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Leptin is a polypeptide hormone produced in the adipose tissue and governs many processes in the body. Recently,
polymorphisms in the LEP gene revealed a significant change in body weight regulation, energy balance, food intake, and
reproductive hormone secretion. This study considers its crucial role in the regulation of the economically important traits of
sheep. Several computational tools, including SIFT, Predict SNP2, SNAP2, and PROVEAN, have been used to screen out the
deleterious nsSNPs. Following the screening of 11 nsSNPs in the sheep genome, 5 nsSNPs, T86M (C→T), D98N (G→A),
N136T (A→C), R142Q (G→A), and P157Q (C→A), were predicted to have a significant deleterious effect on the LEP
protein function, leading to phenotypic difference. The analysis of proteins’ stability change due to amino acid substitution
using the I-stable, SDM, and DynaMut consistently confirmed that three nsSNPs (T86M (C→T), D98N (G→A), and P157Q
(C→A)) increased protein stability. It is suggested that these three nsSNPs may enhance the evolvability of LEP protein,
which is vital for the evolutionary adaptation of sheep. Our findings demonstrate that the five nsSNPs reported in this study
might be responsible for sheep’s structural and functional modifications of LEP protein. This is the first comprehensive report
on the sheep LEP gene. It narrow downs the candidate nsSNPs for in vitro experiments to facilitate the development of reliable
molecular markers for associated traits.

1. Introductions

Leptin is one of the major hormones secreted by adipocytes.
It is the primary function of regulating homeostatic control
of energy balance, metabolism, neuroendocrine system,
and other functions through its effects on the central ner-
vous system [1, 2].

The short negative feedback maintains the body leptin
proportion through pituitary cells, or via the long feedback per-
formed by neurosecretory cells, interacting with corresponding
receptors in the hypothalamus (paraventricular, lateral, ventro-
medial, and dorsomedial nuclei), leads to repression of orexi-
genic peptide production and stimulation of anorexigenic

factors [3]. Then, the brain regulates the balance of energy
expenditure from the body and the amount of energy stored
in the body of the organism [4]. Usually, blood leptin levels
are proportionate to the mass of adipose tissue, so the fatter
individuals have, the more leptin they have circulating in their
blood. Nonetheless, people and animals with a higher level of
adipose tissue seldom show leptin synthesis or leptin produc-
tion [5]. The reduction in the hormone’s effectiveness may be
associated with a fault in drawing hormonal signals or the
ability of leptin to penetrate the blood-brain barrier, resulting
in leptin resistance [6]. In turn, leptin deficiency or polymor-
phisms in the leptin pathways increase appetite and energy
intake, ultimately leading to obesity [7].
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Single nucleotide polymorphisms are essential and the
most common types of mutations associated with complex
traits [8]. In particular, the missense mutations located in
the coding region, which alter the amino acid configuration,
may cause a significant change in the structure and function
of the native protein [9]. In vitro, functional comparison of
mutated proteins with their corresponding wild-type pro-
teins associated with specific traits of animals is a common
practice that enables us to identify the impact of each nsSNP
in the corresponding protein [10, 11]. However, the experi-
mental design for each mutational change is laborious and
time-consuming. Therefore, it is reasonable and economical
to carry out the basic work required for mutation data min-
ing and predict its effect on protein properties through com-
putational analysis (Nailwal and Chauhan, 2017). Screening
out the deleterious nsSNPs with a significant consequence
on phenotype from the tolerant nsSNPs (without phenotypic
changes) has a pivotal role in understanding the molecular
basis of the polygenetic traits in sheep. Therefore, consider-
ing the role played by the LEP gene in regulating body weight,
energy balance, and feed intake traits in sheep, we retrieved all
of the mutations found in sheep LEP gene deposited in the
Ensembl sheep genome browser until March 2022. The objec-
tive of this study was to characterize the potential variations in
the ovine LEP gene using in silico analysis.

2. Materials and Methods

We used various computational tools to screen out the func-
tional effects of the nsSNPs in the LEP gene. Details of each
bioinformatics tool are presented below and summarized in
Figure 1.

