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Abstract: Ultra-High Molecular Weight Polyethylene (UHMWPE) is used in biomedical applications
due to its high wear-resistance, ductility, and biocompatibility. A great deal of research in recent
decades has focused on further improving its mechanical and tribological performances in order to
provide durable implants in patients. Several methods, including irradiation, surface modifications,
and reinforcements have been employed to improve the tribological and mechanical performance
of UHMWPE. The effect of these modifications on tribological and mechanical performance was
discussed in this review.

Keywords: ultra-high molecular weight polyethylene (UHMWPE); biomedical materials; tribological
performance; coefficient of friction (COF); irradiation; surface modifications

1. Introduction

Ultra-High Molecular Weight Polyethylene (UHMWPE) is an engineering polymer that varies
from high-density polyethylene (HDPE) in terms of average molecular weight and average chain
length [1]. According to the International Standards Organization (ISO), UHMWPE has a molecular
weight of at least 1 million g/mole and degree of polymerization of 36,000, while according to the
American Society for Testing and Materials (ASTM) it has a molecular weight of greater than 3.1 million
g/mole and degree of polymerization of 110,000 [2]. The properties of UHMWPE are highly dependent
on their microstructure rather than molecular mass [3]. UHMWPE is a semi-crystalline polymer that
contains fully crystalline and fully amorphous phases as an interfacial all-trans phase [4,5]. In the
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crystalline phase, the particular lamellar shape of crystallite is due to the chain folding with the chain
axis, which enlarges the chain fold area. In the amorphous phase, the chains are interconnected through
occasional crosslinks and random entanglements instead of proper chain folding. The relation between
amorphous and crystalline phases are provided by tie molecules. The crystallinity of UHMWPE
depends on its volumetric percentage of crystallites [6]. The properties of UHMWPE are determined
by the connections between amorphous and crystalline phases, i.e., tie molecules, crystallinity, the
degree of crosslinks and entanglements; and the positions of the crystallites. The average properties of
UHMWPE and HDPE are presented in Table 1.

Table 1. Average properties of Ultra-High Molecular Weight Polyethylene (UHMWPE) and high-density
polyethylene (HDPE). Reprinted with permission from [7].

Property UHMWPE HDPE

Melting temperature (◦C) 132–138 130–137
Molecular weight (106 g/mol) 3.5–7.5 0.05–0.25

Specific gravity 0.925–0.945 0.952–0.965
Poisson’s ratio 0.46 0.40

Modulus of elasticity (GPa) 0.5–0.8 0.4–4.0
Tensile ultimate strength (MPa) 39–48 22–31

Tensile yield strength (MPa) 21–28 26–33
Tensile ultimate elongation (%) 350–525 10–1200

Degree of crystallinity (%) 39–75 60–80
Impact strength (J/m of notch) 1070 21–214

Wear Rate (mm3/106 cycles) 80–100 380–400

UHMWPE has high wear-resistance, toughness, durability, and biocompatibility. Therefore,
it is commonly used as a bearing material with ceramic or metallic counter surfaces in joint
arthroplasty [8,9] UHMWPE’s significance for achieving outstanding performance in total joint
arthroplasties is unquestionable [10,11]. For long-term clinical applications, its tribological performance
and lifetime are key aspects [12,13]. However, UHMWPE implants have limited life due to their wear
complications. When the UHMWPE is used in the periprosthetic environment it induces osteolysis
followed by loosening of the implant. This implant loosening is joined with fatigue causes the aseptic
loosening which ultimately causes the implant’s failure. [14–17]. Many methods such as improving
cross-linking [18–21], or crystallinity percentage [22–25] through irradiation [26], surface modification
through plasma treatment [27,28], or introducing effective textures [29,30], and reinforcements with
particles or fibers [31–33] have been used for enhancing properties of UHMWPE.

Few review articles [2,18,34] have been published to correlate the mechanics and morphology
of UHMWPE with its wear and mechanical properties. In one review [35], the influence of CNT
and graphene as reinforcements for UHMWPE is evaluated. In a few review articles [3,36], other
advances in UHMWPE for improving wear and mechanical performance are discussed. However, in
such articles, many studies on other polymeric materials are considered for supporting the evidence
and there is a lack of clarity regarding the optimal values of the effective methods. The objective
of this study is to summarize the existing practices for the enhanced tribological and mechanical
performance of UHMWPE. The influence of irradiation, reinforcements and surface modifications is
briefly discussed and a tabular data is presented for estimating the optimal values or materials. As a
conclusion, by using the UHMWPE, mechanical and tribological findings were further improved in
order to provide durable implants in patients.

2. Irradiation

Crosslinking of UHMWPE significantly improves wear performance [37–40], which can be
achieved through the use of a silane [41,42], or chemical methods using peroxides [38,43] and
irradiation [44–46]. The free radicals produced by these methods create the inter-chain covalent bonds,
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leading to the formation of crosslinking. Moreover, these long-lived free radicals react with oxygen,
resulting in a cascade of different reactions [47]. The overall free oxidation mechanism is a chain
reaction that involves polymer chain scission and produces different end products such as carboxylic
acids and ketones [48]. This oxidation reduces the mechanical performance of UHMWPE [49,50]. The
reduction in properties is associated with molecular weight and cross-link density.

