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Abstract: Information-based regulations (IBRs) are founded on the theoretical premise 

that public participation in accomplishing policy goals is empowered by open access to 

information. Since its inception in 1988, the Toxics Release Inventory (TRI) has provided 

the framework and regulatory impetus for the compilation and distribution of data on toxic 

releases associated with industrial development, following the tenets of IBR. As TRI 

emissions are reputed to disproportionately affect low-income communities, we investigated 

how demographic characteristics are related to change in TRI emissions and toxicity risks 

between 1989 and 2002, and we sought to identify factors that predict these changes. We 

used local indicators of spatial association (LISA) maps and spatial regression techniques to 

study risk disparity in the Los Angeles urban area. We also surveyed 203 individuals in eight 

communities in the same region to measure the levels of awareness of TRI, attitudes towards 

air pollution, and general environmental risk. We discovered, through spatial lag models, that 

changes in gross and toxic emissions are related to community ethnic composition, poverty 

level, home ownership, and base 1989 emissions (R-square = 0.034–0.083). We generated a 

structural equation model to explain the determinants of social empowerment to act on the 

basis of environmental information. Hierarchical confirmatory factor analysis (HCFA) 

supports the theoretical model that individual empowerment is predicted by risk perception, 

worry, and awareness (Chi-square = 63.315, p = 0.022, df = 42). This study provides 
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strong evidence that spatiotemporal changes in regional-scale environmental risks are 

influenced by individual-scale empowerment mediated by IBRs. 

Keywords: disparity; empowerment; environment; exposure; health; industry; model; 

pollution; spatial analysis; toxic chemicals 

 

1. Introduction 

Successful models of sustainable industrial development demand rigorous balancing of aggressive 

actions to maximize economic productivity and penetrating vigilance to minimize adverse impacts of 

industrial activity on ecosystems and public health. Information-based regulation (IBR) is an essential 

tool for maintaining such balances, representing one of the hallmarks of modern environmental policy 

in the U.S., and a symbolic shift towards public empowerment in pollution control. Pollution issues 

can be framed as a conflict between industries and one or more stakeholders, where industry’s access 

to production data creates an information asymmetry that promotes opportunistic, profit maximizing 

behavior at the expense of environmental quality in communities [1]. While the U.S. government has 

traditionally sought to protect environmental quality and human health by acting as the representative 

stakeholder for the public, IBRs, are designed to reduce information costs, giving the public more 

power to act as self-representing stakeholders to negotiate with both industry and policy-makers. 

The Toxics Release Inventory (TRI) is one of the most prominent IBRs in the U.S., and is widely 

considered to be one of the most successful environmental regulations in the U.S. [2]. Under TRI, 

certain categories of industrial facilities, with 10 or more employees, manufacturing or processing over 

a threshold amount of any criteria chemicals, must submit an annual report to the U.S. Environmental 

Protection Agency (EPA). The raw data are then made available to the public, through EPA’s TRI 

Explorer website or directly from their offices. This listing is the extent of regulatory obligation. What 

is to happen next is more nebulous, and the following steps are left up to the data users, assumed to be 

primarily impacted communities and participating industries. As EPA states,  

“Armed with TRI data, communities have more power to hold companies accountable and 

make informed decisions about how toxic chemicals are to be managed. The data often 

spurs companies to focus on their chemical management practices since they are being 

measured and made public.” [3].  

In principle, TRI should correct information asymmetry by providing all stakeholders with firms’ 

pollution data. The idea is that by having access to pollution information, the public will become 

empowered to participate in implementing the policy process to reduce risks from chemical pollutants. 

We can call this outcome stakeholder empowerment. Yet, what are the units of measuring 

empowerment and how much of it is needed to actually result in tangible benefits to society? 

Empowerment became a popular political phrase in the 1990s, prompting social scientists to more 

critically evaluate empirical evidence of its practical applications [4]. Stakeholder empowerment is, 

however, still loosely defined and unstudied in the context of TRI. 
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TRI has recently come under scrutiny for the economic burden it places on firms and for the 

administrative costs to USEPA [5], and a proposal is currently being considered to reduce the 

program’s cost to both the agency and reporting entities by requiring reporting on a biennial rather 

than an annual basis [6]. What is missing from the discussion, however, is an evaluation of how TRI 

has fulfilled its programmatic goal of stakeholder empowerment, or if it has done so selectively, 

leaving a pattern of risk disparity across communities. If TRI is designed to empower communities and 

the data are indeed being utilized, then we might expect to see a weaker relationship between 

socioeconomic status and TRI exposures, as people with the least initial access to toxics information 

should experience the greatest gains from such a program. The more realistic scenario is that those 

disempowered communities still lack the resources to utilize the data, and without more proactive 

policies, we should expect to see a worsening of the problem as more empowered neighborhoods are 

able to pressure firms to move or reduce pollution. Accounting for the phenomenon of spatial 

clustering seems to improve the predictive power of demographic variables in determining TRI facility 

proximity and emissions exposures [7], and so we precede our regression analysis with a descriptive 

inquiry into the spatial patterning of TRI locations and emissions, from 1989 to 2002. If TRI does tend 

to better help communities with more resources, then we expect to see stronger spatial patterns in 2002 

as a result of uneven pressures on facilities to reduce pollution in the more affluent, politically 

dominant neighborhoods. 

