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Abstract: In this work, we present metalenses (MLs) designed to enhance the luminous intensity of
incoherent light-emitting diodes (LEDs) within the detection angles of 0◦ and 10◦. The detection
angle of 0◦ refers to the center of the LED. Because the light emitted from LEDs is incoherent and
expressed as a surface light source, they are numerically described as a set of point sources and
calculated using incoherent summation. The titanium dioxide (TiO2) and amorphous silicon (a-Si)
nanohole meta-atoms are designed; however, the full 2π phase coverage is not reached. Nevertheless,
because the phase modulation at the edge of the ML is important, an ML is successfully designed. The
typical phase profile of the ML enhances the luminous intensity at the center, and the phase profile is
modified to increase the luminous intensity in the target detection angle region. Far field simulations
are conducted to calculate the luminous intensity after 25 m of propagation. We demonstrate an
enhancement of the luminous intensity at the center by 8551% and 2115% using TiO2 and a-Si
MLs, respectively. Meanwhile, the TiO2 and a-Si MLs with the modified phase profiles enhance the
luminous intensity within the detection angle of 10◦ by 263% and 30%, respectively.

Keywords: metalens; nanohole meta-atom; light-emitting diode; incoherent light source; surface
light source; far field propagation

1. Introduction

Optical metasurfaces are made up of precisely designed structures, known as meta-atoms,
that can modulate the phase [1,2], amplitude [3–5], and polarization [6,7] of incident light. Met-
alenses (MLs) [8–14], meta-holograms [13–27], structural color [28–31], light detection [32–38],
perfect absorber [39,40], and sensors [41–47] are typical applications of optical metasurfaces.
Recently, various improvements to MLs have been reported, such as achromatic MLs [48–50],
polarization-insensitive MLs [50,51], wide field-of-view MLs [52,53], large area MLs [54,55],
uses in augmented reality [55,56], tunable focal lengths [38,57–59], and fabrication using
nanoimprint technology [60,61]. Because MLs are thin and light, they are a potential can-
didate to completely replace conventional optical lenses, and also have the ability to be
combined with conventional bulk optical systems [62]. However, most reported MLs are
designed for coherent light sources.

Light-emitting diodes (LEDs) are commonly used as practical light sources [63]. However,
the luminous intensity from LEDs dramatically decreases as the light propagates due to
the emission of diverging spherical waves [64]. The intensity of light extraction efficiency
of LEDs has been enhanced using microlens arrays [65–67], surface roughening [68–71],

Nanomaterials 2022, 12, 153. https://doi.org/10.3390/nano12010153 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12010153
https://doi.org/10.3390/nano12010153
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0001-6479-6966
https://orcid.org/0000-0001-9458-6062
https://orcid.org/0000-0002-2179-2890
https://doi.org/10.3390/nano12010153
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12010153?type=check_update&version=3


Nanomaterials 2022, 12, 153 2 of 14

photonic crystal patterning [72,73], patterned substrates [74,75], and surface plasmons [76–78].
However, metasurfaces including MLs are difficult to use for LED sources, as the emitted
light is incoherent [79,80].

In this study, we numerically design an ML for LED sources. Because the light from
the LED is incoherent and is expressed as a surface light source, the LED is described as a
set of point sources and the numerical results are calculated using incoherent summation.
The ML enhances the luminous intensity within the detection angles of 0◦ (center of the
LED) and 10◦ by collimating the diverging light emitted from the LED. We target the
detection angle of 10◦ by considering the trade-off between the wide field-of-view and
long propagation distance [81]. The phase profile of the ML is modified to spread out the
transmitted light to the target detection angle.