2.1. Crosslinking and Crystallinity

Among all methods of crosslinking, irradiation is the most common and effective method
for sterilizing and/or crosslinking UHMWPE [45,51–53]. However, the irradiation produces free
radicals in UHMWPE and the trapped radicals decay slowly in it [52]. The decay of free radicals
is important, as it provides information about the overall reaction mechanism in the presence of
oxygen. Along with crosslinking, the formation of transvinylene units and chain scission are the
common processes in UHMWPE in the result of irradiation. The transvinylene content and crosslink
density increased at a higher radiation dose [54]. The irradiated component with higher transvinylene
contents showed a higher oxidation rate. The level of oxidation can be assessed through the content
of transvinylene units [54,55]. After irradiation, the chain-folded crystallization and recrystallization
occur in UHMWPE in the presence of crosslinks. These changes in chain folding kinetics, result in
decreased crystallinity [56–58]. Since the reduced crystallinity allows oxygen to diffuse deeper into the
UHMWPE through the amorphous region. Additionally, the allylic hydrogens at trans-vinylene bonds
are easier to extract than the hydrogens at tertiary alkyl carbons. These factors combined with induced
strain energies facilitate the oxidation mechanism, probably by reducing the energy barrier for chain
scissions reaction at more reactive sites. Fung showed [59] a relation between initial transvinylene
content and maximum oxidation. The critical oxidation levels were determined for gamma and e- beam
treatments at different radiation doses. It was found that the oxidation levels were highly dependent on
radiation dose for both sources. The increase in ketone oxidation index with irradiation dose in terms of
loss in mechanical properties is observed. Premnath [60] irradiated UHMWPE specimens in the air with
electrons and then these were aged at room temperature for different times to investigate the alterations
in molecular rearrangements and micro-molecular structure. The crystallinity of UHMWPE for several
radiation doses, and for different time intervals are shown in Figure 1. The increase in crystallinity
with increasing irradiation dose was observed, probably due to the rearrangement of chains at the
amorphous domain following the chain scission of molecules in this interface. The plot of absorbed
dose in terms of oxidation index and irradiation time is presented in Figure 2a,b. The oxidation index
with dose was almost in a linear manner at all times whereas increment in oxidation index was higher
at starting time interval as compared to higher times. The oxidation varies approximately linearly
with dose because of the linear variations in free radicals concentration with dose. The decrease in
oxidation rate was probably due to the diffusion of free radicals from the crystalline region to the
amorphous domain and/or diffusion of oxygen from the amorphous interface to the radical along with
crystal stalks; and/or reaction kinetics of different oxidation reactions. Karuppiah [22] investigated the
effect of crystallinity on the wear performance of UHMWPE and found that the scratch depth and
friction force tended to decrease with increasing the crystallinity. Their study suggested that the wear
resistance can be increased with increasing the degree of crystallinity.

Multiple factors influenced the crystallinity and oxidative degradation by irradiation [61,62].
The dose and dose rate of irradiation strongly influence the crystallinity and oxidation of
UHMWPE [55,63–69]. A suitable post-irradiation process eliminates free radicals to prevent degradation
of UHMWPE over the long period and to promote the stability against oxidation. [18,55,59]. Subjecting
UHMWPE to a subsequent below-melt annealing or remelting step reduces radicals and the degree of
oxidation. The UHMWPE chains can be fold and the crystalline lamellae can be formed by heating the
UHMWPE at high pressure and cooling it above the melting temperature. The resulting crystallinity of
UHMWPE is increased after the formation of a crystalline structure [70–72].
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Figure 2. The change in oxidation index with (a) radiation dose; and (b) aging time. Reprinted with
permission from [60].

Other different parameters, such as temperature [73,74], packaging atmosphere and
packaging [75–77], processing conditions [78], also influence the distribution and the amount of
the oxidation products. In general, the irradiation at high temperatures, low dose rates and in the
presence of oxygen enhance the oxidation process, which strongly degrades the UHMWPE. Bracco [45]
analyzed gamma sterilized prosthetic components to study the effect of implant packaging materials and
temperature. Three groups of packaging materials including multilayer polymeric barrier packaging,
gas permeable packaging, and a combination of polymeric and metallic foils packaging were used.
The concentration of oxygen and alkyl macro-radicals was assessed by FTIR analysis. The ROOH
are more important than carbonyl in oxidation because ROOH are the first oxidation products. The
hydroperoxides/ketones concentration was low for first two packaging groups, while was very high
for third packaging group. The difference in concentration is due to the different oxygen permeability
of packaging materials. The rate of decomposition was proportional to local temperature during
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sterilization. It is concluded that the negligence in selection of irradiation parameters can cause the
unpredictable oxidation and degradation of UHMWPE.

2.2. Aging

With aging, the reaction of trapped free radicals with oxygen enhances due to the deep diffusion of
oxygen and causes more oxidation. The active free radicals in UHMWPE undergo the intramolecular
and intermolecular decompositions resulting in the time-dependent chain scission. This process
gradually reduces the crosslinking in the aged UHMWPE. With this, the tie chain scission process
allows growth to occur and, further crystal perfection thus the aged UHMWPE has higher crystallinity.
The oxidation index increases due to the thickening of the oxidized surface layer with an increase in
aging time. In addition, the irradiation of aged samples showed low crosslinking as well as higher
oxidation [79–84]. This shows crosslinking and oxidation both are highly dependent on aging. The
variations in the level of cross-linking, crystallinity, and oxidation during aging cause the change in
mechanical properties. The brittleness in the aged UHMWPE liners enables the production of cracks
under sliding shear and tensile stress states and eventually, it can enhance the wear of UHMWPE.
Lee [85] compared the wear performance of un-irradiated and gamma-irradiated UHMWPE specimens
and studied the effect of aging. The wear was measured in terms of weight loss. The wear of
gamma-irradiated specimens was lower than un-irradiated specimens and it was increased with aging
time. However, the oxidation index of un-irradiated specimens was lower than irradiated specimens.
To investigate the influence of oxidation on wear the specimens were artificially aged for 2 to 8 days
and tested at knee simulator under sliding conditions. Bell [86] investigated the influence artificially
induced subsurface on the wear of UHMWPE. Figure 3 shows the change in wear track volume for
untreated and aged (oxidized) specimens. The large volumetric change at the initial stage for all
specimens is attributed to the creep of the UHMWPE [87].
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Figure 3. Change in wear volume under sliding tests for unaged and aged specimens. Reprinted with
permission from [86].

