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Gastroesophageal junction adenocarcinomas (GEJA) have dramatically increased in
incidence in the western world since the mid-20th century. Their prognosis is poor,
and conventional anti-cancer therapies do not significantly improve survival outcomes.
These tumours are comprised of a heterogenous population of both cancer stem cells
(CSC) and non-CSCs, with the former playing a crucial role in tumorigenesis, metastasis
and importantly drug resistance. Due to the ability of CSCs to self-replicate indefinitely, their
resistance to anti-cancer therapies poses a significant barrier to effective treatment of
GEJA. Ongoing drug development programmes aim to target and eradicate CSCs,
however their characterisation and thus identification is difficult. CSC regulation is
complex, involving an array of signalling pathways, which are in turn influenced by a
number of entities including epithelial mesenchymal transition (EMT), microRNAs
(miRNAs), the tumour microenvironment and epigenetic modifications. Identification of
CSCs commonly relies on the expression of specific cell surface markers, yet these
markers vary between different malignancies and indeed are often co-expressed in non-
neoplastic tissues. Development of targeted drug therapies against CSCs thus requires an
understanding of disease-specific CSC markers and regulatory mechanisms. This review
details the current knowledge regarding CSCs in GEJA, with particular emphasis on their
role in drug resistance.
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INTRODUCTION

Gastroesophageal junction adenocarcinomas (GEJA) are cancers which straddle the junction
between the oesophagus and stomach, sharing similar epidemiological characteristics and risk
factors to oesophageal adenocarcinoma (OAC) (Bray et al., 2018). Globally, these cancers have an
average 5-year survival rate of 19.9% (Seer, 2019). Their incidence has increased by approximately
600% since the 1970s, with the majority of cases occurring in the Western world (Rubenstein and
Shaheen, 2015). This epidemiological shift can be partially accounted for by changes in Western
lifestyle including diet, increased rates of obesity, smoking and gastro-oesophageal reflux disease;
however, the precise cause remains unclear (Buas and Vaughan, 2013). Despite early advances in
treatment modalities, rates of disease recurrence and resistance to anti-cancer therapies remain high
(Brungs et al., 2019), highlighting the need for further research into the epidemiology, management,
molecular biology and classification of these tumours. This review focuses on drug therapies in GEJA,
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with a specific emphasis on the role of cancer stem cells (CSC) in
the development of drug resistance and their potential utility as
targets for novel anti-cancer therapies in GEJA.

The Argument for GEJA as a Distinct Entity
Much of our current knowledge about GEJA is inferred from studies
conducted on oesophageal and gastric adenocarcinomas.
Malignancies of the gastroesophageal junction (GEJ) have
traditionally been subdivided into cancers of either gastric or
oesophageal origin. Clinical classification is based on the Siewert
scoring system, which categorises tumours into three groups
according to the location of their epicentre in relation to the
gastric cardia: the epicentre of Siewert I tumours are 1-5 cm
above; Siewert II tumour epicentres lie between 1 cm above and
2 cm below, and the epicentre of Siewert III tumours lies 2-5 cm
below the gastric cardia (Siewert and Stein, 1998). By contrast, the
TNM staging system is used to determine pathological classification.
Whilst the 7th edition of the TNM staged all GEJ tumours as
oesophageal cancers, the 8th edition was revised to treat Siewert
III tumours as gastric cancers, similar to the original definition (Rice
et al., 2017; Zanoni et al., 2018). However, many now believe that
GEJmalignancies are best regarded as a separate disease entity with a
distinct genetic signature, which could facilitate more accurate
classification through a “cell of origin” model in the future
(Hayakawa et al., 2016; Rice et al., 2017; Abdi et al., 2019; Lin
et al., 2019). Indeed, the pathogenesis of OAC (Siewert I-II) and
intestinal type adenocarcinoma of the gastric cardia (Siewert III)
both arise in the setting of intestinal metaplasia, indicating potential
shared carcinogenic pathways between the two anatomical locations.
This pathological link is further supported by genetic studies, which
suggest that metaplastic cells in Barrett’s oesophagus originate not
from squamous progenitor cells, but rather from gastric cardia
progenitor cells that have migrated to the lower oesophagus
(Paulson et al., 2006; Quante et al., 2012). Additionally, recent
genetic profiling studies demonstrated genetic similarities between
chromosomal unstable subtype (CIN) gastric cardia
adenocarcinomas and oesophageal adenocarcinoma of the GEJ
(Bass et al., 2014; Kim et al., 2017).

Current Treatment Options
Current treatment options for GEJA depend on the disease stage
at diagnosis. Locally advanced non-metastatic GEJA is treated

with a multimodal approach, usually a combination of surgical
resection with neoadjuvant, perioperative and/or adjuvant
chemotherapy, with or without concomitant radiotherapy
(Lin et al., 2019). In early stage disease (Tis, T1a),
minimally invasive approaches using endoscopic mucosal or
submucosal resections may be possible, whilst frankly invasive
tumours (T1b-4) require surgical resection. Surgery alone has
unacceptably high rates of treatment failure, often due to
advanced stage at presentation, thus most patients receive
additional neoadjuvant or perioperative therapy such as
Fluorouracil and Cisplatin. Several trial studies have
examined these treatment options in lower oesophageal and
gastric adenocarcinomas, both alone and in combination with
surgery, from which data relating to GEJA has been
extrapolated (Table 1). Whilst each showed a modest
improvement in survival outcomes, the rates of overall
survival (OS) and complete pathologic response (CPR)
remained poor (Al-Batran et al., 2016). Approximately 55-
60% of patients with early stage disease who undergo primary
resection with curative intent will relapse within 5 years, and
the median OS for patients with metastatic/recurrent disease is
11-12 months (Joshi et al., 2018). The poor response to these
conventional therapies highlights a need for the development
of more effective targeted therapies for both early and
advanced stage disease.

