZ in 1996, the encountered types of ESBLs have
shifted from TEM- or SHV-type ESBLs to CTX-M-type ESBLs in the 2000s and 2010s [1,2].
This endemic occurrence of ESBL-producing Enterobacterales complicates treatment of
infections, particularly community-acquired urinary tract infections. Reports on the con-
firmed ESBL isolates since 1996 are available online (https://surv.esr.cri.nz/antimicrobial/
esbl.php/ (accessed on 20 April 2022)).

Carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii are also
included in the WHO’s priority pathogens list with priority 1 “Critical” [94]. In NZ,
hospital and community laboratories are requested to refer all possible carbapenemase-
producing P. aeruginosa and, since late 2021, all carbapenem-resistant A. baumannii to ESR
for confirmation and further characterisation. Carbapenemase-producing P. aeruginosa
were first found in NZ in 2009. The numbers of carbapenemase-producing P. aeruginosa
remain much lower than the numbers of CPE, with under 40 isolates obtained between
2009 and 2020 inclusive (unpublished data). In contrast to other countries, the threat of a
carbapenem-resistant P. aeruginosa health care-associated infection is currently very low in
NZ [95,96].

Methicillin-resistant Staphylococcus aureus (MRSA) is included in the WHO’s priority
pathogens list with priority 2 “High” [94]. The national surveillance of MRSA in NZ
has changed over the last two decades. Initially, all MRSA were referred to ESR for
characterisation. Between 2000 and 2015, annual surveys provided information on the
epidemiology of MRSA in NZ, which included all MRSA isolates (clinical isolates and
isolates for screening purposes) in a one-month period each year. Due to increasing numbers
of MRSA isolates thereafter, biannual surveys were implemented, involving only isolates
from clinical specimens [97]. In 2017, the vast majority of MRSA in NZ were acquired in the
community (89%), similar to S. aureus infections in NZ [97]. The rate of MRSA infections
has remained relatively stable between 2014 and 2017, with 18.7 and 19.9 patients with
MRSA per 100,000 population, respectively. No national survey has been published since
2017. Increasing dispensing of the topical antimicrobial fusidic acid between 1993 and 2012
was concurrent with increasing fusidic acid resistance in S. aureus isolates (from 17% in
1999 to 29% in 2013) [31]. Similarly, a dramatic increase in fusidic acid resistance among
MRSA (from 7.8% in 2003 to 37.4% in 2012) supports the hypothesis that high usage of
fusidic acid in the NZ community drove fusidic acid resistance in S. aureus [31,98].

Vancomycin-resistant enterococci (VRE)—primarily Enterococcus faecium and
E. faecalis—are associated with serious multidrug-resistant infections, and E. faecium is
also included in the WHO’s priority pathogens list with priority 2 “High” [94]. In NZ,
all hospital and community laboratories are requested to refer VRE isolates to ESR for

https://surv.esr.cri.nz/antimicrobial/AccqEnterobacteriaceae.php/
https://surv.esr.cri.nz/antimicrobial/esbl.php/
https://surv.esr.cri.nz/antimicrobial/esbl.php/
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confirmation and further characterisation. Since 2011, the number of patients with VRE
has ranged between 25 (2011) and 133 (2014) [99]. The most common genotypes causing
vancomycin resistance are vanA and vanB [100]. In NZ, the prevalence of vanA E. faecium
has been increasing since 2015, which is concerning because vanA VRE are resistant to
both vancomycin and teicoplanin while vanB VRE are generally susceptible to teicoplanin.
While the primary transmission of VRE is thought to occur in hospitals [101]—through
person-to-person contact or contaminated fomites—potential zoonotic transmission has
been suggested [102].

Careful consideration needs to be taken when prescribing antimicrobials as there is
strong evidence that overprescribing and reliance on one antimicrobial drives resistance over
time. Antimicrobial resistance in the clinical setting is well-monitored in NZ; however, there
are still knowledge gaps regarding the prevalence of resistance in the community as well as
transmission routes, particularly environmental and zoonotic transmission pathways.

6. Antimicrobial Resistance in Animals

The available data suggest that prevalence of AMR in animals in NZ is relatively
low [12]. Studies in NZ have measured the prevalence of AMR among Campylobacter, E. coli,
Enterococcus, Salmonella, Staphylococcus, Streptococcus and coagulase-negative staphylococci
(CNS) isolates in food-producing and farm animals (including calves, cattle, pigs, poultry
and horses) and in milk, as well as among E. coli, other Enterobacterales, Staphylococcus spp.
and CNS in companion animals (Table 1) [90,103–116]. Interpretation standards used in the
individual studies are included in Table 1.

6.1. AMR in Livestock

A 2009/2010 NZ survey of AMR bacteria present in food and food animals [103]
reported that about 40% of E. coli isolates obtained from young calves (carcass swabs) were
resistant to streptomycin, sulfamethoxazole or tetracycline. None of the E. coli isolates
was resistant to the tested third-generation cephalosporins (cefotaxime and ceftiofur), the
fluoroquinolone ciprofloxacin or gentamicin and none of the isolates produced ESBLs.
Some Enterococcus faecalis isolates were resistant to streptomycin (36%) and tetracycline
(55%). Similar findings have been reported for cattle, with 53% of E. coli resistant to
streptomycin and 47% resistant to tetracycline [115]. Likewise, 76% and 32% of Enterococcus
spp. were resistant to streptomycin and tetracycline, respectively. Rushton-Green et al. [117]
investigated vancomycin-resistant enterococci isolated from humans and poultry between
1998 and 2009. E. faecium lineages did not show a correlation between human and animal
isolates, whereas one E. faecalis lineage (ST108) was highly prevalent in both human and
animal isolates for several years after avoparcin use was discontinued and is indicated to
have persisted and resurfaced again as late as in 2017 [117].