Chang [88] investigated the tribological performance of aged UHMWPE specimens and confirmed
the obvious influence of aging conditions on wear and mechanical performance. The coefficient of
friction of aged UHMWPE specimens for different aging periods is shown in Figure 4. The coefficient
of friction (COF) was increased up to 65.96% for 720 h aging time and 80 ◦C aging temperature. It was
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found that the tribological and mechanical degradation was attributed to the damage in the molecular
structure of UHMWPE.Polymers 2020, 12, 323 6 of 27 
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2.3. Wear and Mechanical Degradation Mechanism

Delamination is the catastrophic type of wear in UHMWPE bearing components [3,86].
The diffusion of free radicals out to polymer matrix or into the polymer as a result of irradiation can
lead to the development of a subsurface oxidized band. This subsurface oxidation region can lead to
delamination and in many cases, failure occurs from subsurface crack initiation and propagation [4].
Bell [86] investigation on retrieved total knee implants has shown that oxidation of UHMWPE can
be influenced by stresses induced during everyday activities or by post-irradiation associated with
the subsurface band. This study showed that the delamination occurred only in the presence of the
subsurface oxidized band and propagated through this band. In wear test, an increase in oxidation
produced increased surface wear without delamination. Similarly, in fatigue and tensile tests, there
was a reduction in the fatigue resistance and in ultimate tensile strength of oxidized UHMWPE
specimens. Oxidation increased the fatigue crack growth rate. It was also observed that the resistance
to oxidation was different in different grades of UHMWPE. The wear mechanism of UHMWPE can be
better understood by treating it anisotropic material [2,89]. The strength of UHMWPE depends on the
direction in which load is applied. So a wear mechanism can be better assessed by multidimensional
wear tests [90]. Wang [91] performed hip-joint simulator experiments on both linear and crosslinked
UHMWPE to investigate the effect of molecular chain orientation on the wear surfaces and within wear
debris. The UHMWPE specimens sterilized by ethylene oxide gas in the air and by gamma irradiation
in nitrogen were used for tests. Crosslinking was not achieved by ethylene oxide gas sterilization.
Results obtained from the hip simulator test indicated that the wear resistance of UHMWPE can
be significantly improved by radiation-induced cross-linking. The strength of bearing surfaces in
multidirectional sliding experiments was lower than the bearing surfaces in uniaxial tensile tests. The
phenomenon of strain-softening in UHMWPE bearing surfaces is also due to the structural anisotropy.
This study recommends maintaining the homogenous and isotropic molecular structure of UHMWPE
bearing surfaces for achieving high résistance to strain to harden. A large number of wear models have
been developed to explain the morphology of wear debris [84,92,93]. Wang [94] proposed a theoretical
model for UHMWPE based on the concept of frictional work under multi-directional lubricated sliding
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conditions. Based on the theory, the wear volume loss per unit load and sliding distance was related
to the cross-link density, COF, and the maximum shear angle. The COF and wear volume rate of
UHMWPE were decreased with increasing the cup/head clearance. The linear increase in wear volume
loss was observed with an increased COF. The wear rate was shown to increase linearly with increasing
the COF. The wear rate can be decreased by irradiation as indicated by results in hip simulator. The
effect of radiation dose on crosslinking and wear factor is shown in Figure 5. The linear increase in
wear rate was observed with increasing the molecular weight into crosslinks.
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The mechanical degradation of UHMWPE is very important for high stressed bearing components
which may cause large deformations or fatigue damage such as or delamination or pitting. The
multiaxial deformation of UHMWPE is more important than the deformation under uniaxial loading
conditions for clinical relevance. After irradiation UHMWPE deforms a spatially non-uniform towards a
more brittle (less ductile) behavior. Edidin [95] investigated the mechanisms of mechanical degradation
of UHMWPE, including both the linear and non-linear responses, as a function of aging. An increase
in elastic modulus and a decrease in work to failure, ultimate displacement and ultimate load as a
result of accelerated and natural aging were demonstrated in this study.

The influence of irradiation on the level of crystallinity, tribological performance and mechanical
performance reported in the literature is presented in Table 2. The parameters and their values in
percentage are presented as compared to pure UHMWPE.

All results reported in Table 2 show that the optimal value for radiation dose is in the range of
25–50 kGy in terms of less oxidation and high tribological properties. The variation in optimal value
suggests that the selection of radiation dose depends upon the several conditions discussed in previous
sections. So careful selection of the amount of radiation dose is mandatory. The significant difference
in gel content percentage and crosslink density percentage can be observed for the mentioned results.
The increase in the crystallinity percentage is in the range of 5 to 26%. The values of the oxidation index
and transvinylene index are increased from 10–125% and 2–12% respectively as compared to pure
UHMWPE. Several mechanical properties such as toughness, elongation at break, impact strength,
ultimate displacement, ultimate load, and ultimate displacement are decreased, while hardness and
tensile strength are increased or maintained.
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Table 2. Influence of irradiation on crosslinking, tribological and mechanical performance for UHMWPE.