2. Results and Discussion
2.1. Light Source Design for Simulation

The LEDs are described as numerous point sources with Lambertian intensity profiles
that are incoherently summed. Thus, the designed LED source is an incoherent, unpolarized,
surface light source. A 35 µm square LED source is used in this study. A micro-LED chip
can be considered as a point source [82]. Figure 1 shows the simulated results after 20 µm
of propagation with different numbers of points sources. The intensity profiles converge
as the number of points sources become 3 × 3. In addition, the optimized and required
chip size is at least 7 µm for typical display panels, including smartphones, laptops, and
televisions [83–85], so 5 × 5 and 7 × 7 micro-chips are not considered in this study. We
consider the LED source composed of 3 × 3 micro-LED chips, and the light source is
described by 3 × 3 points sources. Because the light emitted from the LED is partially
spatial-coherent, the phase of light originating from each point source is random and
therefore interference effects are ignored. The propagation results shown in Figure 1 are
obtained by adding only the amplitudes of the propagated light.

The Lambertian intensity profile is expressed as [86]

I(θ) = I0 cos θ (1)

where I is the intensity, θ is the propagation angle with respect to the optical axis, and I0
is the maximum intensity at θ = 0, respectively. To describe the Lambertian point source,
an interface between two different media is used (Figure S1). Because the transmittance
at the interface is dependent on θ, the intensity of the transmitted light also varies with θ.
When the distance between the point source and the interface is 40 nm and the refractive
indices of the media are 1 and 2, the intensity profile of the transmitted light is similar to a
Lambertian intensity profile, therefore allowing us to describe the single point source. The
LED source is then modeled as 3 × 3 point sources placed 40 nm away from the interface.
The schematics of the simulation is shown in Figure S2. Figure S3 shows the difference
when a single point source and 3 × 3 points sources are used. However, individual
simulations are done for each point source as the LED source is partially spatial-coherent,
and therefore interference must be neglected [87]. The final calculations result from the
incoherent summation of each individual simulation. The total number of simulations can
be reduced if the system is symmetrically designed, allowing some results to be obtained
by rotating other results. In addition, the partial temporal coherence of the LED source
provides a broad spectral bandwidth of emitted light [88]. The simulation results with both
narrowband and broadband sources provide similar results (Figure S4); therefore, the effect
of the partial temporal coherence is negligible and ignored.
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Figure 1. Simulated results after 20 µm of propagation with different numbers of points sources: (a)
1 × 1; (b) 3 × 3; (c) 5 × 5; (d) 7 × 7; (e) Intensity profiles. The results converge as the number of the
point sources becomes 3 × 3.
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In this work, the points sources are placed at the center of the 3 × 3 lattice (Figure S2b).
The effect of the relative locations of the sources is negligible in a 3 µm × 3 µm LED source,
as the 3 × 3 array of dipole sources provides a similar light emission to a single point source
of the same size [89].

2.2. Phase Profile of Metalens

The typical phase profile ϕt of an ML is expressed as [50]

ϕt(r, λ) = −2π

λ

(√
r2 + f 2 − f

)
(2)

where r, λ, and f are the radial coordinate, the wavelength, and the focal length, respectively.
Spherical waves from the LED source are transmitted through the ML and collimated.
However, the collimated light is concentrated at the propagation angle of 0◦, so the phase
profile is modified to enhance the luminous intensity within the detection angle of 10◦. The
modified phase profile ϕm is expressed as

ϕm(r, λ) = −2π

λ

(√r2 + f 2 − f
)
−

√r2 +

(
L

2m tan α

)2
− L

2m tan α

 (3)