A recent review on AMR bacteria in dairy cows concluded that there is no evidence
that the use of antimicrobials in NZ has resulted in the emergence of multidrug-resistant
pathogens [118]. However, when considering international data, the authors saw a poten-
tial for increasing AMR in NZ dairy cows due to the use of antimicrobials, especially of
third- and fourth-generation cephalosporins. A review [119] of ESBL-producing Enterobac-
terales in dairy farm environments discussed the role of dairy farming in the prevalence
and spread of AMR from the NZ perspective. To date, cross-sectional surveys of NZ
dairy farms have found a low prevalence of ESBL-producing Enterobacterales, with only
one farm identified as ESBL-positive during spring but 27% of farms being positive for
AmpC hyperproducing E. coli [107,109]. AmpC beta-lactamases are clinically important
cephalosporinases encoded on the chromosomes of some Enterobacterales and on trans-
missible plasmids [120]. Worldwide, ESBL-producing Enterobacterales have been detected
in a wide range of food products, including cheese, raw milk, beef and poultry meat,
veal calves and on carcasses [121–125]. This highlights the potential transmission of AMR
microorganisms to humans via the food chain.
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Testing of Campylobacter spp. isolates from an NZ beef survey [115] revealed that
all the isolates were susceptible to the seven antimicrobials tested. Another NZ study
that tested the faeces of dairy cattle, beef cattle, sheep and pigs for resistant Campylobacter
spp. found that all the isolates were susceptible to the antimicrobials tested (erythromycin,
ciprofloxacin, nalidixic acid, tetracycline) with the exception of five isolates derived from
pig offal which were resistant to erythromycin [126]. However, in 2014, a C. jejuni lineage
(ST6964) was identified in NZ poultry that was resistant to both fluoroquinolones and
tetracycline [110]. This lineage was also associated with human infections and highlights
the interconnectedness of humans and animals [110].

Internationally, there is a high incidence of MRSA in livestock, particularly in pigs
and poultry. Transmission events have been inferred between livestock and humans,
predominantly associated with pig farms [127,128]. In NZ, livestock-associated MRSA has
been found in clinical isolates from people working at pig farms or in abattoirs [97]. In
NZ, MRSA in milk appears to be very rare [106,129]. However, despite the low use of
antimicrobials at NZ dairy farms, there has been an increase in the incidence of mastitis-
associated Streptococcus uberis resistant to beta-lactams [130]. McDougall et al. [111] found
a low prevalence of resistance against erythromycin and tetracycline in S. aureus, S. uberis
and CNS isolates from milk but a high prevalence of resistance against oxacillin in S. aureus
isolates (35%).

6.2. AMR in Companion Animals

NZ studies suggest the prevalence of resistant bacteria in companion animals is higher
compared with livestock. In one study, approximately 4% and 7% of the cats and dogs,
respectively, carried ESBL- or AmpC-producing E. coli [112], while in another study, about
17% of the cats and 33% of the dogs carried ESBL- or AmpC-producing Enterobacteri-
aceae [90]. In NZ dogs, McMeekin et al. [114] found mostly low rates of cephalothin,
enrofloxacin and clindamycin resistance in E. coli, Staphylococcus pseudintermedius and CNS
isolates while Nisa et al. [131] found methicillin resistance in 66 out of the 176 Staphylococcus
pseudintermedius isolates. The proximity of companion animals to humans is both a concern
and a possible explanation for a higher prevalence of AMR bacteria in pets compared
to livestock.

The low usage of antimicrobials in veterinary and agricultural practice in NZ has
resulted in low rates of antimicrobial resistance. The NZVA’s aspirational goal to reduce
unnecessary antimicrobial use positions NZ well to keep resistance rates low in animal
husbandry and enables further reductions. A potential zoonotic transmission from animals
(including pets) to humans needs further investigation.
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Table 1. Antimicrobial resistance in New Zealand farm and companion animals.

Host Species Bacterial Species Sample Type Resistance
Phenotype Prevalence Method Year of Sampling Reference

Po
ul

tr
y

C. jejuni Carcass Fluoroquinolone
Tetracycline

10/72 (13.9%)
25/72 (34.7%)

carcasses
Disc diffusion, CLSI 2014 and 2015, respectively [110]

E. coli
C. jejuni Carcass rinsates

Gentamicin
Tetracycline

Erythromycin

6/400 (1.5%)
18/400 (4.4%)

isolates b

1/200 (0.5%)
isolates b,d

Disc diffusion, CLSI
Disc diffusion (no

standard used)
2005–2006 [104]

E. coli
C. jejuni Carcass rinsates

Cefoxitin
Tetracycline

Ciprofloxacin
Tetracycline

3/909 (0.3%)
109/909 (12.1%)

Isolates a,b,c

8/344 (2.3%)
1/344 (0.3%) isolates c

Broth microdilution
plates, CLSI 2009–2010 [103]

Pi
gs

E. coli Faeces Gentamicin
Tetracycline

2/142 (1.4%)
61/142 (43%) isolates b Disc diffusion, CLSI March–October 2001 [116]

E. coli Carcass swabs Cefoxitin
Tetracycline

12/909 (1.3%)
440/909 (48.5%) isolates

Broth microdilution
plates, CLSI 2009–2010 [103]

D
ai

ry
ca

tt
le

E. coli Faeces
Putative

hyperproducing
AmpC

11/78 (14.1%) pooled
faeces from 7/26 (26.9%)

dairy farms

Disc diffusion,
EUCAST May–July 2017 [109]

E. coli Faeces ESBLs
1/116 (0.69%) pooled

faeces from 1/15 (6.7%)
dairy farms

Disc diffusion,
EUCAST August 2016–May 2017 [107]

S. aureus
Clinical or
subclinical

mastitis milk
Cefoxitin 1/50 (2%) isolates Disc diffusion, CLSI October 2015–January 2016 [132]

S. aureus Milk Erythromycin
Oxacillin

4/320 (1.2%)
112/320 (34.9%) isolates

Broth microdilution
plates, CLSI September 2017–January 2018 [111]

Be
ef E. coli

S. aureus Clinical isolates Tetracycline
Oxacillin

14/30 (46.7%)
1/6 (16.7%) isolates b,d Disc diffusion, CLSI 2003–2016 [89]
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Table 1. Cont.