Ref. Radiation Source Radiation
Dose/Optimum Value Crystallinity/Crosslinking Tribological Results Mechanical Results

[96] Gamma 50–255 kGy/50 kGy
Impact Toughness-67%
Tensile Toughness-64%

Elongation-74%

[91] Gamma Gel content->650% Wear rate-35%

[60] Electron 25–200 kGy/50 kGy Crystallinity-110% Oxidation Index-110%

[45] Electron 25–100 kGy/25 kGy branching in
1,7-octadiene-570%

Ultimate Tensile Stress-111%
Elongation at break-89.25%

[85] Gamma 25 kGy Cross-linking (%)-228%
crystallinity-105% Wear loss-150% Oxidation index-225%

[87] Gamma Gas plasma 25 kGy

Tension fatigue-Crack inception
Gamma air-88%
Gamm inert-86%
Gas Plasma-99%

[5] 60Co 35 kGy Crystallinity-119%

[95] Gamma 25–40 kGy Crystallinity (%)->116%
Elastic modulus-273%

Peak Load-90%
Ultimate load-41%

[55] Gamma irradiated in N2
and air

25 kGy, 50 kGy, 100
kGy/100 kGy at 2.5 k Gy/h

dose rate

Gel content (%)-164%
Extract fraction (%)-27%

Swell ratio-24%

Relative wear rate-140%
at 50 kGy

Oxidation index-200%
Trans-vinylene index-112%

At 25 k Gy/h the values are lower

[59] Electron-beam 50, 75 &100 kGy/50 kGy Crosslink density
(dm3/mole)-116%

Tensile strength (MPa)-103%
Toughness-82%
Elongation-83%

Transvinylene index-102%

[97] Gamma 35 & 70 kGy/70 kGy

Tensile modulus-86.6%
Tensile strength-95.4%

Hardness-103.6%
Elongation at break-58.1%

[39] gamma 33-500 kGy/14.5 Mrad Crystallinity %-126.5%
Crosslink density-<747% Wear rate->6%

Impact of strength-50%
Hardness-100%

Tensile strength-87%
Elongation at break (%)-61%
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2.4. Methods for Minimizing Degradation

It is well established that irradiation results in the mechanical degradation of
UHMWPE [59,66,76,98,99]. Therefore, it needs to focus on methods to enhance crosslinking by
maintaining mechanical properties. Muratoglu [100] irradiated UHMWPE in the air at high temperature
by a high dose-rate electron beam with adiabatic heating and then melted. The wear resistance was
improved by this method with maintaining the mechanical performance of UHMWPE for hip implants
because of the absence of free radicals and as a result of high oxidation resistance. The three years
follow-up showed an equal decrease in wear rate for argon sterilized and air sterilized UHMWPE due
to the initial creep after implantation and thereafter wear rate decreased steadily slow. The argon
sterilized UHMWPE liners showed more stable due to the less wear rate as compared to air-sterilized
liners after nine years follow-up. Despite their different patterns and amounts of wear, no difference in
osteolytic tissue reaction is demonstrated [101].

Sterilizing UHMWPE in the oxygen-depleted atmospheres, like vacuum packaging or inert gas,
can reduce the degree of oxidative degradation [47,62]. Faris [102] observed less wear in inert-sterilized
molded liners than air-sterilized extruded liners after a 6 years follow-up in 150 patients. He concluded
that the molded UHMWPE is more resistant to wear than the extruded UHMWPE [103]. Goosen [101]
observed a difference in wear rate between the AIR and ARGON liners based on multivariate analysis
during a follow-up of 3–12 years. There was no significant difference in wear rate for three years after
implantation. Thereafter, the ARGON liner showed a decreased wear rate tan AIR liner.

Bracco [45] postulated that unsaturated additives can be added into UHMWPE to enhance the
cross-linking to increase the reactions involving terminal double bonds. UHMWPE specimens soaked
in ethylene, methyl-acetylene, and 1,7-octadiene respectively, were irradiated using different doses
of an electron beam. Gel fraction results showed that all irradiated samples are crosslinked, and
1,7-octadiene exhibits the most efficient additive for enhancing crosslinking. The mechanical results
revealed a significant decrease in ultimate stress and elongation at break with high doses of an electron
beam in multiple passages.

Vitamin E has been considered as an important antioxidant to reduce the oxidation and wear
degradation of UHMWPE components [104,105]. Vitamin E reacts with trapped free radicals into
the UHMWPE, impending them to react with oxygen. Thus, it prevents oxidative degradation of
UHMWPE and increases its resistance to wear and fatigue [72,106,107]. Costa [99] investigated the
efficiency of vitamin E for stabilizing UHMWPE. UHMWPE powder was blended with pharmaceutical
grade vitamin E and consolidated into large slabs. The formation of a stable-tocopheryl radical due
to the interaction between macro-alkyl radicals and vitamin E results in a decrease of macro-alkyl
radicals. The reactions between macro-alkyl radicals with oxygen can be inhibited due to the decrease
in alkyl radicals (which react with vitamin E) and to the vitamin E reaction with peroxy macroradical.
The data is shown in Figure 6. Moreover, the crosslinking effectiveness is reduced due to the possibility
of the reaction between macro-alkyl radicals with vinyl double bonds, or vitamin E.
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3. Reinforcements

An important method to enhance the properties of UHMWPE is the reinforcement with
polymers [108]. Many reinforcing materials such as zinc oxide particles, glass, carbon nanoparticles,
and others have been employed to improve the wear resistance of UHMWPE. [109–119]. Inorganic
particles such as alumina [120], silica [121] or hydroxyapatite [122], have been reported for improving
wear and mechanical performance.

UHMWPE fibers are also considered as high-performance fibers for various applications due to
their high mechanical performance with low density [123].