We selected Los Angeles for this study because it is one of the world’s centers of diversity in terms 

of industrial activities and socioeconomic parameters. We found that toxic emissions from TRI 

facilities were slightly more clustered in 2002 than they were in 1989. Statistical regression models 

indicate that reductions in the emission of Hazardous Air Pollutants (HAP) between 1989 and 2002 

were correlated with proportion of Hispanic population, poverty rates, and baseline 1989 emissions. 

Further, we identify some measurable outcomes of stakeholder empowerment, specifically individual 

attitudes, perceptions, and awareness. We then construct a theoretical model for stakeholder 

empowerment and use empirical data to support this model, using hierarchical confirmatory factor 

analysis (HCFA). This model links individual perception of environmental risks and the ability to 

identify information sources in explaining stakeholder empowerment attributable to TRI effectiveness. 

2. Methods 

2.1. Spatiotemporal Study of Risk Disparity 

Assessments of environmental risk, its perception and disparity pose several methodological  

issues, in the selection of appropriate geographic scale, demographic categories, and outcome 

measures. These assessments are complicated because they attempt to correlate two very different 

classes of datasets: U.S. Census data and environmental information databases. Detailed census data 

are packaged in artificially-defined units of analysis (zip codes, tracts, etc.), whereas environmental 

information is much less comprehensive and not always categorized by consistent geographical units. 

We focus first on the nature of spatial clustering; using local indicators of spatial association (LISA) and 

Moran’s I [8]. Spatial clustering of environmental risk and changes in ecologically-defined exposure 

over time allows us to characterize the differential effects of TRI, or social and economic influences on 
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toxic emissions levels. Second, we use ordinary least squares (OLR) and spatial regression to compare 

the relationship between changes in TRI exposure over time and in sociodemographics. We used a 

spatial coincidence method in which exposure data are aggregated by tract and joined to the 

corresponding census information [9,10]. 

2.1.1. TRI Data 

TRI data come with caveats. First, TRI is a self-reporting program with limited enforcement 

opportunities [11]. There is evidence of under-reporting, and many of the emissions reductions noted 

in the early 1990s were attributable to paperwork changes [12,13]. We expected some inaccuracies in 

the initial reporting year and accounted for possible over- or under-reporting by using 1989 for the 

initial emissions values. Second, TRI has a continuously evolving list of criteria chemicals and 

reporting thresholds, changes in which can mask the true trends in emissions over time. We chose 

hazardous air pollutants (HAPs) because of their documented effects on human health, and their 

persistence over time in the list TRI chemicals. Third, TRI has an approximate 3-year lag time between 

the reporting and the date that data are released to the public. We included all reportable HAPs,  

of which there are 190 chemicals in the TRI database [14,15]. Finally, TRI covers a subset of air 

pollutants from large stationary sources, excluding non-point sources of vehicle emissions and 

numerous domestic sources. 

2.1.2. Geographical Considerations 

Los Angeles (LA) has one of the highest concentrations of TRI facilities in the U.S., and the region 

has difficulty meeting Clean Air Act goals [16]. The population in LA is exposed to high levels of 

criteria air pollutants, and previous studies have examined linkages between urbanization, population 

density, and patterns of exposure to pollutants [17–19]. We focused on the U.S. Census-defined Los 

Angeles urban area, which eliminates the less populated portions of the county while maintaining the 

vast majority of TRI sites. We selected census tracts as the spatial unit of analysis because they are 

small enough to meaningfully correlate exposure with demographics, while being sufficiently large to 

allow reasonable interpretation of global spatial statistics [20–23]. 

2.1.3. Outcome Measure 

We examined two types of outcomes: total emissions, and toxicity-weighted emissions of HAPs. 

We used toxicity-weighted total HAP emissions to better assess the health impacts of toxic emissions 

on surrounding communities. Each chemical has assigned chronic, non-cancer inhalation reference 

concentration (RfC) or a reference exposure level (REL) in mg/m3 [24]. In some rare cases,  

we used RfCs or REL for chemical groups, or minimum risk levels (MRLs), a default value of  

1 mg/m3 (dibutyl and dimethyl phthalates were classified with di(2-ethylhexyl) phthalate). The 

resulting toxicity-weighted emissions values approximate the residual health risk from TRI facilities, 

and highlight areas of concern that might not stand out in an analysis of facility locations or raw HAP 

emissions data. 
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2.1.4. Model Inputs 

Pastor et al. [7] described three categories of environmental exposure disparities: land use 

(population density, urban classification); market dynamics (income, poverty, housing prices);  

and empowerment (ethnicity, home ownership, immigration). Of these, ethnicity is perhaps most 

consistently correlated with exposure, although specific ethnicity seems to interact with economic 

poverty [11]. Hispanics represent the largest minority population in LA, prompting us to focus on 

community proportion of Hispanics as a key ethnicity factor. 