Host Species Bacterial Species Sample Type Resistance
Phenotype Prevalence Method Year of Sampling Reference

C
al

ve
s

E. coli
C. jejuni Carcass swabs

Cefoxitin
Tetracycline

Ciprofloxacin
Tetracycline

9/909 (1%)
370/909 (40.7%)

isolates a,b,c

8/344 (2.3%),
1/344 (0.3%) isolates c

Broth microdilution
plates, CLSI 2009–2010 [103]

C
om

pa
ni

on
an

im
al

s Enterobacteriaceae Faeces
ESBLs and/or

plasmid-mediated
AmpC

6/18 (33.3%) dogs
3/18 (16.7%) cats

Disc diffusion,
EUCAST September 2015–September 2017 [90]

E. coli Faeces
ESBLs and/or

plasmid-mediated
AmpC

25/361 (6.9%) dogs
10/225 (4.4%) cats Disc diffusion, CLSI June 2021–June 2013 [112]

D
og

s

E. coli Clinical urine
samples

Cephalothin
Enrofloxacin
Clindamycin

91/508 (17.9%)
9/500 (1.8%)

165/500 (32.5%) isolates
Disc diffusion, CLSI 2012 [114]

H
or

se
s

E. coli
Ceftiofur

Gentamicin
Tetracycline

11/24 (45.8%)
6/26 (23.1%)

16/25 (64%) isolates b
Disc diffusion, CLSI 2004–2014 [113]

a No resistance to cefotaxime; b no resistance to ciprofloxacin or enrofloxacin; c no resistance to gentamicin; d no resistance to tetracycline. EUCAST, European Committee on
Antimicrobial Susceptibility Testing; CLSI, Clinical Laboratory Standards Institute.
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7. Antimicrobial Resistance in the Environment

Studies suggest the main source for environmental dissemination of antimicrobials,
AMR bacteria and genes is surface water predominantly impacted by human and/or animal
waste and, to a lesser extent, waste application to land (Figure 1). Whilst an increasing
number of these studies investigating AMR in the environment have been published
worldwide, surveys on AMR in NZ’s environment are limited.

7.1. AMR at Wastewater Treatment Plants

Human sewage and effluents from WWTPs have been proposed among the main
sources of environmental contamination with antimicrobial residues, ARB and AMR genes
(ARG), contributing to the spread of AMR [23,59,133]. Between 40% and 90% of consumed
antimicrobials are excreted and end up in sewage from households and hospital dis-
charges [63]. As a result, antimicrobials, ARB and ARGs have been detected in wastewater
samples worldwide [6,23,133–137], including NZ [6,87].

Culture-dependent and culture-independent detection methods have been used to
detect ARB and ARGs conferring resistance to all classes of antimicrobials at WWTPs
worldwide and in their effluents, showing that treatment efficacy is quite variable and
mostly insufficient [23,137–139]. The prevalence of ARGs and mobile genetic elements was
found to change within WWTPs from influents to effluents, with the relative abundance of
most genes higher in influents [133,140].

Effluents from both households and hospitals contribute to the quantity and diversity
of ARB and ARGs in sewage systems, but it is likely that hospital effluents only contribute
a minor proportion as the total volume of residential and industrial wastewater is signifi-
cantly greater [134,141,142]. Resistance genes from ARB can spread among microorganisms
that are part of the resident microbial community within the WWTP and those transiting
through the treatment system. Due to the high density of bacteria in wastewater systems,
horizontal gene transfer among pathogenic and non-pathogenic bacteria is frequently ob-
served [133,140,143]. Wastewater also contains antimicrobials, disinfectants, heavy metals
and other organic contaminants, which can exhibit selective pressure for AMR, even in
low concentrations [81,83,144]]. Mobile genetic elements frequently carry resistance genes
for multiple antimicrobial compounds or resistance genes for disinfectants or metals. In
these scenarios, acquired resistance to one compound may co-select for resistance against
another compound [145].

In NZ, so far, only a few small studies have investigated the presence of ARB and
ARGs in WWTP effluents or environmental waters (Table 2). Studies are underway to
close knowledge gaps around antimicrobials, ARB and ARGs in raw sewage and their
fate throughout the treatment system [87]. A recent international study analysed the
bacterial resistome in raw human sewage from 79 sites across 60 countries, including one
sample taken in Dunedin, NZ [6]. The one NZ sample was among the ones with the
lowest AMR gene abundances, similar to Australia. The highest AMR gene levels were
detected in African and South American countries [6]. Internationally, a wide range of
published literature is available, and knowledge about AMR in wastewater has increased
tremendously in the past few years. However, how applicable the findings are to NZ is
unknown. Antimicrobial consumption patterns are quite distinct to each culture/country.
In addition, sewage treatment systems across NZ vary considerably, ranging from very
basic to modern state-of-the-art facilities. Treatment processes include trickling filters,
aerated lagoons, ponds, wetlands, recirculating filters and activated sludge. Out of an
estimated 323 publicly owned WWTPs in NZ (in 2021), the majority are pond-based (64%,
but they only serve around 17% of the total serviced population), while the more modern
plants (built in the past 20 years) primarily use activated sludge processes (18%, serve 74%
of the total serviced population) [146,147].

Whichever treatment is used, the process is not targeted at emerging compounds
(pharmaceuticals, personal care products), bacteria or their genes but aims to remove
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organic components, nutrients (P, N) and suspended solids. Differences in treatment plant
design and operation influence the fate of ARB and ARGs in wastewater; conventional
activated sludge treatment combined with advanced treatment methods—such as UV or
ozonation—show improved removal of ARB and ARGs compared to activated sludge
alone [137,140,148]. A recent review by Pai et al. [149] estimates the removal of ARGs to be
0.1–0.6 log units with primary treatment, 1–2 log units with secondary treatment and 0–6 log
units with advanced treatment methods. Whilst tertiary treatment likely offers the highest
chance of AMR removal, efficacy is variable and dependent both on the treatment choice
and operational management to optimise removal efficiencies. Tertiary treatment processes
include UV, ozone treatment or membrane filtration to specifically remove microorganisms.
A Canadian study found that even a tertiary-level WWTP meeting all regulatory target
values contributed to increased downstream concentrations of ARGs [136].