2.1. Collecting SNPs and Protein’s Sequence from the
Databases. Sheep leptin (LEP) gene SNPs were collected
from the Ovis aries Ensembl genome browser 106 (https://
uswest.ensembl.org/Ovis_aries/Info/Index) [12]. The tran-
script sequence and the protein encoded by the sheep LEP
gene were retrieved from the Ensemble database (https://
ensembl.org/) [13]. Then, the UniProt ID for the amino acid
(UniProtKB - W5NWK7) was obtained from UniProt Pro-
tein Database (http://www.uniprot.org).

2.2. Nonsynonymous SNP Functional Analysis for LEP. Four
tools, SIFT, PredictSNP2, PROVEAN, and SNAP2, were
used to predict the practical context of missense mutations
in the LEP gene.

Firstly, the amino acid substitutions that affect protein
structure and function lead to phenotypic changes were
screened by SIFT (Sorting Intolerant From Tolerant; http://
sift.jcvi.org/) tool [14]. The identification numbers (rsIDs)
of each nsSNP of the LEP gene obtained from Ensembl were
submitted as a query to SIFT for homology searching.
Results were obtained as SIFT scores which were classified as
damaging (0.00–0.05), potentially damaging (0.051–0.10),
borderline (0.101–0.20), or tolerant (0.201–1.00) [15]. Then,
PredictSNP2 (http://loschmidt.chemi.muni.cz/predictsnp2)
was used to identify the deleterious nsSNPs. PredictSNP2 is
a consensus classifier for predicting the effect of amino

acid substitutions based on the output of eight different
amino acid-based predictors http://loschmidt.chemi.muni
.cz/predictsnp [16].

PROVEAN (Protein Variation Effect Analyzer: http://
provean.jcvi.org/index.php) is used to predict the level of
impact on protein structure and biological function. A protein
FASTA sequence with amino acid alterations is used as the
input query. It classifies nsSNPs as deleterious or neutral based
on whether the final score falls below a threshold of −2.5.
Scores over this threshold are considered neutral [17].

SNAP2 predicts the functional impact of mutations [18].
SNAP2 predicts the functional impact of mutations
(Turkson, 2004). SNAP2 is a taught classifier based on the
“neural network” machine learning device. It uses a number
of sequence and variant properties to discriminate between
effect and neutral variants/nonsynonymous SNPs. The
SNAP2 achieved sustained two-state accuracy (effect/neutral)
of 82 percent in cross-validation across 100,000 experimen-
tally annotated variations (at an AUC of 0.9). In other words,
this represents a major improvement over existing methods
[19] (the website https://rostlab.org/services/snap2web/ is
where you may find it).

2.3. Analysis of Protein’s Stability Change upon Amino Acid
Substitution. Protein evolution is mainly governed by pro-
tein stability [20]. After folding, we analyzed the relationship
between LEP mutations and protein stability based on a
smaller free energy change (ΔG or dG). In contrast, the dif-
ference in folding free energy change between wild-type and
mutant protein (ΔΔG or ddG) is often considered an impact
factor on protein stability changes [21]. The protein structure
stability and the molecular and structural effects of protein-
coding variants were predicted using the integrated predictor
for protein stability change upon a single mutation called
iStable (http://predictor.nchu.edu.tw/iStable) [22]. Further-
more, the change in protein stability upon mutation was esti-
mated using a site-directed mutator (SDM) (http://marid.bioc
.cam.ac.uk/sdm2/prediction) a server [23]. Finally, the Dyna-
Mut (http://biosig.unimelb.edu.au/dynamut/) was used to ver-
ify the impact of mutations on protein conformation,
flexibility, and stability and to visualize the protein dynam-
ics [24].

2.4. Structural Conformation and Conservation Analysis of
LEP. Highly conserved functional regions of the protein
coded by the LEP gene was identified by ConSurf tool
(http://consurf.tau.ac.il/) [25–27].

2.5. Prediction of Secondary Structure. The secondary struc-
ture of LEP was predicted using the PSIPRED server avail-
able at (http://bioinf.cs.ucl.ac.uk/psipred/) [28]. It is based
on a two-stage neural network with the implementation of
position-specific scoring matrices constructed from PSI-
BLAST to predict the available secondary structures of a
protein [29].

2.6. Homology Modelling. The 3D structures of the protein
encoded by LEP were constructed using four different
homology modeling tools. No crystal structure with an
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appropriate length of this protein was available in the pro-
tein data bank.

