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Understanding the interplay between climate and land-use dynamics is a fundamental concern for
assessing the vulnerability of Amazonia to climate change. In this study, we analyse satellite-derived
monthly and annual time series of rainfall, fires and deforestation to explicitly quantify the seasonal
patterns and relationships between these three variables, with a particular focus on the Amazonian
drought of 2005. Our results demonstrate a marked seasonality with one peak per year for all
variables analysed, except deforestation. For the annual cycle, we found correlations above 90% with
a time lag between variables. Deforestation and fires reach the highest values three and six months,
respectively, after the peak of the rainy season. The cumulative number of hot pixels was linearly
related to the size of the area deforested annually from 1998 to 2004 (r 2Z0.84, pZ0.004). During
the 2005 drought, the number of hot pixels increased 43% in relation to the expected value for a
similar deforested area (approx. 19 000 km2). We demonstrated that anthropogenic forcing, such as
land-use change, is decisive in determining the seasonality and annual patterns of fire occurrence.
Moreover, droughts can significantly increase the number of fires in the region even with decreased
deforestation rates. We may expect that the ongoing deforestation, currently based on slash and burn
procedures, and the use of fires for land management in Amazonia will intensify the impact of
droughts associated with natural climate variability or human-induced climate change and, therefore,
a large area of forest edge will be under increased risk of fires.
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1. INTRODUCTION
There is a growing concern about the impacts of

climate change on the stability of ecological processes

in Amazonia, the resulting feedbacks from the local to

the global circulation system and the ensuing con-

sequences on plant, animal and human populations.

Some global circulation models suggest that Amazonia

may be vulnerable to extreme drying in response to

circulation shifts induced by global warming (Li et al.
2006), possibly leading to a dieback of tropical

rainforest with potential acceleration of global warming

(Cox et al. 2004).

Amazonian droughts have been strongly related to

El Niño events, such as in 1982/1983, 1986/1987 and

1997/1998 (Marengo 1992; Uvo et al. 1998; Ronchail

et al. 2002; Marengo 2004) and more recently to the

tropical Atlantic sea surface temperature (SST)

anomalies associated with the Atlantic Multidecadal

Oscillation (Li et al. 2006; Good et al. 2008; Marengo

et al. in press). The increase of the tropical Atlantic
tribution of 27 to a Theme Issue ‘Climate change and the
he Amazon’.

r for correspondence (leocaragao@gmail.com).

1779

an open-access article distributed under the terms of the Creat
ion, and reproduction in any medium, provided the original wor
SST alone has been implicated as a causal factor of the

severe drought that affected Amazonia in 2005

(Marengo et al. in press).

The impacts of reducing rainfall over Amazonia are

likely to be exacerbated by the synergic interactions

among other anthropogenic forcing factors such as

deforestation and fires (Cochrane & Laurance 2002;

Hutyra et al. 2005). Positive feedbacks among deforesta-

tion, fires and drought have been previously reported

(e.g. Cochrane et al. 1999; Laurance & Williamson
2001). Drought alone is reported to reduce tree growth,

increase tree mortality (particularly in forest edges) and

increase leaf shedding. This process leads to the increase

of canopy openness and understorey insolation with

consequent drying of the accumulated litter. When these

conditions are combined with intense forest degradation

through edge effects and logging, the risk of forest fires

can increase dramatically in Amazonia (Uhl & Kauffman

1990; Cochrane & Schulze 1999; Cochrane et al. 1999;

Laurance & Williamson 2001; Barlow & Peres 2004;

Nepstad et al. 2004).On the other hand, large-scale forest

conversion (Nobre et al. 1991; Laurance & Williamson

2001; Laurance et al. 2002; Silva Dias et al. 2005; Costa

et al. 2007) and the smoke from fires (Rosenfeld 1999;

Ackerman et al. 2000; Artaxo et al. 2005) may promote
This journal is q 2008 The Royal Society
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a reduction in rainfall over these areas. This chain of
events generates a positive feedback loop that increases
the vulnerability of Amazonia to climate change.