In NZ, after treatment, wastewater is discharged either to waterways (rivers or the
ocean) or to land [147]. A survey undertaken in 2016 found that of the council-operated
WWTPs across NZ, 57% discharged to waterways, with the remaining plants discharging
to land [150]. On the population basis, this equated to 11% of the national wastewater flow
discharged to land. A more recent report states that of the 318 active WWTPs across NZ,
44% discharge to rivers, 20%—to the ocean, 33%—to the land [147]. By volume, most of the
treated wastewater (74%) is discharged into estuaries or the ocean. This can be attributed
to the country’s largest cities being located on the coast. During heavy rainfall, stormwater
may enter wastewater systems, and when these get overloaded, the mixture of untreated
sewage and rainwater may be discharged through sewage overflows into streams and
rivers to prevent backing up onto properties.

In addition to municipal wastewater systems, there are about 270,000 domestic on-
site wastewater management systems (OWMSs) in NZ, serving approximately 20% of the
population. OWMSs discharge wastewater into the land through disposal fields, potentially
transporting antimicrobials, ARB and ARGs into the environment (including waterways,
neighbouring properties or roadside stormwater manholes). AMR determinants may also
settle out into the OWMS sludge, which is pumped out intermittently and taken to WWTPs.
The potential risk to OWMSs from AMR is twofold. The first is from antimicrobials
themselves which can enter the septic tank system unchanged or in the form of active
metabolites and may harm the beneficial bacteria present within the system. The second
risk is co-selection for AMR due to the ongoing presence of antimicrobials leading to ARB
discharge into the environment.

OWMSs mirror conventional wastewater treatment systems in removing organic
compounds, nutrients (P, N) and suspended solids; however, their removal capacity for
AMR is limited. There is also potentially a higher risk from septic tank systems as more
concentrated inputs could occur from households using prescribed antimicrobials. Within
OWMSs and the surrounding disposal fields, the function of anaerobic bacteria can be
reduced, leading to increased sludge accumulation in the OWMSs and higher biological
oxygen demand in the environment. The aerobic bacterial population pre-treatment and the
soil environment can also be negatively impacted. With OWMSs, there is an additional risk
to groundwater, which in rural communities is often used for drinking, in many cases with
little to no pre-treatment. This poses a risk to human health, and the use of antimicrobials
could increase the risk by reducing the efficacy of OWMSs.

Wastewater contributes to the transmission of AMR by serving as a major environmen-
tal reservoir for AMR and by providing an ideal environment for AMR microorganisms
and genes [151]. High levels of AMR bacteria and genes were detected in untreated sewage,
influent and effluent samples from WWTPs and hospitals, in industrial (including phar-
maceutical treatment plants) and agricultural wastewater. Consequently, increased levels
of AMR bacteria and genes were detected downstream of discharges, rivers and even tap
water. How long resistant bacteria and genes persist in these environments is not well-
known, but given the constant discharge of very large volumes of wastewater, ongoing
replenishment can be expected. Studies have demonstrated that clinically relevant bacterial
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species such as Salmonella spp. and enterotoxigenic E. coli can persist in environmental
water for long times [152,153]. Due to the abovementioned pathways, including treated
sewage discharges and untreated sewage stormwater overflows, it is likely that faecal bac-
teria, including ARB, ARGs and antimicrobials are released into the aquatic environment
in NZ—similar to many other countries—and may present a public health risk.

7.2. AMR after Waste Application to Land

Application of human and/or animal wastes to land—solids, manure, greywater
or wastewater—is common practice worldwide. In NZ, application of animal wastes is
widely accepted and practiced while application of treated human waste is often met
with concerns. Treated wastewater in NZ is mostly discharged to waterways, but 33% is
applied to land, with land disposal systems varying widely [147]. When wastewater is
applied to land, it mostly occurs via high-rate methods such as constructed wetland and
soakage trenches or to grazed pastures (not dairy). The remaining wastewater is applied to
trees and cut-and-carry pasture harvesting systems. Depending on the level of treatment
prior to discharge, there is a variable risk of pathogen transport, including ARB, to land.
Biosolids produced by treatment processes are mainly disposed of via quarry rehabilitation
or landfills [154]. A smaller proportion is applied to land, in forestry or serves as landfill
cover. Depending on the source and pre-treatment of waste products, they can contribute
pathogens, ARGs and various other contaminants to the environment.

7.2.1. Animal Waste to Land

Antimicrobial use in farm environments and consequently the emergence and distri-
bution of ARB and ARGs in farm wastes is of concern for both human and animal health.
Worldwide, pathogens of human concern resistant to antimicrobials have been detected in
animal manure, dairy farm environments and food products [155–158]. After administra-
tion of antimicrobials, animals excrete substantial amounts in urine and faeces (between
17% and 75% for livestock species), either unchanged or as active metabolite [159]. Applica-
tion of livestock manure for fertilisation, run-off from pastures or dairy shed effluent may
lead to contamination of surface water with pathogens, antimicrobials, ARB and ARGs.

Antimicrobials or their residues can persist in the soil environment and potentially
accumulate in the environment by adsorption to soil particles [73,160] and thus may drive
the development of AMR [78]. In the soil environment, microbial communities play a
key role in AMR transmission, as do environmental factors [74–77,161]. One such factor
is the soil itself [161]: in addition to the type of ARGs, the soil texture plays a key role
in the persistence of ARGs. The persistence in receiving waters is also linked to the soil
texture present, with ARGs more persistent in water adjacent to sandy soils compared to
clay soils. A potential method of reducing the input and thus the impact of antimicrobials
(or their residues), ARB and ARGs on land has been suggested where manure is treated
first (e.g., composting). There have been mixed results with regard to the efficacy of
composting. Some researchers have found a significant reduction in antimicrobial and
ARG concentrations in composted manure [162–166], whereas others have found a limited
efficacy or even an increase in some ARGs [163,166]. Composting conditions need to be
optimised carefully (e.g., pH, temperature, maturation duration) for optimal degradation.