3.1. Carbon Particles

The carbon nanoparticles such as carbon nanotube (CNT), carbon nanofiber (CNF), graphene,
nanodiamonds are used as reinforcing materials to enhance the mechanical properties of UHMWPE and
to achieve the long lifetime of implants. Unique optical, electrical, mechanical and thermal properties
of CNT and their utilization for making composites have been gained remarkable attention [124].
CNT is an important additive for polymer composites to achieve improved wear resistance [118].
The dispersion of CNT into the polymer materials and interaction between the CNT and macromolecular
chains are key factors to transfer the CNT properties to polymeric matrix [125]. Liu [126] added three
types of CNTs and nacre into UHMWPE, coated with Perfluoropolyether (PFPE) to study the wear of
UHMWPE under lubricated condition. The UHMWPE coated with PFPE and reinforced with nacre
showed higher wear than pure UHMWPE. The dispersion of all types of CNTs into UHMWPE also
increases the wear rate of UHMWPE. The reason for increasing wear rate is that the non-covalent
stresses and merely shear interactions between UHMWPE molecules and CNT and dispersion of CNT
into UHMWPE cannot enhance the required energy dissipation to decrease build up the plastic strain.
The hardness value decreased by reinforcing PFPE with UHMWPE probably due to softening the
surface of UHMWPE and reducing the resistance between the material and indenter surface. The
dispersion of nacre into UHMWPE and PFPE coating increase hardness value slightly due to the
addition of hard nacre particles. The data is presented in Figure 7.
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Golchin [127] investigated the tribological performance of nanodiamond reinforcing particles into
UHMWPE under water-lubricated sliding conditions. The dispersion of nanodiamond into UHMWPE
significantly reduced friction and wear properties. Due to nanoscale dimensions and semi-spherical
morphology of nanodiamond, it acts as bearing balls between the tribo surfaces and the detached wear
debris can roll. This improves direct asperity-asperity contacts and reduces the friction between the
mating surfaces. The reduction in shear stress acting on the chains of UHMWPE due to the reduced
friction force leads to the decrement in wear rate of the tribo-pairs.

Similar to CNT and nanodiamond, CNF has gained considerable attention as a reinforcement for
polymers due to their promising intrinsic properties and their good compatibility [128,129]. Galetz [130]
dispersed the CNF into the extruded UHMWPE and investigated the mechanical properties. The
yield stress and modulus were improved with maintaining the ductility. In addition, the hardness
of UHMWPE was increased due to smoothness in the surface provided by the reinforcement of
nanoscale particles. Sui [131] added CNF into UHMWPE. The tensile modulus and tensile strength
of the UHMWPE/HDPE were increased with the incorporation of CNF, while a decrease appeared
at a higher content. Zulkifli [132] studied the effect of inter-ply stacking positions on the mechanical
performance of hard ballistic UHMWPE/carbon fibers composites. The significant variations in the
back-face signature, flexural yield strength, and ballistic impact were observed by varying the small
change in orientation of carbon fibers. The results show that the ballistic performance can be boosted
by a strategic sequence of the carbon fibers in UHMWPE.

Graphene has gained much attention as a filler material in HUMWPE due to its excellent thermal,
mechanical and electrical properties [133]. Puertolas [35] concluded that the use of graphene as a
filler in UHMWPE should lead to an increase in mechanical properties. The filler content of graphene
was found to be very critical for the strengthening of UHMWPE, since fillers enhance mechanical
performance at the lowest concentrations; but after this preliminary stage, the material showed a
decrease in performance with increasing filler content. Regardless of the graphene product used
in nanocomposites, mechanical properties reach the best values at an optimal filler concentration,
which is not always the same for the different mechanical parameters. Aliu [134] developed graphene
nanoplatelets (GNPs)/UHMWPE composites for improving tribological properties. The 31% reduction
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in wear rate was observed as compared to pure UHMWPE with addition of 0.25 wt.% GNPs particles
in UHMWPE. The friction response of GNPs/UHMWPE composites tested at 0.1 m/s velocity and
8 MPa Pressure is shown in Figure 8. The COF increased with the addition of GNPs up to 0.24.
This can be attributed to the anchoring of the UHMWPE chains by GNPs preventing them from
sliding over each other. Alam [135] studied the influence of GNPs in UHMWPE. With increase in
crystallinity and increase in elastic properties, a significant increase in electrical properties at 3–10
wt.% GNP concentration of GNP/UHMWPE composite exhibit that such composites are useful for
smart biomedical implants. Moreover, the addition of graphene into UHMWPE enhanced the thermal
stability as compared to the pure UHMWPE [105].
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The concentration, orientation and distribution state of carbon nanoparticles are key aspects in the
reinforcement of the UHMWPE [136,137]. The dispersion of carbon nanoparticles inside the UHMWPE
is a challenge due to its high melt viscosity. Baena [138] studied the effect of the dispersion state of
multi-walled CNTs into the UHMWPE on tribological and mechanical performance. The tribological
performance was improved with the variation in the content of multi-walled CNTs, however, this
improvement was less obvious due to the defects induced by the multi-walled CNTs’ agglomeration.

3.2. Other Reinforced Particles

The reinforcement with soft particles enhances the viscoelastic behavior of UHMWPE, while the
reinforcement with hard particles can effectively enhance the load-carrying ability and improve the
wear resistance of UHMWPE. It is very crucial to consider that the filler’s shape, filler’s size, filler’s type,
filler–matrix interaction, filler loadings, and filler’s dispersion into UHMWPE and shape are important
in determining the wear behavior of UHMWPE composites. The effect of particle reinforcement on
crystallinity, tribological and mechanical performance reported in previous studies is presented in
Table 3.

Chang [139] studied the influence of zeolite particles into UHMWPE on tribological and mechanical
performance. The elongation at break and tensile strength were reduced, but modulus was increased
by adding the different concentrations of zeolite particles. In addition, the COF was also decreased with
the incorporation of zeolite. Furthermore, smoother surfaces and shallower grooves were observed
with the reinforcement of zeolite. For lubricant film transfer, the counter surface of UHMWPE was
rough, partially covered, and discontinuous, while for zeolite/UHMWPE it was smooth, covered
and continuous. Overall, the addition of zeolite into UHMWPE showed significant effectiveness for
improving tribological performance.
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Table 3. Influence of particle or fibers reinforcement on crystallinity, tribological and mechanical results as compared to UHMWPE.

