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Tumor-immune interactions are often framed as predator-prey. This imperfect analogy
describes how immune cells (the predators) hunt and kill immunogenic tumor cells (the
prey). It allows for evaluation of tumor cell populations that change over time during
immunoediting and it also considers how the immune system changes in response to
these alterations. However, two aspects of predator-prey type models are not typically
observed in immuno-oncology. The first concerns the conversion of prey killed into
predator biomass. In standard predator-prey models, the predator relies on the prey for
nutrients, while in the tumor microenvironment the predator and prey compete for
resources (e.g. glucose). The second concerns oscillatory dynamics. Standard
predator-prey models can show a perpetual cycling in both prey and predator
population sizes, while in oncology we see increases in tumor volume and decreases in
infiltrating immune cell populations. Here we discuss the applicability of predator-prey
models in the context of cancer immunology and evaluate possible causes for
discrepancies. Key processes include “safety in numbers”, resource availability, time
delays, interference competition, and immunoediting. Finally, we propose a way forward
to reconcile differences between model predictions and empirical observations. The
immune system is not just predator-prey. Like natural food webs, the immune-tumor
community of cell types forms an immune-web of different and identifiable interactions.

Keywords: immunoediting, first principles, cancer ecology, tumor-immune interactions, predator-prey dynamics,
immune-web
INTRODUCTION

Evolution is the change in a population’s heritable traits over time subject to selection pressures
through population turnover. Co-evolution occurs when close interactions between two or more
species affect each other’s selective pressures. In the co-evolutionary arms race between a pathogen
and a host, pathogens often replicate faster, and therefore can evolve and adapt rapidly, while a host
cannot. For instance, the invasive ash borer beetle has decimated its host, the ash trees of North
America. Once infected, mortality rates are near 100% (1). In time, the ash trees may evolve
resistance, but this will require decades as new trees grow from seedlings to mature trees.
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In contrast, even though single-celled pathogens can evolve
rapidly relative to their hosts, vertebrate immune systems
break a conundrum of ecological and evolutionary time scales.

Vertebrates employ specialized lymphocytes (B cells and T
cells) equipped with diverse recognition receptors (BCR and
TCR, respectively). These receptors are unique for each B or T
cell clone and are generated stochastically early in the cell’s
development (1, 2). Populations of immune cells will change and
respond when a pathogen evolves, or when a novel pathogen
arises. The co-evolutionary arms race therefore occurs within the
human body between immune cells and evolving pathogens or
transformed cells. The intrinsically dynamic nature of the
immune system makes it an excellent tool for the host to
counter cancer cells. But understanding the circumstances
under which the immune system succeeds or fails to contain a
cancer population remains challenging.

Mathematical modeling has been and continues to be
employed to understand the underlying dynamics, to help
formalize hypotheses, and to evaluate and improve treatment
options (3–5). This is critically important in immuno-oncology,
where clinicians must consider the tumor’s response to therapy
as well as the immune system’s (4, 6, 7). Insights from ecological
literature provide new hypotheses for managing cancer as well
(8–12). A rich body of mathematical modeling of species
interactions can be found within population ecology (4).
Examples of ecological interactions include competition,
mutualisms, and predator-prey interactions. Such models can
be constructed to reveal the key mechanisms underlying the
dynamics of different cell types within the human body. For
example, the interactions between the community of immune
cells and pathogens or cancer cells resembles a predator-prey
system. As “prey” for the immune system, cancer cells differ from
normal cells due to accumulated mutations and changes in
antigen levels that can activate predatory cytotoxic T
lymphocytes (CTL) (13–15). As the “predator”, tumor-specific
CTLs’ proliferation and survival rates depend on the presence
and interactions with their prey.

The predator-prey analogy is an attractive framework
that has been modeled extensively in ecology, offering a
strong foundation for oncology modelers (16). However, it
is an imperfect comparison. Several key assumptions and
predictions of predator-prey models do not apply to tumor-
immune biology, and these differences highlight unique avenues
for increasing the effectiveness of cancer immunotherapy. In the
following, we explore parallels between classic predator-prey
systems and the immune-cancer interactions and compare
these models to known biology and experiments of immuno-
cancer dynamics. We then explore interactions between tumor
cells and T cells as both predator-prey systems and as
competitive systems embedded within the larger community of
immune cells. We frame these interactions in light of recent work
highlighting the significant impact of immunometabolism on
immune cell function. Cancer immunology has reached an
inflection point, where prior views of treatment resistance,
which are based largely on other treatment modalities (e.g.
chemotherapies and targeted therapies), need to be expanded.
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Currently, resistance mechanisms are seen as novel therapeutic
targets with little understanding for how they arise or what may
come next. Here we begin to address this by providing a more
complete view of tumor immune dynamics that is important for
mathematical modelers, for researchers, and for clinicians
seeking to improve the efficacy of cancer immunotherapy. We
conclude with a discussion of avenues for future modelling,
research, and clinical applications.
PREDATOR-PREY DYNAMICS IN NATURE

Lotka-Volterra Predator-Prey Model
In the 1920s, Alfred Lotka and Vito Volterra independently
developed the first predator-prey model. Lotka aimed to describe
population dynamics between plants and herbivorous animals.
Volterra was investigating the unexpected oscillatory dynamics
of predatory fish in the Adriatic sea that was observed
throughout the 1910s despite the suspension of fishing during
World War I (17). The original model had four terms as follows:

x΄ = ax − bxy

y΄ = −cy + d(bxy),

where x is the population size of prey and y is the population size
of the predator, a is the per capita birth rate of the prey, b is the
encounter probability between predator and prey (bx is the rate
at which a predator individual kills prey), c is the per capita death
rate of the predator, and d is the conversion efficiency of prey
consumed by a predator into new predators.