where L is the length of the ML, m is the number of point sources that make up of the LED
source, and α is the detection angle. L is 35 µm, the same with the length of the LED source,
m is 3 because 3 × 3 points sources are used, and α is 10◦ in this study. Because the lengths
of the ML and the LED are identical, an ML array can be used to cover a large-area LED
composed of equally sized LED pixels. The phase profile from Equation (3) is obtained by
adding the phase profiles of the typical ML (Equation (2)) and a concave lens (Figure S5).
The second term of Equation (3) originates from the concave lens allowing the transmitted
light to spread out to the target detection angle region. Because the LED source is a surface
light source and is described as a set of the points sources, the designed ML is split into
the subsections one-to-one correspondence with the point sources and the phase profile
in each subsection is defined by Equation (2) or (3). The phase profiles at f = 10 µm and
λ = 560 nm are shown in Figure 2. The phase gradient of ϕm becomes smaller at the edge
of the ML than that of ϕt. Thus, when ϕm is used, the diverging light from the source is
steered less and spreads out to the target detection angle region.
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can be achieved using symmetrical meta-atoms such as circle and square holes (Figure S7). 
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ally used at visible frequencies due to their high refractive indices and low loss [93]. Gal-
lium nitride (GaN) has also been used at visible frequencies; however, a sapphire substrate 
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and a-Si are used in this study. The transmission properties of TiO2 nanohole meta-atoms 
with a height of 400 nm are investigated using rigorous coupled-wave analysis (RCWA) 
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Figure 2. The typical (black line) and modified (red line) phase profiles of the metalens (ML) at
f = 10 µm and λ = 560 nm.
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2.3. Nanohole Meta-Atom

Since LEDs emit unpolarized light, polarization-insensitive meta-atoms are designed.
In addition, nanohole meta-atoms are used instead of nanofins due to good adhesion
between the nanohole structure and the substrate when the high aspect ratio (above 1:5)
nanostructures are fabricated (Figure S6). Because the dense material is continuously
connected, the nanohole structure provides a high production yield. However, the nanofin
structure can be relatively easily destroyed during the etching or cleaning process. When
the optical axis of the system is parallel to the z-direction, the transmitted electric field
through the nanohole is expressed as [50,90–92][

Ex
Ey

]
=

tl + ts

2

[
1
±i

]
+

tl − ts

2
exp(±i2β)

[
1
∓i

]
(4)

where tl and ts are complex transmission coefficients when the incident light is polarized
along the long and short axis of the nanohole, respectively, and β is the rotation angle of
the nanohole with respect to the x-axis. The first and the second terms of Equation (4) are
known as the co- and cross-polarization terms, respectively, because the Jones vector of
each term shows that the polarization of the transmitted light is identical to the incident
light at the first term and is opposite the incident light at the second term. The polarization
dependence is caused by exp(±i2β) from the cross-polarization term. Therefore, the meta-
atoms are designed to have the same tl and ts to remove the cross-polarization term, which
can be achieved using symmetrical meta-atoms such as circle and square holes (Figure S7).

Titanium dioxide (TiO2) and amorphous silicon (a-Si) nanohole meta-atoms are usually
used at visible frequencies due to their high refractive indices and low loss [93]. Gallium
nitride (GaN) has also been used at visible frequencies; however, a sapphire substrate
is required and the sapphire substrate is less transparent than fused silica [49]. Thus,
TiO2 and a-Si are used in this study. The transmission properties of TiO2 nanohole meta-
atoms with a height of 400 nm are investigated using rigorous coupled-wave analysis
(RCWA) simulations (Figure 3) [94]. The designed meta-atoms work under the spherical
wave incidence even though they are designed by RCWA under the plane wave incidence
(Figure S8). The phase shown in Figure 3 does not satisfy the complete 2π coverage.
However, they can be used to construct an ML even though the meta-atom library does
not fully cover the phase from −π to π [54]. Meanwhile, the transmission properties of a-Si
nanohole meta-atoms with height of 600 nm are also calculated using RCWA simulations
(Figure 4). The fabrication process for a-Si meta atoms is relatively easier and is less
restrictive than that of TiO2 meta-atoms, so a-Si meta-atoms can be designed with higher
aspect ratios. Nevertheless, the phase depicted in Figure 4 does not cover the entire 2π range.
The averaged transmittance of a-Si meta-atoms is lower than that of TiO2 meta-atoms.
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Figure 3. Transmission properties of Titanium dioxide (TiO2) meta-atoms at λ = 560 nm: (a) Circle
nanohole meta-atoms; (b) Square nanohole meta-atoms. p = 400 nm and h = 400 nm.
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Figure 5 shows the phases of the designed TiO2 MLs. The phase profile at the center of
the lens is somewhat different from the desired phases. However, the θ of light at the center
is already below 10◦ (Figure 6) and is smaller than 10◦ at r < 1.76 µm. Thus, the transmitted
light can reach the target detection angle region regardless of the zero phase gradient at the
center. The MLs should steer the incident light at the edge to enhance the intensity within
the target detection angle of 10◦. Therefore, beam control at the edge is enough to construct
the MLs, and the phase modulation at the edge is important for these designs.
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Figure 6. Propagation angle of the emitted light from the light-emitting diode (LED) source. Because
the propagation angle at r < 1.76 µm is already below the target detection angle 10◦, the phase
modulation at the edge is enough to construct the MLs.