The relationship between poverty and the distribution of environmental hazards is not easily 

predictable, haven been found to be non-significant with respect to cancer risk [24], TRI toxicity, TRI 

releases [16], and blood lead level [25]. Other studies, however, found positive correlations with 

exposure to persistent bioaccumulative toxins [7], TRI facility proximity and TRI facility density [10]. 

Median household income is an even trickier variable, in part due to observations of a curvilinear 

relationship with environmental exposures, where both urban low and high income areas are more 

highly exposed than middle income populations [9]. Still, income is useful, as it can differentiate 

between middle and high income tracts that both have low poverty rates. Home ownership can be taken 

as an alternate representation of economic power, as well as a proxy for community stability and  

political power. 

The simplest indicator of land use is population density and urbanization. Industrial sites tend to be 

clustered in parts of LA as a result of local zoning decisions and proximity to shared resources such as 

transportation networks [26]. 

2.1.5. Statistical Methods 

We used descriptive spatial analyses to explore and compare patterns in HAP emissions and total 

toxicity between the 1989 and 2002 reporting years. The GeoDa 095i program was used to generate 

local indicators of spatial association (LISA) cluster maps and Moran’s scatterplots to test for 

significant spatial clustering in TRI exposures [8]. We also ran ordinary least squares and spatial 

regressions in GeoDa 095i to test our theoretical models for change in HAP emissions and total 

toxicity between 1989 and 2002. 

2.2. Risk Perception and Social Empowerment 

Responses from 203 individuals were received from eight LA communities, between March and 

April of 2005. The communities were selected based on proximity to TRI facilities emitting HAPs in 

the 2002 reporting year, four experiencing emissions declines between 1989 and 2002, and four 

experiencing increases in emissions. Census block group demographic variables (percent white, 

income, education, and percent home-ownership) were used as predictors of the community’s 

collective ability to respond to TRI data, so that selected sites could also represent demographic 

diversity. About 2000 potential participants were randomly selected from an address database for the 

Census block groups that comprised the study sites. Each received a mailing with the survey materials, 

a cover letter explaining the study, and a card to request survey results. A second batch of mailers was 
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sent to non-responders with an incentive, a chance to win one of five $50 gift cards. Overall, the 

response rate was 9.1%. 

Survey Composition 

The survey instrument consists of four sections totaling 64 questions, and solicited responses on a 

general framework of environmental risk perception, followed by questions specific to air pollution 

awareness and knowledge/use of TRI. The first section consists of an environmental risk perception 

scale [27], adapted from interview format to a written survey. The scale elicits respondents’ beliefs 

about environmental risks by having them indicate their level of agreement with a series of statements 

using a Likert scale. Although this measure was designed to create a composite rating, the analysis 

presented here focuses on respondents’ views of trust, fairness, and perception of control regarding 

environmental risks. 

The second and third sections examine respondents’ perceptions of air pollution and their awareness 

and use of TRI, respectively. Respondents were asked to identify any local sources of air pollution 

they were aware of, and then to indicate how they found out about the sources. Subsequent questions 

solicit opinions regarding health risk from local air pollution and respondents’ perceived ability to find 

further information on air pollution and its health impacts. The third section explores whether or not 

respondents are familiar with TRI, right-to-know, or other ways to “find out how much and what type 

of chemicals a firm releases into the environment”. Respondents who were aware of one or more of the 

information sources then answered a series of questions regarding where they had heard of TRI, 

whether they had viewed the data, their opinions regarding the ease of accessing and interpreting the 

data, and whether TRI had prompted them to take any action (look for more information, tell a friend, 

contact a government agency, etc.). 

The final section covers basic demographic information, from gender and ethnicity, to income, 

education, and whether they own their home. It was important to investigate a range of factors that 

might influence individual perceptions of environmental risk, and initiative to respond to TRI. 