Ref. Reinforced Particle Concentration/Size Crystallinity Tribological Results Mechanical Results

[140] Polyimide 10–90 wt.% Optimum-50% wt.% Increase in crystallinity
and stability COF-65–75% Wear rate-15% —–

[127] Nano-diamond
0.5, 1 & 2 wt.%

30–40 nm
Optimum-1 wt.%

97.8% COF-76%
Wear rate-28%

Yield Stress-No change
Micro Hardness-97.6%

[126] Carbon Nanotubes 0.1, 0.45 & 0.5 wt.%, Optimum-0.1
wt.%

3% decrease in melting
peak. Wear rate-118% Micro Hardness-100.2%

[139] Zeolite
10 wt.%
20 wt.%

Optimum-10 wt.%
—– COF-approx. 80–90%

Volume loss-approx. 80–85%

Tensile Strength-89%
Impact Strength-125%

Modulus-131%
Elongation-89.2%

[126] Nacre coated with PFPE 12 wt.% 12% reduction in melting
peak Wear rate-251% Micro Hardness-114%

[132] Carbon Fibers Variations in no. of layers
Optimum-CF/UF/CF-2/12/2

Flexural Strength-509%
Flexural Modulus-284%

Ballistic Limit-91%

[141] Nanoclay 0.5, 1.5 & 3 wt.%
Optimum-1.5 wt.%

Wear Life- greater than 10,000
cycles Hardness-134%

[138] Multi-walled carbon
nanotubes

0.1, 0.5 & 1 wt.%
Optimum-1 wt.%

COF-approx. same
Wear Rate-74% Hardness-105%

[142] Polyethylene glycol (PEG) Best UHMWPE/PEG ratio 60/4
Shear viscosity-33.3%

Storage Modulus-25.5%
Loss of modulus-68%

Flexural strength-79.8%
Flexural Modulus-77.5%

[135] Graphene nanoplatelets
(GNP)

0.1 wt.% to 10 wt.%
Optimum-0.5 wt.% Crystallinity %-103%

Elastic modulus-130%
Yield strength-113%
Tensile strength-75%

Toughness-76%

[143] Aramid 2, 3 & 5 wt.%
Roughness-172%
Specific wear-60%

COF-107%
Hardness-700%
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Table 3. Cont.

Ref. Reinforced Particle Concentration/Size Crystallinity Tribological Results Mechanical Results

[143] Poly-tetra-fluoro-ethylene 2, 3 & 5 wt.%
Average

Roughness-159%
Specific wear-83%

COF-91%
Hardness-500%

[124] High density polyethylene
(HDPE)

20, 40, 50, 60, 80 wt.%
Optimum- 50 wt.%

Tensile yield stress. 86.3%
Tensile strength-69.5%

Strain at the break. 380%

[144] SiO2 nano-spheres 0.5, 1, 2, 4 wt.%
Optimum-1 wt.%

Degree of crystallization
%-96%

COF-50%
Volume wear rate-29.4%

Mass wear rate-90%

[145] Fe-Al2O3/vinyl acetate (EVA)

18 wt.% of EVA, <50 nm size of
Al2O3

1, 3 & 5 wt.% of Fe-Al2O3
Optimum-1 wt.% of Fe-Al2O3

Tensile Strength-200.7%
Modulus of

Elasticity-139.3%

[146] Alendronate sodium (ALN) 1.0 wt.% COF-approx. 90%
Specific wear rate- approx. 110%

Young’s Modulus-97.5%
Micro-hardness-96.8%
Tensile strength-84.4%

[147] Nano ZnO
5–20 wt.%

Optimum-10 wt.%
Size-<100 nm

Wight loss (mg)-58.5%
COF-100%

[148] Carbon Fibers
(CF)

5–30 wt.%
Optimum-20 wt.%

COF-139% & 220%
Wear Volume-20% & 35% Hardness-140%

[149] Hydroxyapatite (HA) 4.7–22. wt.%
Optimum-22.8 wt.%

Modulus-888%
Yield strength-104%

Elongation at break-74%

[150] kaolin Size-10 µm
11–26.5 wt.% Optimu-20 wt.%

COF-87%
Wear rate-56%

[105] Graphene 0.5–3 wt.% Optimum-0.7 wt.% Degree of crystallization
(%)-101%

Linear weight loss
temperature-102 %

Micro-hardness-110%
Toughness-55%

[151] Talc 10 & 20 wt.% Optimum-20 wt.% Degree of crystallization
(%)-108%

COF-55%
Wear rate-50%
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Chen [140] conducted an experimental study on polyimide/UHMWPE composites for developing
matched sliding materials. The friction efficiency of the mating pair was decreased with increasing
the polyimide concentration, while surface roughness and wear rate. The optimum concentration
of polyimide was 50 wt.% in terms of lowest surface roughness and wear rate. The nanoclays are
also a very promising filler material due to their good barrier and mechanical properties, particle
size, morphology, abundance and low cost. The 1.5 wt.% addition of nanoclay significantly increased
wear life of and mechanical properties of UHMWPE [141]. Gurgen [143] found that UHMWPE
exhibit good interaction with aramid additive and thus, the reduced wear rates were observed for
the aramid/UHMWPE composites. At the manufacturing stage, the microstructural consolidation is
increased due to the increased molding pressure and thus provide a wear resistant PTFE/UHMWPE
composite. Due to the lower COF of PTFE, the material exhibits lower frictional interaction in the
sliding conditions. Shi [144] found that the SiO2 nanospheres (SNS)/UHMWPE composites exhibit
significant improved tribological properties as compared to pure UHMWPE. Huang [146] reported the
results for Alendronate sodium (ALN)/UHMWPE composites. The low COF’s were observed at lower
loads, while at higher loads the COF were higher than those of UHMWPE under deionized water
and saline.