In this study, we focus on Brazilian Amazonia where
data are readily available. Here we used satellite-derived
time series of rainfall, fires and deforestation to explicitly
quantify the seasonal patterns of these three variables and
their relationships, with a particular focus on the 2005
Amazonian drought. In addition, we investigate how
rainfall and deforestation influence fire dynamics at the
monthly and annual time scales. Finally, we discuss how
climate variability and the occurrence of droughts,
deforestation and fires can potentially increase the
vulnerability of Amazonia to climate change.
2. MATERIAL AND METHODS
(a) Rainfall, fire and deforestation datasets

We used a time series ( January 1998–December 2006) of

cumulative monthly precipitation (mm per month) derived

from the tropical rainfall measuring mission data (TRMM

3B43-v6) at 0.258 spatial resolution (NASA 2006). The

validation of this dataset showed that TRMM product

captures the rainfall patterns of the Amazonian region

accurately (Aragão et al. 2007).

The INPE-DETER (Detection of Deforested Areas in Real

Time) dataset (INPE 2006a) was used to quantify the

cumulative monthly area (km2) of deforested polygons

(April 2004–October 2005 and March 2006–September

2006). Deforestation values for four missing months

(November 2005–February 2006) were estimated using

proportional values between the subsequent months in the

previous year. In addition, the time series (1998–2005) of

annual cumulative deforested area was obtained from the

INPE-PRODES (Assessment of Deforestation in Brazilian

Amazonia) dataset (INPE 2005).

Hot pixel counts were derived from daily, 1 km spatial

resolution, NOAA-12 (National Oceanic and Atmospheric

Administration) database from the Brazilian Institute for

Space Research (INPE) Queimadas project (mid-1998–2005;

INPE 2006b). Hot pixels are indicators of fires and may well

underestimate their occurrence owing to clouds and forest

canopy cover, but hot pixel counts do allow the evaluation of

patterns over time.

(b) Data analysis

We extracted from the remote-sensing surfaces the monthly

cumulative values of the area of deforested polygons and

the number of hot pixels as well as the average rainfall

within the limits of the Brazilian Legal Amazonia (approx.

4 000 000 km2). This region includes the states of Amazonas,

Acre, Rondônia, Roraima, Mato Grosso, Pará, Amapá,

Maranhão and Tocantins.

We analysed the behaviour of the monthly rainfall,

deforested area and hot pixels through time to identify possible

seasonality in the data. As an additional support for the

interpretation of these data, we generated four maps showing

first the total cumulative deforestation in Amazonia, based on

INPE-DETER data, and subsequently the hot pixels and

counts in 2005 for each one of the three land cover classes

defined in the deforestation map. Time serieswere analysed and

compared using (cross)-spectral analysis (Priestley 1981;

Diggle 1989). This well-established approach extends the

power spectra methodology to the comparison of pairs of time

series. The values in a power spectrum, computed as the

squared amplitude of the Fourier transform of the signal,
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correspond to the breaking down of the signal’s variance into

frequency bins. In other words, the relative strength of a

periodic component of a given frequency in the signal is given by

the power spectrumvalue at that frequency. Fora pair of signals,

one can equivalently compute a combined power spectrum (or

cross-spectrum), which allows exploring shared periodicities

(cycles yrK1) between the two signals. In this case, it is the

covariancebetweensignals,which canbe investigated at specific

temporal scales (frequencies). The resulting cross-spectrum

can be analysed in terms of amplitude and phase. The

coherence spectrum, which is the amplitude normalized

between 0 and 1, can be interpreted as a Pearson product–

moment correlation coefficient between series, computed for

each frequency. The phase spectrum indicates the phase lag

between signals. A strong coherence for a specific temporal

frequency, combined with a null phase shift, indicates a positive

correlation while a phase shift of p corresponds to a negative

correlation. Variance estimates can be computed for both

coherence and phase spectra (Diggle 1989), to allow building

pointwise CIs for these estimates.