The Lotka-Volterra (L-V) predator-prey model assumes that
1) the prey population grows exponentially in the absence of the
predator, 2) each predator individual kills a fixed proportion of
the prey population per unit time, 3) a predator’s birth rate
increases linearly with the rate of prey consumption, and 4)
predators have a constant death rate. This model has a neutrally
stable equilibrium of prey and predator population sizes. This
means that for any initial starting point, the prey and predator
population sizes oscillate perpetually. The magnitude of this
oscillation increases with the distance of initial conditions from
the equilibrium point x* = c/d, y* = a/b.

The L-V predator-prey model quantitatively frames two
important concepts common to all predator-prey models: the
functional response and the numerical response.

The functional response is the rate at which an individual
predator (e.g., a cytotoxic cell) kills prey (e.g., cancer cells) as a
function of prey density (e.g., cancer cells per unit volume).
When multiplied by the number of predators, the functional
response determines the prey’s death rate. This relates to the ratio
of effector to target cells measured in immunology. Cytotoxic
immune cells kill at a rate influenced by the density of target cells.
In the L-V model, the predator’s functional response is bx.

The numerical response links the functional response to
the predator’s growth rate (18). Generally, the growth rate of
the predator population increases with the rate of prey
consumption. The more you eat the more you grow, a concept
August 2021 | Volume 12 | Article 668221
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that, in predator-prey modeling, has also been described as the
biomass conversion of prey into predators (19). In this case, the
conversion of prey consumed (the functional response) into
predator births is dbx.

Together, the functional and numerical responses define classic
predator-prey interactions, in which predators kill and consume
their prey. A schematic description of differences between
functional and numerical responses is shown in Figure 1; a more
detailed description of different types of functional responses will be
given in the next section. Despite its simplicity, the L-V model
provided a mechanistic explanation for the oscillatory behavior of
predatory fish (initially observed by Volterra’s son-in-law, marine
biologist Umberto D’Ancona). It revealed how the four parameters
included in the model were sufficient to qualitatively reproduce
observations without additional assumptions regarding other
properties of the environment.

General Predator-Prey Model
Mathematically, a more general form for the functional response
can be:

f (x) =
bxa

1 + bhxa
,

where b is a predator’s encounter probability on prey (same as in
the L-V model), and a scales the predator’s encounter rate (bxa) by
allowing for an attraction effect (a>1) or a dilution effect (a<1). An
attraction effect (which can be driven by an immune cell chemo-
attractant) increases the probability that an immune cell will
encounter a target cell. A dilution effect decreases the probability
that an immune cell will encounter a particular tumor cell. h is the
handling time that a predator takes to capture and consume an
encountered prey, which can be interpreted as the time an immune
cell spends at the immunological synapse.

The functional response can take on a number of forms: Type
I: (h=0 and a=1), where no time is spent at the immunological
synapse and no attractive forces or dilution effects occur; Type II:
(h>0, 0<a≤1), or saturating response, where immune cells spend
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some time at the immunological synapse and there is a dilution
effect, and Type III: (h>0, a>1), the sigmoidal response, where
immune cells spend time at the immunological synapse and
there is a chemo-attractant. Each form has different properties
(20) summarized in Figure 1. The classification by types was
proposed by C.S. Holling (21), and thus these functional
responses are frequently referred to as Holling Type responses.

These variants of the functional response better encompass
the range of empirical observations in natural predator-prey
systems, as each implies different underlying mechanisms for
prey detection and capture by the predators. For instance, prey
pursued by a predator with a Type I functional response
experience neither safety nor danger in numbers; the rate of
prey consumption is proportional to prey density. When the
predator has a Type II functional response, the prey experience
safety in numbers through the dilution effect. The likelihood of a
given prey individual experiencing predation declines with prey
density. This tends to destabilize the population dynamics of
prey and predator, leading to oscillations rather than stable
coexistence. The Type III functional response is often
described as the “controlling functional response” because, at
low densities, the prey experience danger in numbers, and the
predators can act to strongly suppress the prey, maintaining
them at low densities. At higher prey densities, this control is
lost, and the prey now revert to experiencing safety in numbers.
With a type III functional response, a predator individual’s
consumption rate of prey at first accelerates and then
decelerates with increasing prey density (Figure 1).

With these possible forms for the functional response, an
expanded model can include diverse features, such as the
following (22):

x 0|{z}
prey

= a x(x − L)(K − x)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
growthwithAlleeandcarryingcapacity

− f (x)y|fflffl{zfflffl}
deathbypredation

y 0|{z}
prey

= ( d − g)f (x)y|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
conversionofpreybiomassintopredator

− c y|{z}
naturaldeath
A B

FIGURE 1 | Numerical vs functional response. (A) Numerical response describes conversion of prey density into predator density. (B) Functional response captures
relationship between rate of consumption and food density. Type 1 response implies that rate of consumption of predator is proportional to prey density. Type II
response implies that the number of prey consumed increases rapidly with increased prey population density but plateaus at a carrying capacity. Type III response is
similar to Type II but assumes that at low prey density rate of prey consumption is slower than in Type II.
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where x is the population of the prey, y is the population of the
predator, a is the prey growth rate, K is the carrying capacity of
the population of prey, and L is the prey’s extinction threshold
due to the Allee effect (22, 23), which will be discussed below.
The prey is consumed by each predator individual at a rate
of f(x) and is converted into predator biomass at rate d; the
predator dies at rate c, and there is a probability g of lethal injury
to the predator when capturing prey.