2.3. Survey Data 

2.3.1. Participants 

Of the 203 respondents, 52.2% were female, with a median age of 52 years (mean = 51, range = 20 

to 92). Participants ranged by ethnicity (40.4% Caucasian, 27.4% Latino, 19.7% African American, 

13.6% Asian American), and by socioeconomic status, from a monthly income of $500–999 to over 

$4000 (mean ~$3000). Education level varied widely, with an average achievement of “some college”, 

and 89.7% of respondents listed English as the language they were most comfortable speaking. 62.4% 

reported owning their home. We believe the response rate did not unduly influence the diversity of 

samples, as a comparison of ethnic composition and income between the survey respondents and the 

base populations indicated no consistent selection bias across the groups. 
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2.3.2. Data Transformation and Statistical Analyses 

Several variables were logarithmically transformed after they were found to be non-normally 

distributed. Linear transformations were used to more closely align the variances within the data set. 

Finally, select variables were reverse-coded to obtain positive covariances among variable groupings. 

The Amos 5.0.1 program maximum likelihood estimation was used to estimate the structural equation 

models in this analysis. 

3. Results and Discussion 

3.1. Spatial Data Analyses 

3.1.1. Local Patterns in Hazardous Air Pollutant (HAP) Releases 

The number of TRI facilities reporting HAP emissions in LA declined from 542 in 1989 to 220 in 

2002, with a concomitant decrease of 11.5 million kg of emissions in that period. We observe an 

increase in overall spatial clustering between 1989 (I = 0.081) and 2002 (I = 0.093). There is a weak 

temporal change in spatial pattern (I = 0.065), and the reduction in HAP emissions is not distributed 

evenly. Southeast LA, Torrance, and Wilmington—areas with high concentrations of TRI facilities—

show significant clustering of decreases in emissions, which could be attributed to the notion that those 

areas have the most “room for improvement”. The areas of most concern are near the Port of Los 

Angeles/Long Beach, and in Pasadena, where emissions have increased locally. Pasadena’s cluster 

turns out to be based on a single facility, whose releases represent the only emissions in an area that 

used to have several TRI facilities. The Port area and other scattered locations, however, have 

experienced increases in emissions and potentially more toxic exposures, and thus we look to a more 

specific indicator of risk, toxicity-weighted TRI emissions. 

3.1.2. Toxicity-Weighted Emission Patterns 

Weighting each chemical emission by its relative non-cancer toxicity provides a more detailed 

picture of community exposure and the potential for health problems. We find that the spatial pattern is 

again stronger in 1989 (I = 0.035) than in 2002 (I = 0.013), although both statistics are quite low. This 

is likely due to the fact that the weighting process drastically widens the range of emissions values,  

as some HAPs can be 100,000 times more toxic than the baseline (1 mg/m3). Looking at the patterns in 

toxicity from 1989 to 2002, Southeast LA and Carson experience clusters of declines in toxicity, just 

as with HAP emissions, even while their overall toxicity-weighted emissions remain high (Figure 1). 

Again, these may represent the areas with the most room for improvement, as the area experienced an 

overall decline of 2.95 billion toxicity-weighted kilograms. The areas that experience clusters of 

increases in toxicity are the Ports of LA and Long Beach, as well as the La Verne/Pomona area,  

Sun Valley, and Downtown and East LA. The overall distribution of toxicity exhibits less spatial 

autocorrelation (I = 0.027) than the distribution of unweighted HAP emissions (I = 0.065), indicating 

that the potential reductions in human health risk from TRI emissions are more evenly distributed than 

the raw emissions data might suggest.  
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(A) 

(B) 

Figure 1. (A) Change in HAPs 1989–2002, I = .0653 (B) Change in Toxicity-Weighted 

HAP Releases 1989–2002, I = 0.027. Bright red areas represent census tracts with an 

increase in HAP emissions, surrounded by other census tracts with increased HAP emissions 

(“high-high”), statistically significant at the 0.05 level. Pale red areas represent census tracts 

with increased HAP emissions, surrounded by decreased HAP emissions (“high-low”).  

Pale blue areas represent census tracts with decreased HAP emissions, surrounded by 

increased HAP emissions (“low-high”). Bright blue areas represent census tract with 

decreased HAP emissions, surrounded by decreased HAP emissions (“low-low”). 
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Overall, as the outcome measure becomes more specific, from mass HAP emissions to specific 

toxicity, spatial clustering becomes less pronounced, and exposures appear to be more evenly distributed. 

This relationship supports the notion that the more specific the measure of exposure, the less its 

distribution will be explained by spatial location, and the more it will potentially be influenced by social, 

economic, political, or other factors (When we look at the regression models in the second part of the 

analysis, we see that the spatial lag term in for toxicity-weighted emissions (coefficient = −0.049,  

p < 0.05) plays less of a role than the lag term for HAP emissions (coefficient = 0.246, p < 0.01). 