2.4. Far Field Propagation Simulation

The diverging spherical wave from the LED source passes through the ML and is able
to propagate to the far field as the ML collimates the transmitted light. The emitted light
from the LED source is at a distance f from the ML, then propagates for 25 m. The simulated
propagation results are shown in Figure 7. The luminous intensities are calculated. Each
ML enhances the luminous intensity at the center and the luminous intensity profile shows
the peak near the angle of 0◦. The peaks of the MLs with ϕt at the center are higher but
narrower than the MLs with ϕm regardless of the materials. Because the cross-sectional
intensity profiles shown in Figure 7 are radially symmetric, the intensity at large angles
are more dominant to enhance the total luminous intensity. Table 1 shows the luminous
intensities of the MLs with respect to the angle from 0◦ (center) to 10◦ (target detection
angle). The MLs with ϕm have larger luminous intensities, except at the angle of 0◦, than
that of the MLs with ϕt for both materials. In addition, full widths at half maximum of
the TiO2 MLs with ϕt and ϕm after 25 m of propagation are 1.22 and 1.45 m, respectively,
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and the full widths at half maximum of the a-Si MLs with ϕt and ϕm are 1.24, and 1.26 m,
respectively.
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Figure 7. Simulated results after 25 m propagation with respect to the propagation angle θ: (a) The
bare LED without any ML; (b) The TiO2 ML with the typical phase profile; (c) The TiO2 ML with
the modified phase profile; (d) The a-Si ML with the typical phase profile; (e) The a-Si ML with the
modified phase profile. The MLs with the modified phase profile provide lower but wider intensity
profiles than those of the MLs with the typical phase profile.

Table 1. Luminous intensity of MLs at different propagation angles θ. Unit: cd.

Propagation Angle (θ)

0◦ 2.5◦ 5◦ 7.5◦ 10◦

Without ML (bare LED) 0.1315 0.1301 0.1297 0.1290 0.1271

TiO2 ML with ϕt 11.37 1.107 0.1228 0.2157 0.05475

TiO2 ML with ϕm 6.668 1.562 0.7678 0.1265 0.1720

a-Si ML with ϕt 2.912 0.3451 0.1022 0.06574 0.08123

a-Si ML with ϕm 2.778 0.4787 0.1306 0.1454 0.03788

The MLs enhance the peak intensity by steering the direction of the transmitted light
but do not increase the light extraction efficiency of the LED. In addition, some portion
of light is reflected or absorbed by the MLs. Therefore, the enhancement of the luminous
intensity at the center implies that the intensity at the other areas decreases. The efficiencies
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of the MLs are shown in Figure 8 with respect to α. The efficiency is defined as the output
luminous intensity within α (Figure S9) divided by the luminous intensity of the LED
source. The TiO2 ML with ϕm has higher efficiencies within α = 10◦, 20◦, and 30◦ than those
of the bare LED, but the ML with ϕt has lower efficiency within α = 30◦. The luminous
intensity within α = 10◦ is enhanced by 234% and 263% compared with the LED source
when the TiO2 MLs with ϕt and ϕm are used, respectively (Table S1). Because the ML with
ϕm has the wide intensity peak profile, the ML has a higher luminous intensity within
α = 10◦ than that of the ML with ϕt despite the lower maximum luminous intensity at the
center. Meanwhile, the enhancement of the luminous intensity within α = 20◦ and 30◦ is
not significant, because the enhancement within α = 10◦ is a consequence of steering the
transmitted light from the other area to the target detection angle region. The a-Si ML with
ϕm provides the higher efficiencies within α = 10◦, 20◦, and 30◦ than those of the a-Si ML
with ϕt due to the wider intensity profile. However, the a-Si MLs enhance the efficiencies
slightly within α = 10◦ and have lower efficiencies within α = 20◦ and 30◦ due to the low
transmittance of a-Si meta-atoms.
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3. Conclusions