The model includes a carrying capacity with limits to growth
(K-x), and an Allee effect represented by (x-L). With an Allee
effect, there can exist an extinction threshold for the prey’s
population size, below which the prey becomes extinct and
above which the population grows to a carrying capacity in the
absence of predators (24). In the predator equation we include
the risk of injury to capturing prey. Notably, if g > d, then the
predator has negative fitness from capturing prey and the
predator should avoid such prey. More generally we expect
d >> g. However, g > d may apply at times to immune cells,
such as T-cells attacking cancer cells and as a result, experiencing
injury or exhaustion. For instance, tumor cell expression of
programed death protein-1 (PD-1) actively inhibits T cell
function following ligation of the programmed death receptor.

The more general predator-prey model can assess the
consequences of different assumptions. Parameter values
determine the predator-prey population dynamics, the
presence of equilibrium points, and the stability of these
equilibria. When applied to immune-cancer interactions, the
underlying mechanisms behind each parameter can be targeted
clinically and evaluated based on how a therapy changes
predicted output.

Depending on parameter values, the above model results in
five types of dynamical behaviors that result in four qualitatively
different outcomes. All have been observed in natural predator-
prey systems. The specific outcomes depend on predator
efficiency, which can be defined by the predator’s benefit to
Frontiers in Immunology | www.frontiersin.org 4
cost ratio [(bd)/c] where bd is the fitness reward from
encountering and capturing prey, and c is the fitness cost.
The ratio of the extinction threshold to the carrying capacity,
L/K (L < K), is a second factor. When coupled with predator
efficiency, these determine the outcome of the predator prey
interaction (Figure 2 shows how various combinations of
predator efficiency and L/K determine dynamical regimes).

If the predator is very efficient (high value for bd), it
eliminates the prey (Figure 2, region 4). As the value of bd
decreases and the predator becomes less efficient, an oscillatory
regime appears, as the prey and predator populations “chase”
each other in a manner reminiscent of the original L-V predator-
prey model (Figure 2, region 3). As predator efficiency decreases
further, the prey and the predator coexist at a stable equilibrium
(Figure 2, region 2). Finally, as predator efficiency decreases
further, it cannot be supported by the prey. The predators go
extinct and the prey population can “escape” (Figure 2, region 1).
This sequence of regimes resulting from diminishing predator
efficiency happens to describe the phases of immunoediting,
suggesting a parallel between predator-prey and cancer-
immune interactions.
IMMUNE SYSTEM AS PREDATOR AND
CANCER CELLS AS PREY

The relationship between cytotoxic immune cells and tumor cells
seems to resemble a predator prey interaction (25–28). Once
activated, immune cells (the predators) search for cells
expressing their cognate antigen (the prey). After the target has
been identified, immune cells physically bind with and kill the
target cell. Furthermore, the dynamics of T cell populations are
often dependent on the presence of the pathogen. For example,
antigen detection is followed by rapid clonal expansion of
FIGURE 2 | Complete phase-parameter portrait of Lotka-Volterra model with Allee effect that captures the possible dynamical regimes possible in the model subject
to variation of predator inefficiency (c/db) and the ratio of the extinction threshold to carrying capacity (L/K). In this figure the predators have a type I functional
response and so there is no handling time (h=0). Adapted from original study by (23), reprinted in (24), Section 3.5.5. The diagram highlights that there is a
predictable sequence of regimes between predator efficiency and inefficiency.
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relevant T cell populations. As pathogens are cleared, antigen
load diminishes, and T cell populations contract (29). A
summary of similarities and differences between cancer-
immune and prey-predator interactions is given in Table 1.

The basic assumptions of a classic predator-prey model (with
a few caveats) fit our conceptual understanding of tumor
immune dynamics. The underlying model assumptions can be
reworded as follows: 1) tumor cell populations grow near
exponentially in the absence of the immune system (at least up
to some carrying capacity, with the possibility of an extinction
threshold), 2) each immune cell kills a fixed proportion of the
tumor population per unit time, 3) the immune cell’s birth rate
increases with the rate of killing cancer cells, and 4) the immune
cells have a constant death rate. However, assumption 1 ignores
the possibility that cancer cell proliferation rates may show a
hyper-proliferative response to the introduction of immune
cells. This has been observed in c. 7% of patients receiving
immunotherapy (30). Assumption 2 ignores the diversity of
immune cells. Assumption 3 implies immune cells gain energy
from killing target cells (more on this below). And assumption 4
ignores tolerance, loss of function through various mechanisms
of reversible and irreversible immune cell exhaustion, and
memory formation. All of these do not necessarily disqualify
the applicability of the predator-prey framework to cancer-
immune interactions, but they do require further elaboration.

Like in other predator-prey systems, “immune efficiency” is a
critical contributor to the outcomes of the immune-cancer cell
interaction. Factors that affect immune efficiency include, but are
not limited to, genetic and phenotypic variability of cancer cells
(31–33), competition for shared nutrients (34), altered
antigenicity, increased regulatory immunity that is frequently
observed in tumor microenvironments, impact of acidic
microenvironment on immune cell function (35–37), as well as
factors that may augment phenotypic plasticity of cancer cells in
the presence of the immune system, or “ecology of fear”.
Frontiers in Immunology | www.frontiersin.org 5
Genetic Factors
Cancer cells are genotypically and phenotypically diverse,
leading to variations in the ability of cytotoxic lymphocytes to
recognize and kill them. Several studies have suggested that
tumors with high mutational burdens are more likely to be
recognized and eliminated by the immune system and are thus
more responsive to immunotherapy (38–40). Within the
framework of immunoediting, cytotoxic lymphocytes eliminate
cancer cells with recognizable epitopes, leaving behind cancer
cells to which the immune system is blind, thereby “editing” the
tumor and allowing it to progress (41). Additionally, it has been
shown that immunoediting selects for cancer cells that suppress
the immune response through various mechanisms (PDL1, IDO,
sMICA, HLA-E, suppressive cytokines, etc.), as well as resistance
to apoptosis (42, 43). The immune system’s functional and
numerical responses to cancer cells become paramount.