3.2. Demographic Predictors of Change in TRI Exposures 

We constructed a simple regression model for the relationship between TRI exposure (total HAP 

emissions and toxicity-weighted emissions) and socio-demographic factors, to test for potential differences 

in patterns of risk disparity from 1989 to 2002. We extended the three variable categorizations from  

Pastor et al. [7], selecting percent Hispanic and percent home-owners to represent empowerment, and 

median household income and percent living below the poverty for economic dynamics. The third 

category, land use, is more difficult to account for. Although population density has been used as a 

proxy for the clustering of facilities observed in industrial areas and should theoretically explain  

auto-correlated error terms [8], in our case it becomes unclear whether a spatial model is appropriate. 

Instead, we utilized the air emissions in 1989 and the log of toxicity-weighted emissions in 1989 to 

account for industrial land use, based on our observation that approximately the same tracts have TRI 

facilities in both years. In the case of both gross and toxicity-weighted emissions, the error terms 

exhibit strong autocorrelation and the regression diagnostics suggest the incorporation of a spatial lag 

term. In each case, we arrive at a spatial lag model that best illustrates the relationship between 

community characteristics and the benefits they experience regarding decreases in TRI emissions. 

3.2.1. Changes in Mass HAP Emissions 

The real benefit of mass reductions in TRI emissions should be reflected in reduced exposure to 

toxic materials. However, it may sometimes be easier for an industry to reduce TRI emissions by 

switching to more toxic, but lower volume chemicals. To explore spatiotemporal changes in mass 

and/or toxicity-weighted emissions, we proposed a spatial lag model, where the lag term captures 

unmeasured effects related to the pattern in the location of facilities with changes in emissions. TRI 

facilities may decrease their emissions if neighboring industries appear to be responding to community 

pressures to improve their environmental image. 

The ordinary least squares (OLS) model is weak (R-squared = 0.024), and the diagnostics are 

suggestive of a spatial lag model (Robust LM = 6.706, p < 0.05). The spatial lag model better predicts 

change in emissions (R-squared = 0.083), but does not represent a large portion of the variance  

(Table 1). This model accounts for 29.9% of the variance in emissions changes, where emissions 

increases are positively correlated with high poverty and low emissions in 1989. Interestingly, high 

proportion of Hispanics is correlated with emissions decreases, possibly as a result of their already 

high exposures to TRI emissions (the correlation between percent Hispanic and the log of 1989 

emissions toxicity is 0.130 (p < 0.05). 
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Table 1. Ordinary Least Squares (OLS) and Spatial Regressions for Change in TRI HAP 

Emissions from 1989 to 2002. 

Variables 
OLS Spatial Lag 1 Spatial Lag 2 

Coefficient T-Stat Coefficient T-Stat Coefficient T-Stat 

Percent Hispanic −0.921 −6.681 *** −0.612 −4.531 *** −0.527 14.413 *** 

Percent in Poverty 1.379 4.854 *** 0.949 3.433 *** 0.607 2.495 ** 

W_log of Air Emissions   0.309 9.207 *** 0.246 7.985 *** 

N 1942 1942 1942 

R2 0.024 0.083 0.299 

*** significant at the 0.01 level; ** significant at the 0.05 level. 

3.2.2. Changes in Toxicity-Weighted HAP Emissions 

If decreases in emissions toxicity occur due to TRI’s effectiveness in enhancing community 

environmental activism, it is important to capture the characteristics exhibited by such communities. 

Thus, we posited that decreases in emission toxicity are related to economic income, proportion of 

minority population (specifically Hispanics in LA), home ownership, and to the 1989 baseline 

emissions toxicity. This model also requires a spatial lag term. We do not assume, however, that 

changes in toxicity depend as much on one’s neighbor’s actions, as decreases in toxicity are not as 

obvious in evaluating TRI data as reductions in mass air emissions. 

Again, the initial OLS model is very weak (R2 = 0.017) pointing to a spatial lag model (Robust  

LM = 11.783, p < 0.05). Demographics account for only 4.7% of the variability in the first spatial 

model, but when we include baseline data for 1989 emissions toxicity, the variable overwhelms the 

effect of demographic factors (Table 2) (The R-squared for 1989 toxicity alone is 0.716, as compared 

to 0.720 for the entire model). However, the proportion of Hispanics in the community is positively 

correlated with emissions increases when accounting for 1989 toxicity, and negatively correlated when 

just looking at demographic variables. Median household income tends to be higher in areas that 

experience emissions increases, while the proportion of homeowners is lower. The direction of median 

household income is possibly a result of the U-shaped relationship typically seen between income and 

environmental exposure [8], and observed within our data as well. Lower and higher income areas were 

more likely to have lower TRI emissions and to experience increases. The coefficients on homeownership 

and percent Hispanic, both empowerment variables, support our hypothesis that meaningful toxicity 

decreases are more likely to happen in communities that are more empowered to influence chemical 

management decisions. 