After identifying the connections among the variables,

we conducted a regression analysis using the monthly and

annual data to explore the shape of the relationship between

the variables.
3. RESULTS AND DISCUSSION
(a) Seasonality of rainfall, fire and deforestation

and their relationships

Results presented in figure 1 show that rainfall,
deforestation and hot pixels have a marked annual
periodicity. Our analysis indicates that, on average, the
dry season (rainfall below 100 mm per month, based
on Aragão et al. 2007) persists from July to September
for most of the years analysed, excepting 2005, when
the dry season started in June (figure 1a), in association
with the drought that struck the basin in this year. Both
deforestation and hot pixels peaked during the dry
season in Amazonia. The major peak of deforestation is
observed in May (figure 1b) while the peak of hot pixels
coincides with the months of lowest rainfall, August
and September (figure 1c).

The seasonal signal of fires observed here can be
decomposed into three distinct types: (i) areas that have
beendeforestedand then burnt in the sameyear, (ii) areas
that have been deforested in previous years and then
burnt later, and (iii) fires in natural vegetation and other
non-forest areas that are not included in the INPE
dataset. To investigate the relative contribution of each of
these categories to the total number of hot pixels
observed, the 2005 map of hot pixels was overlaid on
the deforestation map derived from INPE-DETER data
and subdivided into land cover classes (figure 2).

Our results demonstrate that fires in deforested
areas contributed to 60% of the total number of hot
pixel detections in 2005. Of the remaining 40% of
detections, 28% occurred in forests and 12% in areas
considered as non-forest in the INPE land cover
classification. The hot pixels in areas deforested
during 2005 and until 2004 contributed to 8 and
92%, respectively, of the total number of detections
in deforested areas. On the other hand, the large
percentage of hot pixels detected in forests during 2005
was associated with the leakage of fires from the
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Figure 1. Monthly time series of (a) mean rainfall (mm) derived from the TRMM dataset ( January 1998–December 2006),
(b) cumulative deforested area (km2) from the INPE-DETER dataset (April 2004–September 2006) and (c) cumulative number
of hot pixel detections from NOAA-12 dataset (May 1998–December 2006) within the limits of the Brazilian Legal Amazonia.
Dashed lines in (a) correspond to the s.d. of the mean monthly rainfall (nZ6705 pixels). Grey bars indicate the dry season length
for each year (months with rainfall below 100 mm monthK1).
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deforested areas to surrounding drought-stressed forest
edges (Aragão et al. 2007).

The spectral analysis of the monthly data stressed a
clear seasonal variation in all time series analysed
(figure 3a–c), as all power spectra showed a peak for a
frequency of one cycle yrK1. Deforestation, however, is
dominated by another peak at two cycles yrK1.

The coherence spectra (figure 3d– f ) showed that
the correlation among all time series was higher than
90% for an annual periodicity (i.e. one cycle yrK1).
Focusing on the coherent annual frequency (high-
lighted by an arrow in figure 3g– i ), the phase spectrum
showed a phase shift of approximately p/2 for the
relation between hot pixels and deforestation, meaning
that deforestation led the presence of hot pixels by
approximately three months (note that at one cycle yrK1,
2p, p and p/2 are equivalent to 12, 6 and 3 months time
lag, respectively). Similarly, the relationship between
rainfall and deforestation had a phase shift
of approximately p/2, which indicates that the peak of
rainfall precedes the deforestation peak by three
months; however, the second deforestation peak high-
lighted in the power spectra coincides with the peak of
the dry season. Finally, the comparison between
rainfall and hot pixels revealed, as expected, that
rainfall was negatively correlated (phase shift of p)
with the number of hot pixels. Therefore, the peak of
hot pixel detections matches the peak of the dry season
in Amazonia without time lag.
Phil. Trans. R. Soc. B (2008)
These results elucidated the interaction between
climate and land-use practices, describing the timing of
slash and burn activities in the Brazilian Amazonia. In
summary, approximately three months after the peak of
the rainy season, deforestation reaches its highest
annual values. In this case, there is a prognostic action
in relation to the peak of the dry season, giving time for
the fallen wood to dry until the driest month. After-
wards, during the peak of dry season (minimum rainfall
values), farmers set fire to the dry material on the
ground and hot pixel values reach their maximum.
(b) Influence of monthly and annual rainfall

and deforestation on fire dynamics

At the monthly time scale, deforested area increases
exponentially with the decrease of rainfall assuming the
three-month lag defined in the spectral analysis
(r 2Z0.74, equation (3.1); figure S1 in the electronic
supplementary material).