Competition for Resources
Cancer cells increase glycolysis, which reduces glucose
concentration in the tumor microenvironment. For T cells to
activate and proliferate, they too must take up glucose and
initiate glycolysis. Theoretic (44) and experimental (34)
research has shown that glucose deprivation and metabolite
accumulation reduce T cell functioning. Nutrient deprivation
compromises the immune cells’ ability to move, kill, and even
differentiate (45–48). Cancer cells consume other resources
needed by immune cells including oxygen, tryptophan,
glutamate, folic acid and various amino acids, among others.
Ecologically, cancer cells are not just prey for immune cells, they
are also competitors.

Increase in Immune Regulation
The whole organism maintains a homeostatic balance between
cytotoxic and regulatory immunity, which is critical for
maintaining adequate immune response to fight disease, such
TABLE 1 | Key differences between the assumptions underlying classic predator-prey systems, and corresponding mechanisms in tumor-immune interactions where
tumor cells are prey and immune cells are the predators.

Biological mechanism Prey-predator Tumor-immune

Prey growth • does not depend on predator
• limited by a carrying capacity
• depends on nutrient availability

• independent of cytotoxic lymphocyte activation
• limited by a carrying capacity
• depends on nutrient availability (8)

Prey death • natural death
• death by the predator

• natural death
• death by the predator (immune)
• once a T cell is activated, kill rate is proportional to probability of encountering a
cancer cell (9)
• there is “handling time” for cancer cell kill, creating safety in numbers for cancer
cells (10)

Predator growth • predator works “on commission”: proliferation
depends on efficiency of predation (conversion of prey
biomass into predator biomass)
• there is no distinction between proliferation and
activation

• immune cells do not work on commission: killing a cancer cell does not directly
increase likelihood of T cell proliferation (2)
• there is a distinction between proliferation and activation (2)
• killing cancer cells can create a “vaccinating effect” through increasing
proliferation of antigen presenting cells (APCs) that can increase T cell population,
i.e., indirect increase in T cell population size (11)
• predator growth and activation may be impaired by low nutrient availability (12)

Predator death • Predator does not have a limit on prey kill
• Predator dies in the absence of prey

• T cell can kill a limited number of cancer cells (9)
• Activated T cells die in the absence of target cells (13)
• T cells can become tolerized (14)
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as cancer, and to prevent immuno-pathologies. Key players
include regulatory T cells (Tregs), myeloid derived suppressor
cells (MDSC), polymorphonuclear neutrophils (PMN), and
subsets of NK and B cells (49–53). Tregs regulate cytotoxic
immunity by suppressing effector cell survival and function,
and by directly killing effector T cells via granzyme and
perforin-dependent mechanisms (54–56). Within the context
of a food chain in nature, one can view regulatory immunity as
“the predator’s predator”. It is possible that, as the population of
cytotoxic immune cells becomes too proliferative, oscillatory
predator-prey dynamics may develop between these T cells and
cancer cells via exaggerated numerical responses. The whole
immune system may shackle the efficacy of cytotoxic immune
cells to prevent oscillatory dynamics, auto-immunity, and other
ill effects to the whole organism that could emerge if the
predatory immune cells were too efficient and too proliferative.
In nature, predators may have their own predators, but the
emerging food-webs of predation, competition and mutualisms
among species has not been honed for some greater homeostatic
need of the whole ecological community, unlike the community
of immune cells within the ecosystem of the body.

Ecology of Fear
The ecology of fear considers the non-lethal effects that predators
have on their prey. Such effects generally involve prey using
vigilance or habitat selection to reduce their likelihood of
suffering predation (57–59). For instance, fear of large
carnivores can lead to changes in feeding patterns of smaller
carnivores, such as raccoons, which in turn may affect the
behavior of their prey (60). The ecology of fear will manifest in
tumors if cancer cells respond behaviorally or phenotypically to
the presence of cytotoxic immune cells. For instance, cancer cell
motility increases in immune-conditioned media (61–65). The
epithelial-to-mesenchymal transition (EMT) of cancer cells can
compromise immuno-surveillance and the ability of immune
cells to attack cancer cells (66, 67). Increased glycolysis by
cancer cells in response to immune cells may decrease pH and
create an acidic moat around the cells that inhibits the action of
T cells (37, 68, 69). Such “vigilance behavior” can be manifested
as immune cells introduce interferons or interleukins into
the environment, while cancer cells deploy cytokine receptors
to detect these to increase awareness of the presence of predatory
immune cells.

Biomass Conversion of Prey Into
Predators Works Differently in the
Immune System
There are three properties of the immune-cancer interaction that
make it unlike predator-prey dynamics in nature. Each property
relates to how the immune system determines the per capita
growth rates of cytotoxic immune cells.