Our results suggest that the choice of exposure measure, gross air emissions versus  

toxicity-weighted emissions, can greatly impact the type of environmental risk relationship one 

observes. While this analysis does not capture the impact of the smaller pollution sources and mobile 

sources, we can tell that the potential health burden from TRI is disproportionately affecting 

“disadvantaged” areas. From a local perspective, we know that there are “hotspots” where HAP 

emissions and toxicity have increased over time, communities with large minority populations, lower 

incomes, and located near major mobile emissions sources. 
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Table 2. OLS and Spatial Regressions for Change in Toxicity-weighted Emissions (1989–2002). 

Variables 
OLS Spatial Lag 1 Spatial Lag 2 

Coefficient T-Stat Coefficient T-Stat Coefficient T-Stat 

Percent Hispanic −0.422 −2.449 ** −0.286 −1.681 * 0.326 3.498 *** 

Median Household Income 8.885e-06 2.974 *** 7.592e-06 2.578 *** 5.036e-06 3.147 *** 

Percent Owner-Occupied Housing −1.160 −4.759 *** −0.907 −3.755 *** −0.382 −2.884 *** 

W-log of Toxicity   0.222 6.285 *** −0.049 −2.131 ** 

Log of 1989 Toxicity     −0.910 −67.515 *** 

N 1942 1942 1942 

R2 0.017 0.047 0.720 

Significant at the *** 0.01 level; ** 0.05 level; * 0.10 level. 

Our models for change in TRI emissions over time are slightly divergent from previous 

environmental risk models, first in that they are spatial models, and second, that the directionality of 

the coefficients does not exactly match risk disparity theory. Studies situated in California have 

consistently found percent minority to be positively correlated with exposure, for TRI facility 

proximity and estimated cancer risk [6,9], where we found the direction of percent Hispanic to be 

variable, but always significantly correlated with TRI exposure. Characterization of ethnicity seems to 

vary based on where in the U.S. a study is conducted, and in our case Hispanics comprise the 

predominant minority group. Our finding regarding poverty mirrors the results of Mennis [18] and 

Sheppard et al. [19], but not Ringquist [20], who attributes the negative correlation between poverty 

and exposure to a predominance of facilities in working class, middle-income neighborhoods.  

We found that TRI exposures tend to increase as median income increases, while Bowen et al. [21] 

found median household income to be negatively associated with TRI exposure at the tract level, as did 

two studies set in California [7,22]. The lack of concurrence among studies is likely due to wide 

geographic variation, unit of analysis [23], and a significant interaction often observed between ethnicity 

and income [28]. Low rates of home-ownership were sometimes significantly correlated with higher 

TRI exposures [24]. Our analysis differs most in the inclusion of 1989 emissions as an explanatory 

variable, and the use of a spatial lag term. The 1989 emissions are unique to our longitudinal design, 

while the spatial nature of environmental risk variables is typically accounted for some sort of land use 

or population density term, or simply not addressed. 

3.3. A Structural Model of Stakeholder Empowerment 

The theoretical underpinnings of social empowerment informed the model presented in Figure 2, 

where stakeholder empowerment is represented as a second order factor, while worry/concern, 

perceived risk, and awareness are first order factors. Each factor is comprised of indicators (boxes), 

which are individual survey questions. The first order factors are derived from theoretically important 

variable groupings with high reliability. 

Worry/inequity loads most strongly onto empowerment, with a standardized factor weight of 0.98  

(α = 0.678). The construct consists of individual feelings of worry or concern over environmental 

quality, as well as one’s judgment regarding whether poor people are more exposed to dangerous 

chemicals. Higher scores actually indicate less worry and less belief that the poor are more exposed. 
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Worry & Inequity seem to be influenced by stakeholder empowerment because individuals who feel 

more empowered to act on behalf of their interests both feel more control over and worry less about 

environmental risks. 

 

Figure 2. Model for Stakeholder Empowerment—Hierarchical confirmatory factor analysis was 

used to generate factor loadings for each of the three first order factors (perceived risk, 

worry/inequality, and awareness), as well as the indicators (inside the boxes). The indicators represent 

individual survey questions that grouped well under our theoretical framework (See Table 3). 

Perceived risk also loads strongly on stakeholder empowerment, with a standardized factor weight 

of 0.84 (α = 0.573). This construct is made up of questions about one’s perceptions of general 

environmental risk—whether the environment is more polluted than 10 years ago, whether chemicals 

in the environment cause serious health problems, and how much cancers are caused by exposure to 

tangible environmental agents. In this case, the variable is reverse-coded and lower scores are 

important. The lower scores indicate higher perceived risk. Interestingly, although high-risk perceptions 

fit the model, worry is low. The mechanism here may be attributed to a relationship between 

empowerment and awareness of risks, although not necessarily accuracy regarding that awareness. 
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Table 3. Correlation matrix and standard deviations of the variables used in the main model. 