2.6.1. Homology Modelling by Swiss-Model Server. Swiss-
Model workplace available at (https://swissmodel.expasy
.org/), a web-based tool for the homology modeling of
protein, was used to avail the three-dimensional structure of
LEP [30, 31]. The CAMEO system calculates the accuracy of
the constructed model. Swiss-Model is an automated tool
based on evolutionary information which searches for the best
sequence-template alignment from its high-throughput tem-
plate library (SMTL) to build the model [32].

2.6.2. Homology Modelling by Phyre-2 Server. Phyre-2 tool
(http://www.sbg.bio.ic.ac.uk/phyre2/), based on the Hidden
Markov method, was used to predict the homology-based
three-dimensional structure of the query amino acid sequence.
It combines five steps to build a model: (1) collecting homolo-
gous sequence, (2) screening of fold library, (3) loop model-
ling, (4) multiple template modeling by ab initio folding
simulation Poing, and (5) side chain placement [33, 34].

2.6.3. Homology Modeling by RaptorX Server. RaptorX server
available at (http://raptorx.uchicago.edu/StructurePrediction/
predict/), using RaptorX-Boost and RaptorX-MSA to con-
struct the three-dimensional structure of a protein, predicted
the 3D model of the protein coded by CDKN1A. It combines
a nonlinear scoring function and a probabilistic consistency
algorithm to predict the model structure [35].

2.6.4. Verification of Three-Dimensional Model of Protein.
RAMPAGE Ramachandran plot analysis was used for the
verification of 3D structures. It provides the number of res-
idues in the favored, allowed, and outlier regions [36]. If a
good proportion of residues lie in the favored and allowed
region, then the model is predicted to be good.

3. Results

3.1. Data Mining. Data mining of the sheep genome browser
from Ensembl database on March 12, 2022, revealed 543
SNPs of the LEP gene in sheep, of which 11 were missense
mutations. Detailed information about these SNPs is shown
in Table 1.

3.2. Nonsynonymous SNPs Functional Analysis for LEP. Out
of the 11 nsSNPs subjected to SIFT tool to predict their
impact level on the LEP protein function as deleterious or
tolerated, the nine nsSNPs have shown a damaging effect
with an average prediction score of 0.00–0.02, and the
remaining two nsSNPs were tolerant (T86M and R196Q)
Table 2.

PredictSNP2 further evaluated all the 11nsSNPs, includ-
ing the nine predicted as deleterious by SIFT. The Pre-
dictSNP2 is a consensus classifier tool for predicting the
effect of amino acid substitutions based on the output of
eight computational prediction tools. The PredictSNP2 tool
prediction outcomes revealed that eight nsSNPs were pre-
dicted as deleterious (Table S1). The SNAP2 was used to
confirm further the sequence variants’ anticipated effects
on the LEP protein function.

3.3. Mutant Protein Stability Prediction for LEP. The iStable
Meta server tool demonstrated that the amino acid changes
in R2C, L35P, D98N, N136T, R142Q, P157Q, V181L, and
R196Q cause loss and decreased stability of the LEP protein.
However, the other three mutations (T75M, T86M, and
V94I) increase the protein stability Table 3. These results
were cross-checked with a site-directed mutator (SDM),
and DynaMut servers found that eight nsSNPs significantly
change the stability compared to the wild-type proteins.

Double-checking with site-directed mutator (SDM) and
DynaMut servers consistently verified the molecular

Yes Yes

Select the most
deleterious nsSNPs

Ramachandra plot
analysis

Homology modelingLEP SNPs
collection

Functional analysis
of nsSNPs

Stability analysis of
nsSNPs

Computational analysis of LEP gene

Structural analysis

SIFT, predict SNP2,
PROVEAN & SNAP2

11 nsSNPs Suitable candidate?

IStable, SDM, &
dynamut

Figure 1: Diagrammatic representation of computational tools used for the analysis of LEP gene.
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consequences of 5 nsSNPs. Out of these, three nsSNPs
(T86M, D98N, and P157Q) increased stability by decreasing
the molecular flexibility of the wild-type proteins. However,
the other two nsSNPs (N136T and R142Q) revealed a
decrease in stability and molecular flexibility Table S4.

Furthermore, the interatomic interactions prediction
outcomes between wild type (left side) and after single point
mutations (right side) are presented in Figures 2(a)–2(e).
The wild-type and mutant residues are colored in light green
and represented as sticks alongside the surrounding residues
that take part in any interactions.