First, classic predator-prey type models assume a direct
conversion of consumed prey biomass into that of the
predator. The killing of prey directly influences the predator’s
expected per capita growth rate, either by increasing birth rates
Frontiers in Immunology | www.frontiersin.org 6
or decreasing death rates. Predators in most ecological systems
work on “commission”, whereby they and their prey are linked
via the functional response, which is the predator’s fitness
reward, and the prey’s fitness penalty. This is not so for
cytotoxic immune cells. Killing of cancer cells requires
expenditure of resources with no direct compensatory nutrient
gain from the dead cell. Thus, the growth rate of cytotoxic
immune cells is not directly influenced by their kill rate of
cancer cells. This is highlighted in sterile immune responses,
where immune cell numbers increase despite the lack of
pathogens, and during chronic infections, when immune cell
numbers decrease even when the pathogen has not been
cleared (70).

Instead, the growth of populations of these T cells is
determined largely by immunogenicity of dominant epitopes,
strength of antigenic discontinuity, duration and rate of antigen
increases, and external signaling (71–74). The immunogenicity
and presence of the dominant epitopes can stimulate the
proliferation of cytotoxic cells, and while the presence of these
epitopes might increase with the killing of cancer cells, it is more
tied to the presence rather than the death rate of cancer cells.
Antigenic discontinuity recognizes that immune cell
proliferation can increase (or decrease) with abrupt changes in
the presence of antigens. Under the Growth Threshold
Conjecture (71), the functional and numerical response of T
cell populations will be elastic: if a pathogen proliferates slowly, it
induces tolerance, and if it proliferates more quickly, it induces
an immune response. Finally, T cells depend on the integration
of at least four signals to effectively differentiate and proliferate:
antigen stimulation, co-stimulation, cytokine signaling, and
nutrient-sensing.

Second, T cells and other immune cells may both compete
with cancer cells for resources and suffer damage or increased
mortality from attacking cancer cells (75, 76). This means that T
cells may engage in resource competition with their “prey”
[known in ecology as intra-guild predation (77, 78)] or engage
in a strong form of interference competition, where the
antagonism of T cells towards cancer cells entails a fitness cost
rather than benefit (79). Furthermore, surviving cancer cells may
actually benefit from the death of their neighbors as they can use
macro- or micro-pinocytosis to acquire macromolecules
following immune-induced death of neighboring cancer cells.
As noted above, there is competition for substrate between
cancer and immune cells in the resource-limited tumor
microenvironment. The cancer cell’s ability to acquire these
macromolecules, unlike the immune cells, may give them a
significant advantage (80).

Third, the immune system community has diverse cell types
that, when included, may generate a “foodweb” that is quite
counter-intuitive and far removed from classic predator-prey
systems. Initiation of an immune response triggers a cascade of
signaling molecules that alter immune cell growth rates before
they ever contact the prey. For example, once activated, NK cells
respond quickly, inducing target cell death, as well as releasing
cytokines and chemokines (81). These directly and indirectly
trigger proliferation and recruitment of additional NK cells and
August 2021 | Volume 12 | Article 668221
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other immune cells, including cytotoxic and helper T cells. The
decoupling of predator growth rate from prey consumption
alters the dynamics of the predator-prey system, which has
been exploited clinically. For instance, interleukin-2 (IL-2) is a
strong growth signal. It directly binds receptors on immune cells
triggering rapid proliferation of the cytotoxic immune cell
population. IL-2 therapy has been used to increase the per
capita growth rate of T cells in vivo and is the key driver of ex
vivo expansion of tumor infiltrating lymphocytes (TIL) used for
TIL-based immunotherapy in cancer (82, 83). In contrast, in
nature, predators must directly kill and consume more prey to
increase their per capita growth rate.

Oscillatory Behaviors in Predator-Prey
Interactions and the Cycle
of Immunoediting
Oscillations are an intrinsic feature of predator-prey interactions
(16). Four factors contribute to oscillations in natural predator-
prey systems: 1) the functional response (Type II promotes
oscillations), 2) time lags between changes in prey population
sizes and the numerical responses of the predators (exacerbated
when there is a large discrepancy between the generation time of
the prey and the generation time of the predator), 3) the
magnitude of the indirect feedback between how effective
predators are at killing prey and how strong the numerical
response is (larger is more destabilizing), and 4) the killing
efficiency of the predators (destabilizing). Many of these factors
are interrelated. All lead to the key outcomes of the classic one-
predator, one-prey species dynamics. The interaction leads to
either stable coexistence of prey and predator at positive
population sizes, the extinction of the predator and release of
the prey population, self-annihilation, where the predators drive
the prey extinct and then the predators starve [i.e., Huffakers
mites (84), didinium-paramecium (85, 86), or continuous
Frontiers in Immunology | www.frontiersin.org 7
oscillations in the abundance of prey and predator (i.e., spruce
budworm epidemics (87), vole cycle (88–90), lynx-hare
cycle (91)]. If the immune and cancer cells are in fact in a
predator-prey relationship, they should exhibit these properties.
However, tumor size oscillations are not typically observed,
suggesting that predator-prey model may not be appropriate
unless some important considerations are missing.

The regimes predicted by predator-prey models (Figure 2)
parallel the phases of the immunoediting process (92, 93).
Immunoediting has three main phases: 1) elimination, whereby
cytotoxic immune cells are highly efficient and eliminate cancer
cells; 2) equilibrium whereby the immune system is less efficient
and contains but does not eliminate the tumor, and finally
3) an escape phase, where the immune system becomes
inefficient and incapable of suppressing cancer growth, leading
to tumor growth.