Variable Description 
Correlation Matrix 

n M SD PR1 PR2 PR3 W1 W2 W3 W4 A1 

PR1 Perceived changes in environmental risk 203 1.37 0.66         
PR2 Perceived risk: environmental pollution 202 1.68 0.45 0.27 †        
PR3 Perceived risk: environmental cancers 202 1.27 0.59 0.36 † 0.32 †       
W1 Worry: environmental health risks 203 2.78 0.89 0.29 † 0.17 * 0.34 †      
W2 Fairness: poor are more exposed 200 1.44 0.64 0.21 † 0.29 † 0.37 † 0.22 †     
W3 Worry: health affected by environment 203 3.03 0.93 0.19 † 0.26 † 0.42 † 0.40 † 0.33 †    
W4 Worry: frequency of fears 203 2.16 0.84 0.31 † 0.13 0.39 † 0.42 † 0.30 † 0.39 †   
A1 Awareness: air pollution sources 203 0.94 0.76 0.15 ** 0.20 † 0.00 0.09 0.15 0.20 † 0.28 †  
A2 Awareness: information sources 203 0.75 0.64 0.06 0.14 * 0.00 0.07 0.13 0.11 0.25 † 0.72 † 

Pearson correlation coefficients are significant at the * 0.05 level or † 0.01 level (two-tailed). 
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Awareness loads relatively weakly, with a standardized factor weight of only 0.28 (α = 0.831). It is, 

however, an important component of stakeholder empowerment, as it captures an outcome that is more 

closely related to one’s ability to truly utilize TRI data and participate in the chemical management 

process. This construct is comprised of one’s ability to identify sources of air pollution and the range 

of resources respondents used to access information about local air pollution sources. Awareness is 

highly correlated to the ability to identify air pollution sources (r = 0.93) and number of information 

sources utilized (r = 0.77). It is the most weakly loading of the factors, and is possibly unimportant to 

one’s policy preferences with regard to air pollution issues [19], but we retain awareness in the model, 

as one cannot participate in the process without first being aware of the program as a resource.  

The majority of communities in the U.S. face negligible risk from TRI emissions, as facilities tend to 

be clustered in their distribution [20] and so the empowerment process begins with the ability to 

identify local risks. Although the indicators of awareness deal with general air pollution information 

and not TRI specifically, it is likely that a similar mechanism is at work. Of those respondents who 

were aware of TRI or similar programs, whether they had actually looked at TRI data was strongly 

correlated (r = 0.320, p < 0.01) with the number of sources of air pollution information they cited. 

Overall, worry/inequity and risk perception get at the intrapersonal aspect of empowerment—one’s 

sense of control or self-efficacy—but in the context of how they respond to environmental risks.  

Risk perception and awareness speak more to the interaction component, which relates to one’s ability 

to understand the resources available to them (e.g., air pollution information), and more specifically, 

but unclear from our study, the social and political structures that enable them to act [28–32]. 

3.3.1. Model Fit 

The structural equation model for fits the concept of empowerment reasonably well (Chi-square = 

46.634, df = 25, p = 0.005, comparative fit index (CFI) = 0.948, root mean square error of 

approximation (RMSEA) = 0.065). This is the most parsimonious model. We tested other models with 

up to 14 indicators among the three first order factors, in order to incorporate a broader spectrum of 

potential influences on empowerment. Variables included income, and further questions related to 

one’s personal exposure (e.g., “I am exposed to environmental risks simply by living in this 

community.”) fairness (e.g., “Some communities are treated unfairly when decisions are made about 

dangerous things in the environment.”), and level of formal education. The resulting overall model fit 

statistics and Cronbach’s alpha values for individual variable groupings both suggested that the model 

be simplified (correlation matrix presented in Table 3). 

3.3.2. Linking the Model to Outcomes 

We were also interested in whether or not the construct of empowerment could be correlated with 

awareness of the TRI program, reductions in TRI emissions over time, or demographic characteristics 

of the respondents. We measured the correlation between TRI awareness (A3) and the main model  

to be −0.062 (cov = −0.091, p = 0.442). We found no statistically significant association between TRI 

emission changes (ObsIncr) and the empowerment model (r = −0.011, cov = −0.006, p = 0.891).  

This was not surprising, as individual empowerment is merely one component of the empowerment 

process, and change in emissions is not a social/policy outcome directly addressed by the TRI 
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program. There is also an issue of defining social/policy change, in terms of what constitutes a 

meaningful decline in TRI emissions, and at what geographical level. This study examines clusters of 

census block groups, but it is possible that individual empowerment has more significantly impacted 

regional emissions than individual facilities or neighborhoods. 

Further evaluating TRI poses an interesting challenge to policy makers in that one of its primary 

goals, stakeholder empowerment, cannot be directly measured. This analysis, however, begins to 

construct a framework for understanding one component of empowerment. The three factors,  

risk perception, worry/inequity, and awareness, each appear to play a role in what we have labeled 

individual empowerment, and this basic structure informs how we might better elicit whether or not 

TRI is fulfilling its programmatic goals. Although certain components of our model parallel 

components of psychological empowerment, an important correlate to active participation [29], the 

questions were focused on responses to environmental quality and the specific issue of air pollution. 