deforestation Z 4116:55 expK0:01!rain: ð3:1Þ

This means that the higher rate of deforestation in
April/May is strongly related to the rainfall in June/July,
which is the beginning of the dry season in most of the
Brazilian Amazonia. Besides this, hot pixel detections
tended to increase exponentially with the decrease of
rainfall (r 2Z0.60, equation (3.2); figure S1 in the
electronic supplementary material)

hot pixels Z 63588:21 expK0:02!rain: ð3:2Þ
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Figure 2. Maps of the Brazilian Amazonia showing (a) the total cumulative deforested area based on the INPE-DETER dataset
until 2004 (yellow) and in 2005 (red), and the annual cumulative number of hot pixel detections in 2005 from NOAA-12 dataset
over (b) areas deforested until 2004, (c) areas deforested in 2005 and (d ) forested areas in 2005.
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Conversely, we did not find a strong relationship
between hot pixels and deforested area at the monthly
time scale.

Despite the fact that deforestation may not be a
major predictor of hot pixel counts, either spatially
(Cardoso et al. 2003) or temporally at a monthly scale,
we found a strong linear relationship (r 2Z0.84,
pZ0.004, equation (3.3)) between the annual cumu-
lative number of hot pixels and the size of the area
deforested annually from 1998 to 2004

hot pixels Z 8:50!deforestationK69570:59: ð3:3Þ

We attributed the linear trend observed between hot
pixels and deforestation from 1998 to 2004 to the
expansion of pastures for cattle ranching and large
areas of mechanized agriculture (Morton et al. 2006) in
the southern part of Brazilian Amazonia. The expan-
sion of mechanized agriculture was mainly driven by
the area planted by soya bean crops in Amazonia that
increased from 1!106 ha in 1990 to 7!106 ha
in 2005, with an expansion rate of 17% yrK1 from
2000 to 2005 (Costa et al. 2007). However, during the
2005 drought, the effect of rainfall deficit overtook
the influence of land-use change on hot pixel
dynamics (figure 4).
Phil. Trans. R. Soc. B (2008)
(c) Interactions between land-use and climate

change and the vulnerability of Amazonia

In the last decade Amazonia experienced two droughts,

in 1997/1998 and 2005. Both droughts caused

significant rainfall anomalies and hydrological stress,

significantly increasing the number of fires detected

over this region (Aragão et al. 2007). The areas affected

by fires are expected to become more vulnerable to

recurrent fires (Uhl & Kauffman 1990; Cochrane &

Schulze 1999; Nepstad et al. 1999).

The interaction between land-use and climate

change is likely to generate a positive feedback (e.g.

Cochrane et al. 1999), increasing the vulnerability of

Amazonia to climate change, and have significant

effects on the global carbon cycle. For example, the

estimated global flux of CO2 to the atmosphere from

land-use change was 1.6 (0.5–2.7) Pg C yrK1 for the

1990s, 22% of total anthropogenic emissions (Denman

et al. 2007). The Brazilian Amazon alone might yield a

net flux of carbon from the biosphere to the atmosphere

of 0.1–0.4 Pg C yrK1, due to land-use change

(Houghton et al. 2000). This is equivalent to 6–25%

of the total carbon emissions from land-use changes.

These emissions can overtake the sink of carbon
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PRODES dataset (nZ7, pZ0.004). It shows the linear fit,
indicated by the grey arrow and the coefficient of determina-
tion (r 2). Note that 2005 is not included in the regression due
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calculated for the undisturbed ecosystems in this region
(Nepstad et al. 1999; Barlow & Peres 2004; Malhi &
Phillips 2004; Phillips et al. 2008).