What is not seen in the cancer immune interaction are stable
oscillations on a population wide scale. During immunoediting,
it is possible that there exists a transitional oscillatory regime
between elimination and equilibrium (equivalent to Region 3 in
Figure 2), which might be missed due to its occurrence early in
disease progression. Or, it is also possible, when examined on a
smaller scale, that predator-prey oscillations may occur between
subpopulations of antigen specific cytotoxic (CD8) T cell pools
and tumor cell clones expressing the corresponding antigens
(94); however, they may be missed due to the small amplitude or
small spatial scale of resulting oscillations. Therefore, it is
possible that transitions between different regimes predicted by
the model in Figure 2 and outlined in Figure 3 can be explained
by diminishing efficiency of the predator as described above.
Oscillatory regimes are likely “sandwiched” between elimination
and equilibrium and thus should not disqualify predator-prey
framework from providing a conceptual framework for
describing tumor immune interactions.
FIGURE 3 | The dynamical regimes of cancer immunoediting paralleled by the sequence of regimes predicted by predator-prey models in response to decreasing
predator efficiency.
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Notably, large scale oscillations likely are not seen in tumor-
immune interactions because of the threat of autoimmune
responses (damage to normal cells), subsidy of immune cells
from outside of the tumor, and a weak feedback between the local
killing of cancer cells and the recruitment of additional T-cells to
the locality. The threat of autoimmunity likely explains why T
cells tend to be very inefficient predators of cancer cells. The
dynamics of the immune system are not closed, and instead
include signaling and recruitment that is host-wide. Migration or
recruitment of predators from outside of the area of the prey
dynamics will generally be either stabilizing or will result in prey
extinction. Finally, the interaction of local and host-wide control
of immune responses does not let the local population of T-cells
proliferate in direct relation to their killing of cancer cells. This
may be a whole-organism adaptation to prevent oscillations in
immune and pathogen cell populations.

Maintaining whole-body homeostasis in the face of immune
cell – pathogen oscillations may be challenging. Cycling
investment into immune cell production may compromise
other body functions, and pathogen outbreaks may prove
debilitating or lethal. For the whole organism it may be
adaptive to keep the pathogen suppressed at a low population
size. In fact, it may be to the pathogen’s advantage to have
fluctuations as a way of overwhelming the immune system
temporally to increase the pathogen’s transmission rate, a
hypothesis that remains to be investigated. It is noteworthy
that such cycling dynamics can be seen in malaria (95, 96),
suggesting that these dynamics may occur in certain diseases.
Whatever the dynamical outcomes, the cancer-immune
interaction involves not just one cell type of each but a “food-
web” or “immune-web” of diverse immune and cancer cell types.
Frontiers in Immunology | www.frontiersin.org 8
ECOLOGICAL RELATIONSHIPS WITHIN
THE IMMUNE-WEB OF THE TUMOR AND
IMMUNE SYSTEM
The cancer-immunity cycle as described by Mellman and Chen
(97) outlines seven key steps involved in tumor-immune
interactions: 1) recognition of cancer cells by CTLs, followed
by 2) killing of cancer cell by CTLs, resulting in 3) release of
cancer cell antigens, which occur in the tumor microenvironment.
The antigens need to then be 4) encountered by antigen presenting
cells, such as dendritic cells (DCs) outside of the tumor
microenvironment, leading to 5) priming and activation of APCs
and T cells. Activated CTLs then 6) migrate to and 7) infiltrate the
tumor, where the cycle can repeat. A summary of how these
processes translate into populations, variables, and dynamics that
can then be modeled mathematically is shown in Figure 4. The
community of different immune cells form an immune-web
whereby each cell type can directly or indirectly influence the
growth rates of cancer cells and the other immune cell types.

Many of the interactions within the cancer-immunity cycle go
beyond strict predator-prey relationships. Interactions between
cytotoxic cells (including CD8+T cells, NK cells, macrophages,
etc.) and cancer cells constitute just one of several types of
ecological relationships that occur within the larger tumor
ecosystem. Interactions between populations, when captured in
a mathematical framework, include competitive interactions
(negative inter-type effects), commensalisms (when one type
benefits from the interaction but causes no good or harm to
the other), amensalisms (when a type harms the other species at
no cost or benefit to itself), or mutualisms (positive inter-type
effects usually through the exchange of resources or through the
FIGURE 4 | Summary of the tumor-immune cycle adapted from Mellman and Chen (56), delineating key actors and mechanisms that defined the tumor-immunity
cycle within and outside of the tumor microenvironment.
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production of public goods). Within the community of immune
cell-cancer cell interactions, one can find examples of all of these
community modules (predator-prey, competition, commensalism,
amensalism, and mutualism).

The specific type of interaction between different cell types is
revealed by interaction coefficients (see Box 1 and Table 2).
Within a matrix of interaction coefficients, each coefficient
describes how changing the population size of one type
(represented by the column) influences the population growth
rate of another type (represented by the rows). The diagonal
coefficients describe intra-type effects, and the off-diagonals
describe inter-type effects. As with predator-prey models, the
type of interaction will predict different dynamics and stability
properties, allowing one to evaluate in a rigorous way the various
aspects of cancer-immune ecology. The question of interest should
drive the level of abstraction and the number of different immune
and cancer cell types to include. The interaction matrices in
Table 2 can provide a touchstone, from which to evaluate the
suitability of the model and the reasonableness of its predictions.
The interaction matrices also identify when the tumor-immune
interaction is predator-prey like or not.
Frontiers in Immunology | www.frontiersin.org 9
When Tumor-Immune Interactions
Do and Do Not Fall Within the
Predator-Prey Framework
If the goal of the research question is to focus on the tumor-
immune community module within the tumormicroenvironment,
then we propose the following as the minimally sufficient model of
tumor-immune interactions:

Primary variables: cancer cells, activated effector (cytotoxic)
cells, antigen presenting cells (APCs).