With an individual empowerment framework created, we must next turn our focus to the process by 

which empowerment affects social/policy changes, along the vein of TRI use, action, and subsequent 

emissions changes. The measured level of TRI awareness did not have any meaningful correlation with 

our model, nor did measures of emissions change. This is likely a result of the complexity of the steps 

between the condition of empowerment and the environmental outcome. In fact, while feelings of 

personal control and perceptions of risk may influence whether or not an individual will actually 

change their behaviors in response to environmental threats, the link between personal concern for the 

environment and action tends to be weak [33–35]. TRI awareness may work better as an integral 

component of the model, as in the alternate model we tested, where it can function as an indicator for 

awareness. A larger sample size and a continuous scale of emissions changes could more accurately 

capture the relationship between knowledge of TRI and other aspects of stakeholder empowerment, 

and perhaps show a stronger link with air pollution awareness variables. It would also be useful to 

quantify how a model of empowerment is influenced by demographic characteristics. An attempt to 

correlate the model with age and percent minority resulted in an inadmissible model solution, though 

we know risk perception and individual risk judgments to follow socio-demographic patterns [27]. 

Individuals must then be able to interpret emissions data and quantify health risks to establish grounds 

for concern, and access to the appropriate structure or agency for translating knowledge into action, and 

exercising empowerment. These subsequent steps from empowerment to social change deal more with 

intermediate outcomes than with processes. This distinction is important because they comprise two 

different elements of empowerment theory [34], and because the outcomes are more difficult to 

empirically measure and are closely tied to external influences. While our study found several 

individuals who had taken action, such as contacting an environmental organization, further detail would 

have been difficult to obtain without using a narrative approach. The outcome of emissions decreases, 

while more easily measured, is likely impacted by economic trends, industry-level decisions, existing 

regulations, and various other factors that are external to stakeholder empowerment. 

4. Conclusions 

This research raises some important questions about tracking environmental risk disparity over time 

and about our ability to gauge the efficacy of policies designed to reduce pollution—do they help 
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everyone or do they exacerbate the problem of inequitable distribution of environmental risk?  

Our results support the notions that (i) environmental exposures such as TRI emissions are clustered 

throughout Los Angeles, and possibly, similar urban areas; and (ii) improvements in environmental 

quality due to TRI emissions and toxicity decreases tend to benefit populations that are more 

economically and socially empowered. We find that the exposure measure and choice of geographic 

region both greatly impact the nature of the environmental risk relationship, which is why we observe 

such wide disparities among environmental risk analyses, and why some of our findings run counter to 

those of previous studies. We suggest that focusing on changes in environmental exposures over time 

allows a more targeted and meaningful discussion of the processes that lead to disproportionate impacts 

on disadvantaged communities. 

TRI was designed in a good faith effort to promote access and openness in a regulatory realm 

traditionally characterized by its secrecy and inaccessibility. In practice, however, it is unclear whether 

the program has meaningfully impacted public empowerment. The model put forth in this paper begins 

to address how such a concept can be measured by examining certain individual characteristics it 

influences. We found statistically supported data groupings, risk perception, worry/inequity, and 

awareness, which provide some empirical support for our theoretical model of individual stakeholder 

empowerment. We were able to derive a parsimonious model with relatively good fit. Risk perception 

and worry are the most strongly loading concepts, which is consistent with previous findings regarding 

the role of personal risk estimation and feelings of control in response to environmental hazards. 

This research is particularly timely given the recent debacle surrounding the discovery of massive 

long-term lead (Pb) arsenic, cadmium and other hazardous emissions from the Exide lead-acid battery 

recycling facility in the Vernon district located approximately 8 km southeast of downtown Los 

Angeles. In March 2015, Exide agreed to a settlement in a federal criminal investigation to shut down 

the facility, and to commit $50 million for cleaning up the facility and surrounding neighborhoods, and 

another $9 million trust fund for decontaminating 216 nearby residences in the Boyle Heights 

neighborhood and the City of Maywood, many with low-income families [36]. By providing a starting 

point for investigating the structure of stakeholder empowerment and developing a method for 

evaluating information-based environmental regulations, this research underscores the importance of 

the U.S. EPA’s commitment to Environmental Justice through the EJ 2020 Action Agenda that 

advances the accomplishments of the prior Plan EJ 2014 [37]. EJ 2020 is designed to support the 

federal agency’s advancement of environmental justice through its programs, policies and activities, 

including cross-agency strategy on transformative environmental interventions in environmentally 

overburdened, underserved, and economically distressed communities [38]. 
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