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Abstract

Computational algorithms have become an essential component of research, with great efforts by the scientific community 
to raise standards on development and distribution of code. Despite these efforts, sustainability and reproducibility are major 
issues since continued validation through software testing is still not a widely adopted practice. Here, we report seven recom-
mendations that help researchers implement software testing in microbial bioinformatics. We have developed these recom-
mendations based on our experience from a collaborative hackathon organised prior to the American Society for Microbiology 
Next Generation Sequencing (ASM NGS) 2020 conference. We also present a repository hosting examples and guidelines for 
testing, available from https://github.com/microbinfie-hackathon2020/CSIS.

BACKGROUND
Computational algorithms, software, and workflows have enhanced the breadth and depth of microbiological research and 
expanded the capacity of infectious disease surveillance in public health practice. Scientists now have a wealth of bioinformatic 
tools for addressing pertinent questions quickly and keeping pace with the availability of larger and more complex biological 
datasets. Despite these advances, we are finding ourselves in a crisis of computational reproducibility [1].

Modern software engineering advocates reliable software testing standards and best practices. Different approaches are employed: 
from unit testing to system testing [2], going from testing every individual component to testing a tool as a whole (Fig. 1). The 
extent of testing is a balance between the resources available and increasing sustainability and reproducibility. Continuous 
Integration (CI), where code changes are frequently integrated and assertion of the new code’s correctness before integration 
is often automatedly performed through tests, provides a robust approach for ensuring the reproducibility of scientific results 
without requiring human interaction. Comprehensive testing of scientific software might prevent computational errors which 
subsequently lead to erroneous results and retractions [3, 4]. However, the role of testing extends beyond that, as it also provides 
a way to measure software coverage, and therefore its robustness, allowing for reported issues to be converted into testable actions 
(regression tests), and the expansion and refactoring of existing code without compromising its function.

Software testing among peers across fields aligns with previous efforts of hackathons to create a more unified and informed 
bioinformatics software community [5]. In this context, we hosted a cooperative hackathon prior to the ASM NGS conference in 
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2020, demonstrating that the microbial bioinformatics community can contribute to software sustainability using a collaborative 
platform (Table S1, available in the online version of this article). From this experience, we would like to propose collaborative 
software testing as an opportunity to continuously engage software users, developers, and students to unify scientific work across 
domains. We have outlined the following recommendations for ensuring software sustainability through testing and offer a 
repository of automated test knowledge and examples at the Code Safety Inspection Service (CSIS) repository on GitHub (https:// 
github.com/microbinfie-hackathon2020/CSIS).

RECOMMENDATIONS
Based on our experiences from the ASM NGS 2020 hackathon, we developed seven recommendations that can be followed 
during software development.

Establish software needs and testing goals
Manually testing the functionality of a tool is feasible in early development but can become laborious as the software matures. Developers 
may establish software needs and testing goals during the planning and designing stages to ensure an efficient testing structure. Table 1 

Impact Statement

In the field of microbial bioinformatics, good software engineering practises are not yet widely adopted. Many microbial bioin-
formaticians start out as (micro)biologists and subsequently learn how to code. Without abundant formal training, a lot of 
education about good software engineering practices comes down to an exchange of information within the microbial bioin-
formatics community. This paper serves as a resource that could help microbial bioinformaticians get started with software 
testing if they have not had formal training.

Fig. 1. Testing strategies. (a) White- box vs. black- box testing. In white- box testing, the tester knows the underlying code and structure of the software, 
where the tester does not know this in black- box testing. Note that this distinction is not strictly dichotomous and is considered less useful nowadays 
(b) Unit vs. integration vs. system testing. When software comprises several modules, it is possible to test each single module (unit testing), groups 
of related modules (integration testing) or all modules (system testing). Note that the terms white- box testing and unit testing are sometimes used 
interchangeably but relate to different concepts.

https://github.com/microbinfie-hackathon2020/CSIS
https://github.com/microbinfie-hackathon2020/CSIS
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provides an overview of testing methodologies and can serve as a guide to developers that aim to implement testing practises. A minimal 
test set could address the validation of core components or the programme as a whole (system testing) and gradually progress toward 
verification of key functions which can accommodate code changes over time (unit testing, Fig. 1). Ideally, testing should be implemented 
from the early stages of software development (test- driven development). Defining the scope of testing is important before developing 
tests. For pipeline development, testing of each individual component can be laborious and can be expedited if those components already 
implement testing of their own. Testing of the pipeline itself should take priority.

Input test files: the good, the bad, and the ugly
When testing, it is important to include test files with known expected outcomes for a successful run. However, it is equally important 
to include files or other inputs on which the tool is expected to fail. For example, some tools should recognize and report an empty input 
file or a wrong input format. Therefore, the test dataset should be small enough to be easily deployed (see recommendation #4) but as 
large as necessary to cover all intended test cases. Data provenance should be disclosed, either if it’s from real data or originated in silico. 
Typically, a small test data is packaged with the software. Examples of valid and invalid file formats are available through the BioJulia 
project (https://github.com/BioJulia/BioFmtSpecimens). The nf- core project (https://nf-co.re/) provides a repository with test data for a 
myriad of cases (https://github.com/nf-core/test-datasets).