There is a lack of research into the extent of antimicrobials (or their residues), ARB
and ARGs entering the NZ environment from animal wastes. A report compiled by the
NZ Ministries of Health and Primary Industries pointed to a lack of consistent surveillance
and research on the risk to the environment from animals [12].

7.2.2. Human Waste to Land

Conventional activated sludge processing at WWTPs is inefficient at removing an-
timicrobials which end up in sludges and biosolids that may be applied to land. Some
antimicrobials, such as sulphonamides, fluoroquinolones, erythromycin and tetracycline
are preferentially removed into the sludge, either by physical adsorption or enhanced
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adsorption through addition of flocculants [167–170]. The fate of ARB and ARGs through
wastewater systems, including sludge, has been extensively studied, with the focus often
on a small number of resistance genes or specific bacterial species [137,148]. Results are
usually very dependent on the system studied and cannot easily be extrapolated to other
WWTP and AMR determinants. Conditions at WWTPs seem to favour development and
spread of AMR [143]; while there is a big shift in the microbiome throughout treatment
stages [3], a reduction in some AMR determinants occurs while others have been found to
become enriched [143]. This shift and preferential removal in different fractions should be
considered when assessing the risk associated with the application of solids or water to
land or discharge into waterways.

As mentioned in the previous section, there is a paucity of knowledge on the risk of
OWMS wastewater application to land from antimicrobials or ARGs. This is also the case
for biosolids application to land.

7.2.3. Greywater

With the growing pressure on water supplies globally, there has been an increase
in reclamation of water, including in waste streams. The use of greywater (domestic
wastewater excluding wastewater from toilets) for irrigation of crops, golf courses and
landscapes is becoming more common, but there is increasing concern that this could
provide another AMR pathway to land [171–173]. In NZ, to the best of our knowledge,
there is little information available regarding greywater application with respect to AMR.
Zaayman [174] investigated the risk to the health of soil bacteria from the application
of greywater amended with the antimicrobial triclosan. The study investigated the risk
to an NZ silty clay loam from the leachate from a greywater system applied over time.
A reduction in the respiration rate of bacterial biomass was observed, but it was significant
only at high concentrations of triclosan (over 5000 ppm). Other indicators of soil health were
investigated, and a negative impact of triclosan at much lower concentration (195 ppm)
was reported. The study concluded that although the impact of triclosan on the immediate
soil environment may be low, there is a high risk of triclosan being transported throughout
the soil profile and below. Once there, it may be able to persist for prolonged periods of
time posing a risk to the microbial fauna present.

7.3. AMR in Environmental Water

AMR bacteria are present in surface water all over the world, and wastewater signif-
icantly contributes to this. A Dutch study investigated 30 water bodies and wastewater
samples from five health care institutions, seven municipal WWTPs, and one airport
WWTP [175]. Multidrug-resistant and ESBL-producing E. coli were isolated from all water
sources with concentrations of multidrug-resistant E. coli isolates increasing in the follow-
ing order: surface water (2.2 × 102 cfuL−1), WWTP effluents (4.0 × 104 cfuL−1), WWTP
influents (1.8 × 107 cfuL−1) and health-care wastewater (4.1 × 107 cfuL−1). A Canadian
study [136] found that ARG concentrations decreased as proximity to human-impacted
areas decreased. The same study also suggested that ARGs might be ubiquitous in wa-
tersheds even without obvious pollution sources. An NZ study by Gray et al. [176] also
indicates that ARB are associated with human-impacted areas. Here, ESBL-producing
E. coli were isolated downstream of the effluent outflow, but not downstream of the land
used for dairy farming.

In NZ, a limited number of studies have investigated AMR in surface water (sum-
marised in Table 2). A cross-sectional study carried out in NZ’s largest city, Auckland,
found ESBL-producing E. coli from these urban waterways were genetically similar to
human clinical (derived from urinary tract infections) and dog faecal isolates [177,178]. In
the Canterbury region along the Waimakariri river, Schousboe et al. recorded an increase in
antimicrobial-resistant E. coli between 2004 and 2012 [179]. Another NZ study investigated
10 AMR genes in freshwater biofilms at six sites along a river in Otago for one year [180].
Three AMR genes were detected (using polymerase chain reaction), including vanB, which
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confers resistance to vancomycin. In a spatiotemporal follow-up study of 20 sites, three of
the ten AMR genes were detected in 1.3% of the biofilm samples, with more genes detected
close to intensive farming areas, suggesting a moderate correlation [181]. Fish & Game NZ
commissioned a study to test water and sediments of three Canterbury rivers in May and
September 2018 for E. coli and the presence of six different genes associated with virulence
and one group of AMR genes. In the September (spring) sampling, water and sediments
of two rivers were positive for the blaCTX-M genes which confer resistance against beta-
lactams, including penicillins and third-generation cephalosporins [182]. Further studies
investigated AMR coliforms and E. coli in surface water across NZ and in mussels deployed
in an urban harbour and confirmed the presence of microorganisms resistant to some of
the tested clinically relevant antimicrobials, including ESBL-producing E. coli in the water
samples [183–185].

Whilst studies are underway and our knowledge is improving on the fate and impact
of AMR in the natural environment, there are still more data needed to provide evidence of
the impact on human health.
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Table 2. Antimicrobial resistance in the New Zealand environment.