3.4. Structural Conformation and Conservation Analysis by
ConSurf Server. Our ConSurf results indicated that nsSNPs
at position L35P, T75M, V94I, D98N, and R142Q are in
the highly conserved region, with a conservation score 9.
Likewise, nsSNPs R2C, N136T, and P157Q have shown a
conservation score of 8 (Figure S1). From this, we can
speculate that these nsSNPs have a potential effect on
LEP protein.

3.5. LEP Protein Secondary Structure Prediction by PSIPRED.
The alpha helix and beta sheet distribution and the coil are

exposed by PSIPRED (Figure S2). Among the secondary
structures, the highest in percentage was coils (51.5%)
followed by alpha helix (48.5%) and no beta-sheet (0.0%).

3.6. Homology Modelling. Structure refined and energy
minimized homology models of LEP by Swiss-Model, Phyre-
2, ConSurf, and RaptorX servers are illustrated using computa-
tional program QMEAN (Qualitative Model Energy ANalysis)
(Figure S3). These models were checked for validation through
Ramachandran plot analysis. Some residues in the model may
lie in favorable (blue), allowed (green), or disallowed (red)
regions of the Ramachandran plot. This coloring indicates
residues that may have problems with the backbone phi/psi
angles.

3.7. Ramachandran Plot Analysis. Ramachandran plot is an
x-y plot of phi/psi dihedral angles between NC-alpha and
Calpha-C bonds to evaluate a protein’s backbone conforma-
tion. The Ramachandran plot of the wild-type protein in the
Swiss-Model showed 132 residues (93.6%) in the favored
region, 8 residues in allowing region (5.7%), and one residue
(0.7%) in the outer region (Figure S4A). The LEP hypothetical
protein built by Phyre2 revealed 135 residues (95.7%) in

Table 1: SNPs information.

Location Allele cDNA position Protein position Amino acids SNP ID Consequences

4 : 92508292 C/T 4 2 R/C R2C Missense variant

4 : 92519830 T/C 104 35 L/P L35P Missense variant

4 : 92519950 C/T 224 75 T/M T75M Missense variant

4 : 92519983 C/T 257 86 T/M T86M Missense variant

4 : 92521847 G/A 280 94 V/I V94I Missense variant

4 : 92521859 G/A 292 98 D/N D98N Missense variant

4 : 92521974 A/C 407 136 N/T N136T Missense variant

4 : 92521992 G/A 425 142 R/Q R142Q Missense variant

4 : 92522037 C/A 470 157 P/Q P157Q Missense variant

4 : 92522108 G/T 541 181 V/L V181L Missense variant

4 : 92522154 G/A 587 196 R/Q R196Q Missense variant

Table 2: nsSNP analysis by SIFT.

Sr. no NsSNPs Amino acid change
Using homologs in the protein

alignment
Prediction Score

1 rs587813135 R2C Damaging 0.00

2 rs414488761 L35P Damaging 0.00

3 rs1086818376 T75M Damaging 0.00

4 rs593507294 T86M Tolerated 0.12

5 rs592349134 V94I Damaging 0.00

6 rs426762318 D98N Damaging 0.00

7 rs429690456 N136T Damaging 0.01

8 rs409584889 R142Q Damaging 0.00

9 rs1093355763 P157Q Damaging 0.02

10 rs420693815 V181L Damaging 0.00

11 rs428185456 R196Q Tolerated 0.41
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favored region, 4 residues (2.8%) in allowing region, and 2
residues (1.4) in the outer part. Similarly, the Ramachandran
plot of the wild LEP protein model constructed by the
ConSurf server demonstrates 158 residues (95%) in the
favored region, 4 residues (2.4%) in the allowing part, and 3
residues (1.8%) in the outer region. The last server we have

been used for homology modelling was RaptorX. Here, the
Ramachandran plot analysis of the model produced with this
tool shows that the number of residues in the favored region
was 52 (96.3%), the number of residues in allowed region 2
(3.7%), and the number of residues in outlier region was 0
(0.0%). Overall, the homology models evidenced the models

Table 3: Predicted effect of the single amino acid change on protein stability.