The effect of deforestation on fire impacts is likely to
be exacerbated by drought events, which may become
more frequent under some climate change scenarios
(Timmermann 1999; Cox et al. 2004; Li et al. 2008).
Based on the relationship found between deforested
area and hot pixels (figure 4, equation (3.3)), we
investigated the impact of drought and deforestation on
fire patterns, not considering any political and
economical variables that may influence fire dynamics
in the region. We estimated that during the 2005
drought, the number of hot pixels (160 464 detections)
were 43% higher than the expected value for a similar
deforested area (approx. 19 000 km2). Using equation
(3.3), we calculated the expected values under ‘normal’
and ‘dry’ conditions to estimate the impact of drought
with increased deforestation on hot pixel counts. We
found that the rate of hot pixel detection per kilometre
square of deforested area annually would double under
conditions similar to the 2005 drought. Moreover, the
difference between the number of hot pixels in normal
and dry conditions increases linearly with the increase
of deforested area at a rate of 6.3 detections per
kilometre square of deforested area annually (figure S2
in the electronic supplementary material). Based on
these estimations, one can anticipate that the increased
rate of hot pixel counts under drought conditions is
likely to increase the area of forests affected by fires and
Phil. Trans. R. Soc. B (2008)
consequently lead to the increase of CO2 emissions to
the atmosphere due to biomass burning.
4. CONCLUSIONS
Our results stress a clear seasonality and synergic
interaction between climate, deforestation and fires.
We demonstrated here that anthropogenic forcing,
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such as land-use changes, is decisive in determining the

seasonality and the annual patterns of fire occurrence.

Moreover, drought events can increase significantly the

number of fires in the region even with decreased

deforestation rates. We may expect that the ongoing

deforestation, currently based on slash and burn

procedures, and the use of fires for land management

in Amazonia will intensify the impact of droughts

associated with natural climate variability or human-

induced climate change, and therefore a large area of

forest edges will be under increased risk of fire.

The impacts of fires on the Amazonian region could

be reduced with the support of governments, since fires

here are mainly induced by human activities and could

be avoided and/or diminished by: the introduction of

fire-free land management techniques; reinforcement

of monitoring, controlling and application of the

current Brazilian legislation to illegal fires; creation of

protected areas (Nepstad et al. 2006); and environ-

mental education programmes.

Some initiatives, such as the creation of the

Extractive Reserves statutes, the Pilot Program to

Conserve the Brazilian Rain Forest (PPG7), and

Ecological–Economic Zoning (ZEE) project have

been implemented in Brazil in attempts to approach

the ideas of sustainable development and territorial

planning in Amazonia (Alves 2008). On a smaller scale,

the project ‘Roça sem Queimar’, meaning farming

without the use of fires, led by a non-governmental

organization in association with local farmers, is a

pioneering experience that has been used as an

alternative to the traditional slash and burn process in

some Amazonian municipalities in the Xingu region

(Silva et al. 2006).

Mechanized agriculture and crop plantations are not

normally accompanied by subsequent fires (Eva &

Lambin 2000), which can potentially reduce the risk of

forest fires in Amazonia. Despite its negative ecological

implications, this would be an important factor to be

considered once the ZEE of the Amazonian region has

been well stabilized. However, it is important to bear in

mind that burning practices are common for some

crops, such as sugar cane, which is largely used for

biofuel production in Brazil.

Ultimately, this study showed that the time series

used, including monthly deforestation data, provides a

high temporal-resolution description of the interactions

between land-use dynamics and climate. This infor-

mation must be included in the current models for better

understanding of the impact of climate change in the

Amazonian ecosystems. However, intensive measure-

ments of the carbon dynamics at fire-affected forests and

the accurate mapping of the area and damage degree of

burnt forests are still required for the total quantification

of carbon emissions from fires in this region.

The data used in this study were acquired as part of the
TRMM project jointly sponsored by Japan’s National Space
Development Agency (NASDA) and the US National
Aeronautics and Space Administration (NASA) Office of
Earth Sciences. We thank the INPE PRODES, DETER and
Queimadas programs for making their data and images freely
available. This work was supported by a Natural Environ-
ment Research Council Urgency grant (NE/D01025X/1).
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