Environment a Analytical
Target Sample Type AMR Phenotype/AMR

Abundance
Prevalence/Total
Gene Abundance Method Year of Sampling Comments Reference

H
um

an
se

w
ag

e
an

d
W

W
TP

ef
flu

en
ts

Resistome
analysis

Raw municipal
sewage

AMR genes with the
highest relative

abundance:
Macrolide

Beta-lactam
Tetracycline

Aminoglycoside

AMR gene levels
in NZ sewage:
approximately
530 fragments
per kilobase
per million

fragments (FPKM)

Whole sample
metagenomic

shotgun
sequencing

2016
One sample

The study has
been ongoing with

more samples
included from a
number of NZ

cities; the results
are pending

[6]

Resistome
analysis

Raw municipal
sewage, effluents,
oxidation pond

water and
sediments

AMR genes with the
highest relative

abundance:
Macrolide

Beta-lactam
Tetracycline

Aminoglycoside

400 different AMR
genes identified

across all the
sample types

Whole sample
metagenomic

shotgun
sequencing

2019

The number of
resistance genes

decreased
throughout

the treatment

[87]

En
vi

ro
nm

en
ta

lw
at

er

E. coli Urban waterways,
dog faeces ESBL, AmpC

n = 31 isolates
23% ESBL

23% AmpC

Disc diffusion,
CLSI 2017/2018 E. coli were grown

on selective agars [177,178]

E. coli Large rural river

Streptomycin
Sulphafurazole

Tetracycline
Trimethoprim

Ampicillin
Chloramphenicol b

Nalidixic acid b

Nitrofurantoin b

Cefaclor b

9/63 (2004)
16/80 (2012)

Disc diffusion,
CLSI 2004 and 2012

Resistant isolates
were resistant to a

subset of the
tested

antimicrobials

[179]

vanA, vanB,
mecA, ermA,

ermB, tetA, tetB,
tetK, tetM,
aacA-aphD

Rural river
freshwater

biofilms

ermB, vanB and tetB
genes were detected

In 2% of the
147 samples, AMR

genes were
detected, six

sites/three rocks
per site

PCR 2010/2011 [180]
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Table 2. Cont.

Environment a Analytical
Target Sample Type AMR Phenotype/AMR

Abundance
Prevalence/Total
Gene Abundance Method Year of Sampling Comments Reference

En
vi

ro
nm

en
ta

lw
at

er

vanA, vanB,
mecA, ermA,

ermB, tetA, tetB,
tetK, tetM,
aacA-aphD

Freshwater
biofilms from

four waterways

ermB, tetK and
tetM detected

1.3% overall
detection,

480 samples/
20 sites/

three rocks
per site/

eight samplings

PCR 2010/2011 [180,181]

E. coli

Surface water
(urban and rural

streams)
Mussels

ESBLs
Ampicillin

Chloramphenicol
Ciprofloxacin

N/A Disc diffusion,
CLSI 2017

Isolation of E. coli
on selective media

containing
different

antimicrobials

[183,184]

E. coli,
virulence

genes,
blaCTX-M

Rural river, water
and sediments blaCTX-M

blaCTX-M present
at two sites in

September (water
and sediments)

PCR May and
September 2018 [182]

a Studies are underway to close knowledge gaps on AMR after waste application to land and AMR in wastewater (including antimicrobials, resistance genes and ESBL/AmpC- and
carbapenemase-producing Gram-negative bacteria). b 2012 only. EUCAST, European Committee on Antimicrobial Susceptibility Testing; CLSI, Clinical Laboratory Standards Institute.
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8. Summary and Conclusions

Antimicrobial resistance and antimicrobial usage in humans are relatively well-monitored
and -understood in NZ, with ready access to antimicrobial dispensing data and ongoing
monitoring of the key groups of clinical AMR pathogens. Human use of antimicrobials is
high in NZ, and pathogens with resistance to antimicrobials are found in hospitals and the
community and are increasing. However, compared to other countries, the public health
burden of AMR in NZ is fairly low [12]. Some pathogen/resistance combinations that pose
huge problems elsewhere are not yet common in NZ—but could be in the future. Future
challenges include increased levels of resistance in many common and serious bacterial
infections, resulting in increased morbidity and mortality due to reduced treatment options.
Human infection with most AMR bacteria in NZ is believed to occur mostly person to
person or via contaminated fomites and—to a lesser degree—through contact with (farm)
animals, though AMR at NZ farms is estimated to be low overall. Companion animals
have a slightly higher carriage of AMR bacteria than farm animals, which may be a
concern for human health due to the close contacts between pets and owners. The role of
NZ’s natural environment in AMR transmission is unclear. There is evidence of AMR in
wastewater, in surface water impacted by human and/or animal waste and in sea water and
mussels. Systematic monitoring of AMR determinants in waste products of pharmaceutical
companies, abattoirs, intensive farming operations, municipalities and hospitals would
help to identify the main sources and pathways of AMR in NZ’s natural environment.
Since a range of contaminants, including biocides and heavy metals, are known to promote
AMR in the environment, it is crucial to clearly establish all drivers and pathways of AMR
in the environment [144]. Increased surveillance to close the outlined knowledge gaps
will help to gain a better picture around the release of antimicrobials, ARB and ARGs into
the environment and the potential impact on human, animal and environmental health in
New Zealand.
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current antibacterial dispensing for Māori and Pacific people insufficient or excessive, or both? N. Z. Med. J. 2019, 132, 100–104.
28. Williamson, D.; Roos, R.; Verrall, A. Antibiotic Consumption in New Zealand, 2006–2014; The Institute of Environmental Science and

Research Ltd.: Porirua, New Zealand, 2016.
29. Thomas, M.; Tomlin, A.; Duffy, E.; Tilyard, M. Reduced community antibiotic dispensing in New Zealand during 2015–2018:

Marked variation in relation to primary health organisation. N. Z. Med. J. 2020, 133, 33–35.
30. Lapolla, W.J.; Levender, M.M.; Davis, S.A.; Yentzer, B.A.; Williford, P.M.; Feldman, S.R. Topical antibiotic trends from 1993 to 2007:

Use of topical antibiotics for non-evidence-based indications. Dermatol. Surg. 2011, 37, 1427–1433. [CrossRef] [PubMed]
31. Williamson, D.A.; Monecke, S.; Heffernan, H.; Ritchie, S.R.; Roberts, S.A.; Upton, A.; Thomas, M.G.; Fraser, J.D. High Usage

of Topical Fusidic Acid and Rapid Clonal Expansion of Fusidic Acid–Resistant Staphylococcus aureus: A Cautionary Tale.
Clin. Infect. Dis. 2014, 59, 1451–1454. [CrossRef]

32. Duffy, E.; Thomas, M.; Hills, T.; Ritchie, S. The impacts of New Zealand’s COVID-19 epidemic response on community antibiotic
use and hospitalisation for pneumonia, peritonsillar abscess and rheumatic fever. Lancet Reg. Health-West. Pac. 2021, 12, 100162.
[CrossRef]

33. Huang, Q.S.; Wood, T.; Jelley, L.; Jennings, T.; Jefferies, S.; Daniells, K.; Nesdale, A.; Dowell, T.; Turner, N.; Campbell-Stokes,
P.; et al. Impact of the COVID-19 nonpharmaceutical interventions on influenza and other respiratory viral infections in New
Zealand. Nat. Commun. 2021, 12, 1001. [CrossRef]

34. Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Van Boeckel, T.P. Global Trends in Antimicrobial Use in Food Animals from 2017
to 2030. Antibiotics 2020, 9, 918. [CrossRef] [PubMed]

https://www.unep.org/events/webinar/advancing-one-health-response-antimicrobial-resistance-amr
https://www.unep.org/events/webinar/advancing-one-health-response-antimicrobial-resistance-amr
https://www.pmcsa.ac.nz/topics/antimicrobial-resistance-and-infectious-disease/
https://www.pmcsa.ac.nz/topics/antimicrobial-resistance-and-infectious-disease/
http://doi.org/10.1098/rstb.2014.0083
http://www.ncbi.nlm.nih.gov/pubmed/25918441
http://doi.org/10.1016/j.tim.2016.11.014
http://doi.org/10.1186/s13750-020-00197-6
http://doi.org/10.1017/S0950268817000784
http://www.ncbi.nlm.nih.gov/pubmed/28462735
http://doi.org/10.3390/antibiotics10050478
http://doi.org/10.1289/ehp.8837
http://doi.org/10.3389/fmicb.2016.01728
http://doi.org/10.1016/S2542-5196(18)30124-4
http://doi.org/10.1016/j.tim.2017.09.005
http://www.ncbi.nlm.nih.gov/pubmed/29033338
http://doi.org/10.2175/106143017X15023776270179
http://www.ncbi.nlm.nih.gov/pubmed/28954648
http://doi.org/10.1016/j.scitotenv.2016.04.140
http://www.ncbi.nlm.nih.gov/pubmed/27139307
http://doi.org/10.1016/j.envint.2016.06.025
http://doi.org/10.1111/j.1524-4725.2011.02122.x
http://www.ncbi.nlm.nih.gov/pubmed/21895848
http://doi.org/10.1093/cid/ciu658
http://doi.org/10.1016/j.lanwpc.2021.100162
http://doi.org/10.1038/s41467-021-21157-9
http://doi.org/10.3390/antibiotics9120918
http://www.ncbi.nlm.nih.gov/pubmed/33348801


Antibiotics 2022, 11, 778 21 of 26

35. Hillerton, J.E.; Irvine, C.R.; Bryan, M.A.; Scott, D.; Merchant, S.C. Use of antimicrobials for animals in New Zealand, and in
comparison with other countries. N. Z. Vet. J. 2017, 65, 71–77. [CrossRef] [PubMed]

36. Qiao, M.; Ying, G.-G.; Singer, A.C.; Zhu, Y.-G. Review of antibiotic resistance in China and its environment. Environ. Int. 2018,
110, 160–172. [CrossRef]

37. Pruden, A.; Larsson, D.G.J.; Amézquita, A.; Collignon, P.; Brandt, K.K.; Graham, D.W.; Lazorchak, J.M.; Suzuki, S.; Silley, P.;
Snape, J.R.; et al. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment.
Environ. Health Perspect. 2013, 121, 878–885. [CrossRef]

38. Checcucci, A.; Trevisi, P.; Luise, D.; Modesto, M.; Blasioli, S.; Braschi, I.; Mattarelli, P. Exploring the Animal Waste Resistome: The
Spread of Antimicrobial Resistance Genes Through the Use of Livestock Manure. Front. Microbiol. 2020, 11, 1416. [CrossRef]

39. Troiano, E.; Beneduce, L.; Gross, A.; Ronen, Z. Antibiotic-Resistant Bacteria in Greywater and Greywater-Irrigated Soils. Front.
Microbiol. 2018, 9, 2666. [CrossRef]

40. Blau, K.; Jacquiod, S.; Sørensen, S.J.; Su, J.-Q.; Zhu, Y.-G.; Smalla, K.; Jechalke, S. Manure and Doxycycline Affect the Bacterial
Community and Its Resistome in Lettuce Rhizosphere and Bulk Soil. Front. Microbiol. 2019, 10, 725. [CrossRef] [PubMed]

41. New Zealand Food Safety. Antibiotic Sales Analysis 2017; New Zealand Food Safety: Wellington, New Zealand, 2019.
42. New Zealand Food Safety. Antibiotic Sales Analysis 2014–2016; New Zealand Food Safety: Wellington, New Zealand, 2018.
43. New Zealand Food Safety. 2019 Antibiotic Agricultural Compound Sales Analysis; New Zealand Food Safety: Wellington, New

Zealand, 2021.
44. New Zealand Veterinary Association. Antimicrobial Resistance (AMR); NZVA: Wellington, New Zealand, 2015; Available online:

https://nzva.org.nz/resource/general/amr/ (accessed on 26 May 2022).
45. Hillerton, E.; Allison, A. Antibiotic Resistance: Challenges and Opportunities; Report to the New Zealand Veterinary Association;

PWC New Zealand: Auckland, New Zealand, 2015; p. 28.
46. Biggs, A.; Barrett, D.; Bradley, A.; Green, M.; Reyher, K.; Zadoks, R. Antibiotic dry cow therapy: Where next? Vet. Rec. 2016, 178,