Chang [147] reported that the incorporation of micro and Nano-ZnO with different filler loadings
in UHMWPE matrix can improve the wear behavior of the composites. The UHMWPE composites
with 5–10 wt.% of micro-ZnO fillers exhibit the lower weight loss while for Nano-ZnO/UHMWPE
composites, 10 wt.% exhibits the lowest weight loss under the sliding speed of 0.033 and 0.368 m/s. The
weight loss increases with an increase in applied loads and sliding speeds for bothmicro and Nano-ZnO/

UHMWPE. Prasad [152] compared the effect of content of micro and nano ZnO in UHMWPE and
found that UHMWPE with 5% nano ZnO showed lowest wear rate. The smooth worn-out surfaces
were observed nano-ZnO/UHMWPE composites as compared to micro-ZnO/UHMWPE composites.

UHMWPE possess poor processability due to high melt viscosity which is the result of high
inter-chain entanglement density [142]. Blending UHMWPE with viscosity polymer is the most
common method for improving processability. Many researchers blended UHMWPE with polyethylene,
polypropylene [153,154], adding polysilane and paraffin oil [155,156], or adding organic clay, kaolin,
organic montmorillonite, etc. [157–159]. Among these, polyethylene is suitable due to the better
miscibility and structural similarity. Khashoggi blended UHMWPE with HDPE and found that the
viscosity, storage modulus, and loss modulus were decreased by increasing HDPE content. The
mechanical strength was also decreased by increasing HDPE content. Li [142] blended UHMWPE
with PEG and found less chain entanglement level of blended UHMWPE. The incorporation of HDPE
improved the processability and mechanical properties of the UHMWPE/PEG composites. The flexural
modulus, flexural strength and tensile strength of UHMWPE/HDPE/PEG (60/40/4) were increased by
32.5%, 25.7% and 13.8% respectively compared with UHMWPE/PEG (100/4).

4. Surface Modifications

4.1. Coating

The coating of wear-resistant material can enhance the durability of artificial joints. The relation
of a surface to coating is important in determining the success of an orthopedic implant. Firouzi [160]
performed mechanical tests on nylon coated UHMWPE to investigate the mechanical properties at
different temperatures. The results showed the improvement in toughness, braking force, creep time,
the maximum braking force for Nylon coated UHMWPE as compared to pure UHMWPE. The results
are presented in Figure 9. This research suggests that nylon coated UHMWPE can be employed in
biomedical applications due to good mechanical properties, less wear debris and lower cytotoxicity as
compared to pure UHMWPE.
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Berumen [161], coated the semi-trapezoidal surfaces of UHMWPE with TiAlV film to improve
its biocompatibility and mechanical properties. The viscoelastic behavior was decreased, but the
load-carrying capability was increased due to the metallic film. The coating detachment and fractures
of the metallic film were examined in all scratch tests.

Azam [141] developed the nanoclay reinforced UHMWPE composite coating to improve the
tribological properties. A novel electrostatic powder spraying technique was used to deposit the
coatings on an aluminum substrate. The results showed that 1.5 wt.% nanoclay/UHMWPE coating was
failed at higher cycles as compared to the pristine UHMWPE coating which failed at lower cycles under
the same conditions. The enhancement in the performance of 1.5 wt.% nanoclay/UHMWPE coating is
attributed to the resulting exfoliated topography of the nanoclay platelets into the UHMWPE matrix
due to its homogeneous dispersion that provides an efficient bridging effect, holding the polymer
chains together and resisting their easy pull-out.

The results reported in the literature on the influence of coating for improving tribological and
mechanical performance are given in Table 4. The results showed that coating of significantly improved
the mechanical properties.

Table 4. Effect of coating on tribological and mechanical performance.

Ref. Coating materials Thickness Tribological
Results Mechanical Results

[162] Polypyrrole/Carbon
nanotubes

Nominal compressive
transverse modulus-500%
Bending Modulus-147%
Bending rigidity-515%

[163] Hydrogenated diamond-like
carbon (HDLC)

250 nm and
700 nm

COF-200%
Wear rate-85% Nano-hardness-200%

[161] TiAlV 4.59 µm Wear rate-118% Surface hardness-35% at lower
load while 200% at higher load

[164] Nylon 6, 12 0.53 mm Static load resistance-186%
Energy absorption-145 to 316%

[165]
Poly(methyl

methacrylate)—hydroxyapatite
(PMMA/HA)

32.61–34.01
µm

COF-75%
Wear rate-65%
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4.2. Surface Texturing

The contact region of the mating pair can be significantly reduced by fabricating proper
and well-defined texturing. The lubrication state is shifted from boundary lubrication to full
lubrication [166]. The amount of trapped lubricants within the grooves increases and friction
reduces due to the load-carrying capability of lubricant. Several texturing methods such as
chemical etching [167], pellet-pressing [168], electrochemical micromachining [169], laser surface [170],
diamond embossing [171], and electric discharge [172,173], etc., have been employed for texturing on
mechanical components.

Ippolito established a procedure to texture UHMWPE components using a novel die in a hot
embosser. Four processing parameters chamber temperature, hold duration, hold pressure and cooling
were varied to produce textures in specified dimensions. The 96% of the desired texture diameter was
achieved on 1800 N hold pressure, 100 ◦C hold temperature, 20 ◦C cooling at 1 ◦C/min rate and 60
minutes hold duration.

Wang et al. [174] examined the load-carrying capacity for textured SiC thrust bearing sliding in
water. Texturing in the shape of micro-pits, uniformly distributed in square arrays was done by reactive
ion etching on one of the contact surfaces. The existence of optimum micro-pits texture distribution
was found, where we can increase load carrying capacity twice as compared to the un-textured
surface. Zhou et al. [175] investigated the influence of geometric shape and orientation of dimples and
significant effect of such parameters on load-carrying capacity was observed. Rapoport [176] produced
the micro-textures by laser texturing to study the influence of texturing on tribological performance
under of surfaces under solid lubricating conditions. The influence of bulges height and dimples
density were studied. 40–50% dimples density is revealed as optimum density. Surfaces lapped to
half of the height of bulges showed the best result. Amanov et al. [177] compared the dimpled rim
specimen with bulges with the polished specimen and concluded that the friction and wear rate of
dimpled surfaces with bulges was lowest as compared to the polished surfaces probably due to the
reducing the contact area.