Position
I-Mutant 2.0 MUpro I-stable

DDG Stability Conf. Score Stability Conf. Score Stability

R2C − 1.23 Decrease − 1 Decrease 0.780005 Decrease

L35P − 1.17 Decrease − 0.21615 Decrease 0.768006 Decrease

T75M − 0.34 Decrease 0.43239 Increase 0.757411 Increase

T86M − 0.44 Decrease 1 Increase 0.732889 Increase

V94I − 0.82 Null 0.34720 Increase 0.640778 Increase

D98N − 1.21 Decrease − 0.2594 Decrease 0.620153 Decrease

N136T − 0.34 Decrease − 0.54347 Decrease 0.802931 Decrease

R142Q − 0.51 Decrease − 1 Decrease 0.795042 Decrease

P157Q − 1.47 Decrease − 0.68383 Decrease 0.815634 Decrease

V181L − 1.49 Decrease 0.229966 Decrease 0.526905 Decrease

R196Q − 2.17 Decrease Null Null 0.651297 Decrease

DDG: predicted free energy change value (DDG), DDG< 0: decrease stability, DDG> 0:5 increase stability.

Wild-type Mutant

(a)

Wild-type Mutant

(b)

Wild-type Mutant

(c)

Wild-type Mutant

(d)

Wild-type Mutant

(e)

Figure 2: (a) (T86M): Change in the amino acid threonine into methionine at position 86. (b) (D98N): The amino acid aspartic acid change
into asparagine at position 98. (c) (P157Q): Change the amino acid valine into isoleucine at position 157. (d) (N136T): Change the amino
acid asparagine into threonine at position. (e) (R142Q): Change the amino acid arginine into glutamine at position 142.
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of LEP protein were good. They can be used for further
experiments and a better understanding of the protein’s
biological activity.

4. Discussion

Missense mutations in genes have a profound impact on
protein function. Extensive computational analysis of the
phenotypic features attributed to nsSNPs may reveal the
susceptible variants by interrupting the original function
[37, 38]. In humans, mutations of the LEP gene have been
associated with obesity in different populations [39]. The
sheep LEP gene, located on chromosome 4, encodes 204
amino acids annotated with 11 domains and is currently
associated with 543 variations [12].

Leptin is an endocrine hormone member of the long-
chain helical cytokine family. It has multiple effects on regu-
lating food intake, energy expenditure, body weight, and
immune responses [40]. Polymorphism in the leptin gene
has been suggested to be connected to cattle carcass compo-
sition differences [38, 41, 42]. For example, a nucleotide
switched from cytosine (C) to thymine (T) causes an amino
acid change in the plasma leptin circulation and a higher
12th rib fat and marbling score [41]. In addition, the T-
allele in cattle has been reported to be associated with fatter
carcasses, whereas the C-allele is associated with leaner car-
casses [43].

Numerous research studies have reported polymor-
phisms in the sheep leptin (LEP) gene [44, 45] and its asso-
ciation with food intake [46], growth traits [47, 48], and
carcass and mutton quality traits [49, 50]. Consequently,
amino acid substitutions in the LEP gene have been recom-
mended as predictors of relative differences among individ-
uals for such economic traits [51].

In this study, following the screening of nsSNPs as
deleterious or neutral upon their effect on protein function
using the SIFT, predictSNP2, PROVEAN, and SNAP2, five
nsSNPs T86M (C→T, rs593507294), D98N (G→A,
rs426762318), N136T (A→C, rs429690456), R142Q
(G→A, rs409584889), and P157Q (C→A, rs1093355763)
were predicted to have a significant impact on the protein
structure, stability, and function by the majority of the tools.
As described [37] in the human CDKN1A gene and ADI-
POR2 gene by [52], and the CSN3 gene in cattle by [53],
dbSNP-based studies have been reported. Our study
employed similar tools to predict the impact of the nsSNPs
in the LEP gene and found important results.

The sequence of a protein determines the protein’s phys-
icochemical properties, such as protein structure, protein
thermodynamic stability, the ability to interact with other
molecules, and catalytic capacity [54, 55]. Thus, these prop-
erties, in turn, determine protein function [56].