93–94. [CrossRef]
47. Keown, A. The 2020 Goal for Dry-cow Antibiotics—Are We There Yet? VetScript; New Zealand Veterinary Association: Auckland,

New Zealand, 2020; pp. 40–43.
48. New Zealand Veterinary Association. NZVA Position on DCT; NZVA: Wellington, New Zealand, 2015.
49. McDougall, S.; Gohary, K.; Bates, A.; Compton, C. Antimicrobial usage on farm. In Proceedings of the New Zealand Milk Quality

Conference, Hamilton, New Zealand, 20–21 June 2016; pp. 45–50.
50. Bryan, M.; Hea, S.Y. A survey of antimicrobial use in dairy cows from farms in four regions of New Zealand. N. Z. Vet. J. 2017, 65,

93–98. [CrossRef] [PubMed]
51. Dairy, N.Z. Antibiotic Use on Dairy Farms. 2021. Available online: https://www.dairynz.co.nz/animal/cow-health/mastitis/

drying-off/antibiotic-use-on-dairy-farms/ (accessed on 10 March 2022).
52. Pleydell, E.J.; Souphavanh, K.; Hill, K.E.; French, N.P.; Prattley, D.J. Descriptive epidemiological study of the use of antimicrobial

drugs by companion animal veterinarians in New Zealand. N. Z. Vet. J. 2012, 60, 115–122. [CrossRef] [PubMed]
53. Lulijwa, R.; Rupia, E.J.; Alfaro, A.C. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: A

review of the top 15 major producers. Rev. Aquac. 2020, 12, 640–663. [CrossRef]
54. New Zealand Food Safety ACVM Register. ACVM Register—Veterinary Medicines, Agricultural Chemicals and Vertebrate Toxic

Agents; Ministry of Primary Industries: Wellington, New Zealand, 2021.
55. Ministry for Primary Industries. Maximum Residue Levels for Agricultural Compounds; Ministry for Primary Industries: Wellington,

New Zealand, 2021; p. 72.
56. Baietto, L.; Corcione, S.; Pacini, G.; Perri, G.D.; D’Avolio, A.; De Rosa, F.G. A 30-years review on pharmacokinetics of antibiotics:

Is the right time for pharmacogenetics? Curr. Drug Metab. 2014, 15, 581–598. [CrossRef] [PubMed]
57. Bonvin, F.; Omlin, J.; Rutler, R.; Schweizer, W.B.; Alaimo, P.J.; Strathmann, T.J.; McNeill, K.; Kohn, T. Direct Photolysis of Human

Metabolites of the Antibiotic Sulfamethoxazole: Evidence for Abiotic Back-Transformation. Environ. Sci. Technol. 2013, 47,
6746–6755. [CrossRef] [PubMed]

58. García-Galán, M.J.; Frömel, T.; Müller, J.; Peschka, M.; Knepper, T.; Díaz-Cruz, S.; Barceló, D. Biodegradation studies of
N4-acetylsulfapyridine and N4-acetylsulfamethazine in environmental water by applying mass spectrometry techniques.
Anal. Bioanal. Chem. 2012, 402, 2885–2896. [CrossRef]

59. Michael, I.; Rizzo, L.; McArdell, C.S.; Manaia, C.M.; Merlin, C.; Schwartz, T.; Dagot, C.; Fatta-Kassinos, D. Urban wastewater
treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Res. 2013, 47, 957–995. [CrossRef]
[PubMed]

60. Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The removal of pharmaceuticals, personal care products, endocrine disruptors
and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res. 2009, 43, 363–380.
[CrossRef] [PubMed]

61. Medsafe. Licensed Medicine Manufacturing Sites. 2022. Available online: https://www.medsafe.govt.nz/regulatory/licensed.
asp (accessed on 5 March 2022).

62. Larsson, D.G.J. Pollution from drug manufacturing: Review and perspectives. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2014,
369, 20130571. [CrossRef] [PubMed]

http://doi.org/10.1080/00480169.2016.1171736
http://www.ncbi.nlm.nih.gov/pubmed/27030313
http://doi.org/10.1016/j.envint.2017.10.016
http://doi.org/10.1289/ehp.1206446
http://doi.org/10.3389/fmicb.2020.01416
http://doi.org/10.3389/fmicb.2018.02666
http://doi.org/10.3389/fmicb.2019.00725
http://www.ncbi.nlm.nih.gov/pubmed/31057496
https://nzva.org.nz/resource/general/amr/
http://doi.org/10.1136/vr.i338
http://doi.org/10.1080/00480169.2016.1256794
http://www.ncbi.nlm.nih.gov/pubmed/27817245
https://www.dairynz.co.nz/animal/cow-health/mastitis/drying-off/antibiotic-use-on-dairy-farms/
https://www.dairynz.co.nz/animal/cow-health/mastitis/drying-off/antibiotic-use-on-dairy-farms/
http://doi.org/10.1080/00480169.2011.643733
http://www.ncbi.nlm.nih.gov/pubmed/22352928
http://doi.org/10.1111/raq.12344
http://doi.org/10.2174/1389200215666140605130935
http://www.ncbi.nlm.nih.gov/pubmed/24909419
http://doi.org/10.1021/es303777k
http://www.ncbi.nlm.nih.gov/pubmed/23186099
http://doi.org/10.1007/s00216-012-5751-y
http://doi.org/10.1016/j.watres.2012.11.027
http://www.ncbi.nlm.nih.gov/pubmed/23266388
http://doi.org/10.1016/j.watres.2008.10.047
http://www.ncbi.nlm.nih.gov/pubmed/19022470
https://www.medsafe.govt.nz/regulatory/licensed.asp
https://www.medsafe.govt.nz/regulatory/licensed.asp
http://doi.org/10.1098/rstb.2013.0571
http://www.ncbi.nlm.nih.gov/pubmed/25405961


Antibiotics 2022, 11, 778 22 of 26
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