Zhang [178] studied the influence of textures on UHMWPE and compared them with steel surfaces.
The UHMWPE textured surfaces were more effective in terms of lowered frictions as compared to steel
surfaces at high loads. The optimum texture density for UHMWPE was in the range of 16% to 30%.
Taylor [179] studied the influence of the lubrication regime under varying load and speed conditions
to reduce the friction of UHMWPE. The results showed that 50% of COF reduced for textured surfaces
as compared to un-textured UHMWPE. Eddoumy [17] examined the effect of the textures on the
tribological performance of UHMWPE under reciprocating sliding tests. The two times increase in
roughness was confirmed for textured specimens. However, a decrease in dissipated energy was
observed for textured UHMWPE as compared to un-textured UHMWPE. Plots of dissipated energy
versus number of sliding cycles are shown in Figure 10. Considering that wear resistance increases
with decreasing dissipated energy, textured UHMWPE may have anti-wear properties.

Riveiro [180] studied the influence of several laser texturing conditions such as scanning speed,
pulse frequency, spot overlapping, and irradiance on texturing. The effect of these processing conditions
has been determined to control the melt viscosity altering the cell-material interaction.

Zhang [181] performed a numerical study to compare the different textured geometries including
triangle, circle, rectangular and square. The influence of area density, depth and dimple radius on
frictions were investigated and optimum parameters were determined. The results showed that the
square textures exhibit the lowest frictions due to the highest area density. The results for the effect of
texturing on UHMWPE reported in previous studies are given in Table 5.
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Table 5. Effect of texturing on tribological performance.

Ref. Texturing Method Shape Area Density Tribological Results

[178] Photolithography and
electrolytic etching Round dimple 5–40%

Optimum-30%
COF-76%

Wear depth-64%

[182] Nanoimprint
lithography (NIL)

Rectangular grading
array Area density-50% Static friction-43–55%

COF-60–90%

[181] Numerical Circular, Rectangular,
squared &Triangular

Circular-26%,
Rectangular-17%

squared-20%,
Trianglular-21%

COF for Circular-89.1%,
Rectangular-71.9%

squared-71.4%,
Trianglular-74.6%

[183] Laser surface Squared
Rectangular

Squared-51%
Rectangular-43.4%

COF-45%
Wear track depth-71%

[179] Micromachining Dimple 3.1, 12.6, 50.2%
Optimum-12.6% COF-50%

5. Conclusions

Irradiation is the most common method for sterilizing and/or crosslinking UHMWPE. The free
radicals produced by these methods create the inter-chain covalent bonds, leading to the formation
of crosslinking. The diffusion of free radicals out to polymer matrix or diffusion of oxygen into the
polymer as a result of irradiation can lead to the development of a subsurface oxidized band. This
subsurface oxidation region can lead to delamination and in many cases, failure occurs from subsurface
crack initiation and propagation.

The results showed that all radiation-induced cross-linked UHMWPE exhibits high wear
performance, but the oxidation reduces the mechanical performance of UHMWPE. The dose and dose
rate of irradiation strongly influence the crystallinity and oxidation of UHMWPE. The transvinylene
content and crosslink density increased at a higher radiation dose. The variations in the level of
crosslinking, crystallinity and oxidation change the wear and mechanical performance. The other
parameters, such as temperature, packaging atmosphere and packaging, processing conditions, also



Polymers 2020, 12, 323 19 of 28

influence the distribution and the amount of the oxidation products. With aging, oxygen diffuses deep
into the UHMWPE components, reacts with trapped free radicals, and eventually causes more oxidation.

Subjecting the radiated polymer to a suitable post-irradiation-induced crosslinking process
eliminates these radicals. A subsequent remelting step eliminates free radicals to promote oxidative
stability and to prevent UHMWPE degradation over the long term. Sterilizing UHMWPE in
oxygen-depleted atmospheres, like vacuum packaging or inert gas, can reduce the degree of oxidative
degradation. Vitamin E has been considered an important antioxidant to reduce the oxidation and
wear degradation of the UHMWPE component. Vitamin E reacts with trapped free radicals into
the UHMWPE, impending them to react with oxygen. Thus, it prevents oxidative degradation of
UHMWPE and increases its resistance to wear and fatigue.

Another important method to enhance the properties of UHMWPE is the reinforcement with
other particles. Carbon nanoparticles are a promising additive for enhancing wear resistance and
mechanical properties of UHMWPE. The distribution state and concentration of carbon nanoparticles are
predominant factors in the reinforcement of the ultra-high molecular weight polyethylene (UHMWPE).
Due to the high melt viscosity of UHMWPE material, the incorporation of carbon nanoparticles into
UHMWPE is greatly complicated and homogenous dispersion is a challenge. Many other particles such
as Nano ZnO, Fe-Al2O3/EVA, Alendronate sodium (ALN), SiO2 nanospheres, Talc, Zeolite, Nanoclay,
aramid, Hydroxyapatite (HA), High-density polyethylene (HDPE), Polyimide, Polytetrafluoroethylene,
Polyethylene glycol (PEG) have been reported in the literature for enhancing properties of UHMWPE.
The fraction, size, dispersion method, etc., strongly influence the wear and mechanical properties
of UHMWPE.

The durability of artificial joints can be enhanced with a highly wear-resistant coating. The relation
of a surface to coating is important in determining the success of an orthopedic implant. The literature
showed that coating the surface of UHMWPE enhanced the mechanical properties but can reduce the
wear-resistance. The selection of coating material is an important consideration for this purpose. The
results reported in the literature related to the texturing of UHMWPE showed that texturing is an
important method to enhance the friction and wear resistance of mating surfaces. However, there is a
need to study the influence of texturing on mechanical properties.
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