Mechanisms of interactions of primary cell types:

1. Cancer cells grow up to some carrying capacity (which may
become dynamic if needed).

2. Cytotoxic (effector) cells can kill cancer cells.
3. Killing cancer cells by cytotoxic cells can stimulate APCs.
4. Population of effector cells increases through interactions

with APCs.
5. Population of effector cells decreases in the absence of cancer

cells.
6. Effector cells can become tolerized or exhausted as a result of

killing cancer cells.

Figure 5A provides a schematic of such a model.
Note that based on community modules (Table 2), the

interaction between cancer cells and cytotoxic cells is one of
interference competition in addition to possible competition for
resources. APCs act as a commensal for cytotoxic cells, and cancer
cells as a commensal for APCs. This three cell-type community
can see the coexistence of all three populations, or the elimination
of cancer cells, or the elimination of cytotoxic cells. Furthermore,
there can exist alternate stable states, where either the cancer cells
exclude the cytotoxic cells or vice-versa, depending on which cell
type starts out as relatively more frequent. If all three types can
persist together, then the population dynamics may converge to a
stable equilibrium or show permanent oscillations. The outcome
TABLE 2 | Interaction matrices and corresponding diagnostics for mathematical models of ecological systems.

Interaction Interaction matrix Diagnostics

Predator-prey  a11

+

−

a22

! a11 = 0
a22 = 0

Lotka-Volterra predator-prey type model

a11 < 0
a22 = 0

Type I functional response or inefficient predator with Type II response

a11 > 0
a22 = 0

Occurs if safety in numbers is greater than intraspecies competition

a22 < 0 Self-regulatory predator or ecology of fear
Competition  a11 −

+ a22

! a11, a22 likely negative If interaction amplifies a12 and diminishes a21, there is intraguild predation
If interaction amplifies both a12 and a21, there is strong interference
competition

a11 > 0
a22 < 0

Allee effect: transitional behavior, where first species either goes to extinction,
or grows past a survival threshold

Commensalism  a11 −

� a22

! a11 < 0
a22 ≤ 0

Interaction causes second species to benefit from the interaction but causes
no good or harm

Amensalism  a11

−

0

a22

! a11, a22 can be either
positive, negative or
zero

Interaction causes first species to harm second species at no cost or benefit
to self

Mutualism  a11 −

+ a22

! a11 ≤ 0
a22 ≤ 0

The interaction is mutually beneficial to both species
Box 1 | Constructing a matrix of interaction conefficients.
We can imagine a matrix of interaction coefficients describing the direct effect of
each cell type, such as cancer and immune cells (the matrix columns) on the
population dynamics of other cells types (the matrix rows). Hence, a direct effect,
aij, describes the effect of changing the population size of cell type j on the
growth rate of cell type i. When i = j then the effects are intra-type (diagonal
elements) and when different, the effects are inter-type (off diagonal elements).

Example:

 a11 a12

a21 a22

!

Elements a11 and a22 refer to intra-species dynamics (within populations of
cancer or immune cells), while a12 and a21 describe inter-precies dynamics
(between cancer and immune cells). The sign of the matrix elements can reveal
the nature of relationship between the variables (see Table 2).
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depends upon the strength of self-regulatory feedbacks of
cytotoxic cells and APCs on themselves, and upon the strengths
of the inter-cell-type interaction coefficients. Interestingly, when
the cytotoxic cells and cancer cells exhibit an extreme form of
interference competition, then their community module
suppresses oscillatory population dynamics, and leaves open the
possibility of alternate stable states.

It is tempting to see cytokines and cell signaling molecules as
central to any model of immune-cancer dynamics (26). While
these may be essential components of the system, we do not
necessarily see the need to model their dynamics as separate
populations of molecules. It is possible in this case to take
advantage of time scale separation. In this way, the cytokine
dynamics can be rolled into the equations for the three cell types.
For instance, if cytokine signaling occurs on a scale of minutes
but cell growth occurs on a scale of days, then relative to cell
dynamics, cytokine signaling achieves a quasi-steady state for
any population of the three cell types. If this cytokine steady state
can be approximated, then the level of cytokines and their effect
on parameters can be directly included in the three-cell-type
model of population dynamics without having to explicitly
consider a fourth dynamical equation.

Furthermore, the immune-cancer interaction can still be
modelled using just two populations: one for cytotoxic and one
for cancer cells. For instance, if the question of interest focuses on
the dynamics in the tumor microenvironment, it can be assumed
that the interaction with antigen-presenting cells and subsequent
T cell activation reaches a quasi-steady state before it can affect the
cancer cell dynamics that occur in the tumormicroenvironment. If
so, the three-dimensional model described in Figure 5A reduces to
a predator-prey like model, where CTLs are indirectly stimulated
by cancer cells (i.e., there is still no direct conversion of prey
biomass into predator). The diagram of this abstracted cancer cell
– immune cell interaction can be found in Figure 5B.

This kind of ecological abstraction can reduce the number of
equations to two, and the cancer cell-immune cell interactions
may well fit a community module that is predator-prey.
However, it is important to note that this technique still
Frontiers in Immunology | www.frontiersin.org 10
implicitly includes the intermediate immune activation step,
and thus the resulting predator-prey-like system does not
violate the caveat of immune cells “not working on commission”.