Use an established framework to implement testing
Understanding the test workflow can not only ensure continued software development but also the integrity of the project for 
developers and users. Testing frameworks improve test development and efficiency. Examples include unittest (https://docs. 
python.org/3/library/unittest.html) or pytest (https://docs.pytest.org/en/stable/) for Python, and testthat (https://testthat.r-lib. 
org/) for R, testing interfaces such as TAP (http://testanything.org/), or built- in test attributes such as in Rust. Although many tests 
can be implemented using a combination of frameworks, personal preferences (e.g. amount of boilerplate code required) might 
drive your choice. Additionally, in Github Actions the formulas of each test block can be explicitly stated using the standardised 
and easy- to- follow YAML (https://yaml.org/, Fig. S1, available in the online version of this article), already adopted by most 
continuous integration platforms (recommendation #4). For containerised software, testing considerations differ slightly and 
have been covered previously by Gruening et al. (2019) [6].

Table 1. Overview of testing approaches. Software testing can be separated into three types: installation, functionality and destructive. Each component 
is described, followed by an example on a real- life application on Software X, a hypothetical nucleotide sequence annotation tool

Name Description Example

Installation testing: can the software be invoked on different setups?

Installation testing Can the software be installed on different platforms? Test whether Software X can be installed using apt- get, pip, conda and from source.

Configuration testing With which dependencies can the software be used? Test whether Software X can be used with different versions of blast+.

Implementation testing Do different implementations work similarly enough? Test whether Software X works the same between the standalone and webserver 
versions.

Compatibility testing Are newer versions compatible with previous input/output? Test whether Software X can be used with older versions of the UniProtKB 
database.

Static testing Is the source code syntactically correct? Check whether all opening braces have corresponding closing braces or whether 
code is indented correctly in Software X.

Standard functionality testing: does the software do what it should in daily use?

Use case testing Can the software do what it is supposed to do regularly? Test whether Software X can annotate different FASTA files: with spaces in the 
header, without a header, an empty file, with spaces in the sequence, with unknown 
characters in the sequences, et cetera.

Workflow testing Can the software successfully traverse each path in the analysis? Test whether Software X works in different modes (using fast mode or using one 
dependency over the other).

Sanity testing Can the software be invoked without errors? Test whether Software X works correctly without flags, or when checking 
dependencies or displaying help info.

Destructive testing: what makes the software fail?

Mutation testing How do the current tests handle harmful alterations to the software? Test whether changing a single addition to a subtraction within Software X causes 
the test suite to fail.

Load testing At what input size does the software fail? Test whether Software X can annotate a small plasmid (10 kbp), a medium- size 
genome (2 Mbp) or an unrealistically large genome for a prokaryote (1 Gbp).

Fault injection Does the software fail if faults are introduced and how is this handled? Test whether Software X fails if nonsense functions are introduced in the gene 
calling code.

Gbp, Giga- base- pair; kbp, kilo- base- pair; Mbp, Mega- base- pair.
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Testing is good, automated testing is better
When designing tests, planning for automation saves development time. Whether your tests are small or comprehensive, automatic 
triggering of tests will help reduce your workload. Many platforms trigger tests automatically based on a set of user- defined conditions. 
Platforms such as GitHub Actions (https://github.com/features/actions) and GitLab CI (https://about.gitlab.com/stages-devops- 
lifecycle/continuous-integration) offer straightforward automated testing of code seamlessly upon deployment. A typical workflow, 
consisting of a minimal testing framework (see recommendation #1 and #3) and a small test dataset (see recommendation #2), can 
then be directly integrated within your project hosted on a version control system, such as GitHub (https://github.com/), and directly 
integrated with a continuous integration provider, such as GitHub Actions in GitHub. Testing considerations for containerised software 
has been covered previously by Gruening et al. (2019) [6].

Ensure portability by testing on several platforms
The result of an automated test in the context of one computational workspace does not ensure the same result will be obtained in a 
different setup. It is important to ensure your software can be installed and used across supported platforms. One way to ensure this is to 
test on different environments, with varying dependency versions (e.g. multiple Python versions, instead of only the most recent one). 
Developers can gain increased benefits of testing if tests are run on different setups automatically (see recommendation #4 and Fig. S1).

Showcase the tests
For prospective users, it is good to know whether you have tested your software and, if so, which tests you have included. This can be 
done by displaying a badge [7] (see https://github.com/microbinfie-hackathon2020/CSIS/blob/main/README.md#example-software- 
testing), or linking to your defined testing strategy e.g. a GitHub Actions YAML, (see recommendation #2, Fig. S1). Documenting the 
testing goal and process enables end- users to easily check tool functionality and the level of testing [8].

It may be helpful to contact the authors, directly or through issues in the code repository, whose software you have tested 
to share successful outcomes or if you encountered abnormal behaviour or component failures. An external perspective can 
be useful to find bugs that the authors are unaware of. A set of issue templates for various situations is available in the CSIS 
repository on GitHub (https://github.com/microbinfie-hackathon2020/CSIS/tree/main/templates).

Encourage others to test your software
Software testing can be crowdsourced, as showcased by the ASM NGS 2020 hackathon. Software suites such as Pangolin 
(https://github.com/cov-lineages/pangolin) [9] and chewBBACA (https://github.com/B-UMMI/chewBBACA) [10] have 
implemented automated testing developed during the hackathon. For developers, crowdsourcing offers the benefits of fresh 
eyes on your software. Feedback and contributions from users can expedite the implementation of software testing practices. 
It also contributes to software sustainability by creating community buy- in, which ultimately helps the software maintainers 
keep pace with dependency changes and identify current user needs.

CONCLUSIONS
Testing is a critical aspect of scientific software development, but automated software testing remains underused in scientific 
software. In this hackathon, we demonstrated the usefulness of testing and developed a set of recommendations that should 
improve the development of tests. We also demonstrated the feasibility of producing test suites for already- established 
microbial bioinformatics software (Table S1).
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