Further analysis of these nsSNPs on protein functionality
was predicted indirectly based on the effects exerted on pro-
tein stability. First, the I-stable server predicted that all the
11 nsSNPs impacted protein stability. Then, the report from
I-stable was crosschecked using SDM and DynaMut. The
stability analysis verified by SDM and DynaMut servers con-
sistently narrowed to 5 nsSNPs. Three nsSNPs (T86M,

D98N, and P157Q) had increased protein stability, whereas
the other two nsSNPs (N136T and R142Q) showed a desta-
bilizing effect on the wild-type proteins. DynaMut predicts
the molecular consequences of the mutations in-depth
through changes in protein dynamics and stability from
vibrational entropy change [24]. The DynaMut-prediction
outcomes of the Δ vibrational entropy energy between
wild-type and mutants (ΔΔSVib ENCoM) for the 3 nsSNPs
were − 0.046 kcal.mol−1.K−1, − 0.056 kcal.mol−1.K−1, and
− 0.027 kcal.mol−1.K−1, respectively. Our data suggest that
the vibrational entropy change of protein upon mutation
of the amino acid decreases the molecular flexibility of the
protein. Therefore, the three nsSNPs that increased the pro-
tein stability may increase evolvability by allowing a protein
to accept a wider range of beneficial mutations while still
folding to its innate structure [57]. Our findings are compat-
ible with [58], who reported that the marginal protein
thermostability is a consequence of the mutation-selection
balance. Similarly, [57, 59] explained that mutants derived
from highly stable variants of a given protein are more likely
to retain their fold and are consequently more likely to
develop novel or improved protein functions.

In contrast to the other two nsSNPs, N136T (A→C,
rs429690456) and R142Q (G→A, rs409584889) were evi-
denced by reduced stability. Table 3 suggests that these mis-
sense mutations might lead to new functions of the leptin
gene in sheep. This finding is analogous to [21] stating that
the evolution of new enzymatic specificities is accompanied
by a loss of the protein’s thermodynamic stability (DDG),
implying a trade-off between acquiring new function and
stability. Most likely, the mutations confer new functions
that destabilize [57]. Thus, in this study, the mutations that
cause a destabilizing effect on the thermodynamic stability
of the protein through increasing the molecular flexibility
may constrain the native evolution of leptin protein in
sheep. Taken all together, the effect of the deleterious
nsSNPs in the LEP gene may have a diverse impact on the
performance of the sheep for the particular traits. The results
from this study provide promising insight for future in vitro
studies to specify the impact of these sorted nsSNPs on
sheep performance.

5. Conclusion

A simulation-based study to detect the nsSNPs using many
computational programs employed in this study has revealed
5 amino acid substitutions: T86M (C→T, rs593507294),
D98N (G→A, rs426762318), N136T (A→C, rs429690456),
R142Q (G→A, rs409584889), and P157Q (C→A,
rs1093355763) were found to be functionally deleterious.
These nsSNPs in the sheep LEP gene may contribute to the
functional discrepancies compared to the wild LEP gene,
which significantly regulates energy homeostasis, body weight
control, and reproduction traits. Most of the variants identi-
fied in this study are located in the conserved domain of leptin.
We also calculated the free energy changes for mutants and
wild-type LEP proteins to evaluate their stability. Our data
provide evidence for the functional role of the 5nsSNPs, which
is helpful for further in vitro study to facilitate the
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development of reliable molecular markers for future practical
application in sheep breeding.
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Supplementary Materials Table S1. Deleterious SNPs pre-
dicted by predictSNP2. Table S2. nsSNP analysis by SNAP2.
Table S 3. nsSNP analysis by PROVEAN. Table S4. SDM
and DynaMut tools analysis results of the effect of missense
mutations on protein stability. Figure S1. Prediction of evo-
lutionary conserved amino acid residues by ConSurf server.
Conservation score is represented as the color coding bars.
Figure S2. Protein secondary structure predictions by
PSIPRED tool. The graphical output of PSIPRED prediction
of secondary structure of the sheep LEP protein shows 6 α-
helices extends from 41th to 55th, 66thto 84th, 110th to 125th,
133th to 150th, 164th to 176th, and 178th to 198th residue
and no β-strands. Figure S3. Homology models from differ-
ent servers; (a) homology modelling by Swiss-Model server;
(b) homology modelling by Phyre-2 server; and (c) Homol-
ogy modelling by ConSurf; homology modelling by RaptorX
server. Figure S4. Ramachandran plots of different models;
(a) LEP_ Swiss-Model, (b) LEP_Phyre2, (c) LEP_ConSurf,
and (d) LEP_RaptorX. (Supplementary Materials)
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