Whether the resulting two cell-type system conforms to
competition or predator-prey type models depends on the
magnitude of the positive indirect effect of cancer cells on
cytotoxic cells (cells stimulate APCs that stimulate cytotoxic
cells) relative to the negative direct effect of cancer cells on
cytotoxic cells via resource competition or immune cell
exhaustion. If the indirect effect is smaller than the direct one,
then the system will be one of competition. Such a two-species
system will not see oscillatory population dynamics, and
outcomes will generally include coexistence, elimination of one
type by the other independent of initial populations, or alternate
stable states, where the outcome depends on the starting
population sizes. If the indirect effect is larger than the direct,
then the interaction between the cancer cell population and
cytotoxic immune cells will be predator-prey with all of the
concomitant consequences.

The community of cell types may grow further with the
inclusion of two or more cancer cell types with different
susceptibilities to one or more types of cytotoxic cells. In this
way, the model may expand to two-prey and one predator, two
prey and two predators, etc., thus expanding the number and
types of community modules describing the immune-web.
Model expansions should align with the research question. The
two prey and one predator type model leads to apparent
competition between the two cancer cell types (98, 99), and the
two prey-two predator system can lead to indirect mutualism
between the two types of cytotoxic cells if they specialize on
different cancer cell types (100).
DISCUSSION

Primary and secondary resistance to immunotherapy is a
significant clinical problem. Theoretical models are needed to
define the underlying evolutionary dynamics of treatment
A B

FIGURE 5 | (A) Proposed set of minimally sufficient variables and mechanisms to be included in future models of tumor-immune interactions. (B) Ecological
abstraction of the full model, where it is assumed that interactions with APCs and subsequent T cell activation reach a quasi-steady state before impacting
interactions between CTLs and cancer cells in the tumor microenvironment. The resulting model has features of a classical predator-prey type model with a caveat
that CTLs are indirectly stimulated by cancer cells.
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resistance to optimize outcomes. Various mathematical models
have been created to capture different aspects of tumor-immune
ecology. These include introducing dynamic carrying capacities
for tumor and immune cells (101), introducing treatment, IL-2
and IL-12 cytokines (102), incorporating ecological abstraction
in APC maturation (27), incorporating NK cells, Tregs and IL-2
cytokines (103), as well as larger scale models that include
various stages of activation of effector cells, helper cells, mature
Tregs, and various cytokines, such as TGF-beta and IL-10 (26),
among others. Various ecological interactions can predict
different types of dynamics, which may not be easily
identifiable otherwise (i.e., oscillatory regime as part of the
sequence of immunoediting in predator-prey type models). As
a field, we can take advantage of the rich tradition of eco-
evolutionary modeling from ecology to understand cancer-
immune interactions and to optimize treatment.

It is important to note, however, that mathematical models
are most useful when they are tailored to answer specific
questions, just as experiments are designed to test specific
hypotheses. The question should therefore drive design of the
model and the number of populations and associated
interactions. Tailor the model to the question and not the
other way around. However, while being tailored for specific
questions, these models need to be based on a unified framework,
such as the one proposed here, to enable building on the existing
body of knowledge rather than starting every time anew.

What is the relevance of the models presented here to the
non-math oncology community? Immunology is a complex
and humbling field of study. Cancer immunologists and
oncologists deal with evolving cancer cells, growing or
shrinking tumors, and a changing immune system. This is
compounded by the emergence of immunotherapy resistance
and use of immunotherapies in combination with other
treatment modalities. Additionally, immunology is not a
stagnant field. The concepts that define ‘self’ and ‘non self’ and
determine what can elicit an immune response are shifting. In the
last 30 years we have seen the introduction of the danger model,
the discontinuity theory of immunity, the growth-threshold
conjecture, and a call to redefine the immunological self (70,
71, 73, 104–106).

Theoretical modeling has an increasing role to play in
meeting the challenges of modern cancer immunology. For
instance, examining the classic predator-prey system in the
context of cancer immunology and contrasting it with the
ecology models has revealed the obvious importance of
predator efficiency in eliminating the prey in a structured and
(surprisingly simple) mechanistic way. Increasing immune cell
efficiency against tumor cells is the primary goal of current
immunotherapies including tumor vaccines, checkpoint
inhibition, and genetically engineered immune cells. By
comparing the divergent roles of biomass conversion in the
two systems, we can show the importance of resource
competition between predators (immune cells) and prey
(tumor cells). Thus, it may be necessary to alter the TME to
increase immunotherapy efficacy (107). Additionally, the lack of
reliance on prey consumption for predator growth in cancer-
Frontiers in Immunology | www.frontiersin.org 11
immune models highlights the importance of the “immune-web”
created by other members of the immune system and associated
cytokines. While direct alterations of this web, such as via
systemic IL-2, have not proven effective, more nuanced or
localized targeting of the immune-web may serve to support
other immunotherapies, hypotheses that could be evaluated
using complementary experimental and modeling approaches.

Modeling also allows one to compare predictions against
observations, thereby making us rigorously question our
understanding of the underlying biology. For instance, the less
explored dynamics, oscillations in predator and prey population
levels, call into question why we do not see the same oscillations
in immune cell and cancer cell populations that are intrinsic to
the ecology models. Here we provide a few hypotheses, but more
work is needed. It may not be immediately obvious why an
immunologist would want to answer this question. However, the
immune response is a numbers game. Current dogma states that
increased antigen levels directly lead to increased immune
activation, and that antigen removal equals diminishing
immune activation. If these dynamics were the only ones, then
we would see oscillations. If the host response is designed to
avoid oscillations to regulate co-evolution of pathogens or avoid
immunopathology the cancer cells are likely utilizing these
processes to circumvent the anti-tumor immune response.
Since we seek to reverse the immunoediting process and
promote the elimination phase, we must understand the
interim phases and their contribution to immunotherapy
resistance, and modeling can help.
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