The MLs are designed to enhance the luminous intensity of incoherent LED sources
after 25 m of propagation within α = 0◦ and 10◦. The LED source is composed of 3 × 3
micro-chips and is designed as the set of 3 × 3 Lambertian point sources. The propagation
results are obtained by incoherently adding the simulation result with each single point
source. Polarization-insensitive nanohole meta-atoms are designed. Although the phase
profiles of the designed MLs do not match with the required phases at the center, the
emitted light from the LED source at the center already propagates in the target detection
angle region, so the phase modulation at the edge of the MLs is important in this study.
When the TiO2 and a-Si MLs with ϕt are used, the luminous intensity at the center is
enhanced by 8551% and 2115%, respectively. Meanwhile, the TiO2 and a-Si MLs with ϕm
enhance the luminous intensity within α = 10◦ by 263% and 30%, respectively. Because
the TiO2 meta-atoms have higher transmittance than that of a-Si, the TiO2 ML shows the
higher enhancement. Meanwhile, the efficiency enhancement within α = 20◦ or 30◦ is not
significant because the ML cannot increase the light extraction efficiency of the LED source
and the enhancement within α = 0◦ or 10◦ is a consequence of steering the transmitted light.
Therefore, the emitted light from the LED source can be delivered over a long distance
using the ML, proving that it can be employed for various practical applications using
LEDs, including the automotive headlights, display panels and so on.
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4. Methods

Commercially available Lumerical FDTD and VirtualLab Fusion were used for the
far field simulations. The electric field transmitted through the ML was calculated using
Lumerical FDTD. Then the electric field data were imported to VirtualLab Fusion and used
as the source for the far field propagation. Finally, the simulated far field propagation
results from each individual point source were incoherently summed up.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano12010153/s1, Figure S1: Description of a point source with Lambertian intensity profile:
(a) Schematics; (b) The Lambertian (black line) and simulated (red line) intensity profiles; Figure
S2: Schematics of the simulation in this work: (a) The simulation from the LED source to the
monitor is carried out using Lumerical FDTD. The far field simulation from the monitor to the
detector is conducted using VirtualLab Fusion; (b) Distribution of the 3 × 3 points sources; Figure
S3: Comparisons of the simulated results calculated from a single point source and 3 × 3 points
sources; Figure S4: Comparisons of the simulated results with a narrowband source at λ = 560
nm and broadband source at 500 ≤ λ ≤ 620 nm; Figure S5: Description of the effect of the ML
with ϕm explained by geometrical optics; Figure S6: Good adhesion of nanohole meta-atoms: (a)
a-Si nanostructure composed of nanofin meta-atoms; (b) a-Si nanostructure composed of nanohole
meta-atoms. Scale bar: 1 µm; Figure S7. Comparison of tl (solid line) and ts (circle dot) of TiO2
meta-atoms: (a) Circle nanohole meta-atoms; (b) Square nanohole meta-atoms; Figure S8: Simulation
result of the collimation using the TiO2 ML with ϕt. The focal length is 3 µm. The phase is plotted
instead of the intensity, because the intensity at the point source is extremely larger than that at the
other area; Figure S9: Measurement of the intensity within a detection angle of α. α = 0◦ or 10◦ and l =
25 m; Table S1: Comparison of enhancement of intensity from LED sources of the previously reported
results.
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