Early advances in our understanding of the molecular
biology of GEJA have identified potential new treatment
targets (Maron and Catenacci, 2017). Molecularly defined
GEJA subsets have been observed that may hold therapeutic
relevance, including tumours related to Epstein-Barr Virus;
tumours with hyper-mutation, in particular microsatellite
instable tumours; and those with homologous recombination
deficiency (Janjigian et al., 2018). Many GEJAs are of CIN
subtype, with amplifications in a range of receptor tyrosine
kinases (RTKs), including EGFR and ERBB2 (Bass et al., 2014;
Cristescu et al., 2015; Secrier et al., 2016; Kim et al., 2017). An
additional class of drug which shows promise in GEJA are
immune checkpoint inhibitors (ICIs), which help the
immune system to attack cancer cells. Immunotherapeutic
agents such as Pembrolizumab have been approved for use in
chemotherapy refractory GEJA (Le et al., 2015; Muro et al.,
2016; Janjigian et al., 2018; Greally et al., 2019). Ongoing trials

TABLE 1 | Completed Trial Outcomes for Current GEJA Treatments.

Study Name and Design Survival Data Clinical Trial Number

Neoadjuvant chemoradiotherapy plus surgery vs. surgery alone for
oesophageal or junctional cancer (CROSS) (Shapiro et al., 2015).

Median OS 43.2 months vs. 27.1 months
for surgery alone

Netherlands trial register number NTR487

Perioperative Epirubicin, Cisplatin, and infused Fluorouracil vs. surgery
alone for incurable gastric, lower oesophageal or GEJ cancer (MAGIC)
(Cunningham et al., 2006).

5-year survival 36% vs. 23% for surgery
alone

Current controlled trials number ISRCTN93793971

Perioperative Fluorouracil + Cisplatin in resectable GEJA (ACCORD)
(Ychou et al., 2011).

5-year survival 38% vs. 24% for surgery
alone

Clinical trials gov number NCT00002883

Perioperative chemotherapy with Fluorouracil + Leucovorin, Oxaliplatin,
and Docetaxel vs. ECF or ECX for resectable gastric or GEJ
adenocarcinoma (FLOT4) (Al-Batran et al., 2019).

Median OS 50 months vs. 35 months in
control ECF/ECX group

Clinical trials gov number NCT01216644

Abbreviations: OS, overall survival; ECF, Epirubicin, Cisplatin, and Fluorouracil; ECX, Epirubicin, Cisplatin, Capecitabine.
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are focusing on combinations of ICIs with established adjunct
therapies, in addition to investigating the utility of novel drugs such
as Ramucirumab–a vascular endothelial growth factor receptor 2
(VEGFR2) antagonist (Table 2). Whilst these trials have shown
modest therapeutic benefits, the survival advantage for the patient
nevertheless remains low. The fact that most trials focus on patients
with disease refractory to first line therapies emphasises the
ongoing issue of complex resistance mechanisms which
circumvent anti-cancer drug treatments.

Mechanisms of Treatment Resistance
Resistance to anti-cancer therapies persists as an obstacle to
optimal clinical management and prognostication in GEJA.
The mechanisms leading to drug resistance are complex and
multifactorial, and the pharmacological impact of a particular
therapeutic agent depends on both intrinsic and acquired tumour
cell characteristics (Vasan et al., 2019), (Figure 1). For example,
the interplay between the tumour and its microenvironment–that
being the surrounding immune cells, stroma and
vasculature–may mediate resistance through obstruction of
drug absorption by the tumour cells or by stimulation of
paracrine growth factors that promote tumour cell growth
(Prieto-Vila et al., 2017; Vasan et al., 2019). Physical barriers
include “sanctuary sites”, which are anatomical sites within which
systemic therapies do not reach therapeutic concentrations
(Toyokawa et al., 2015). The central nervous system is the
main sanctuary site in the human body, with the blood brain
barrier acting as a physical barrier; however, sanctuary sites may
also exist at tissue level due to uneven drug distribution between
different tissue types. Furthermore, across many different types of
cancers there exists a number of oncogenes and tumour

TABLE 2 | Ongoing Phase 3 Trials of Targeted Therapies in GEJA.

Clinical Trials Identifier
Number

Phase Line Disease Types Intervention Primary
Endpoints

NCT02370498 III II Gastric and GEJ adenocarcinoma Pembrolizumab vs. Paclitaxel in patients who progressed after
therapy with Platinum and Fluoropyrimidine

PFS and OS

NCT03019588 III II Advanced gastric and GEJ
adenocarcinoma

Pembrolizumab vs. Paclitaxel in patients who progressed after
therapy with Platinum and Fluoropyrimidine

PFS and OS

NCT02314117 III I Metastatic gastric and GEJ
adenocarcinoma

Capecitabine and Cisplatin +/- Ramucirumab PFS

NCT02494583 III I Advanced gastric and GEJ
adenocarcinoma

Pembrolizumab vs. Pembrolizumab + 5-FU or Capecitabine vs.
Placebo + 5-FU or Capecitabine

PFS and OS

NCT01196390 III I Oesophageal and GEJ
adenocarcinoma

Radiation therapy, Paclitaxel and Carboplatin +/- Trastuzumab DFS

NCT02625610 III I Unresectable gastric and GEJ
adenocarcinoma

Avelumab vs. continuation of first line chemotherapy OS

NCT02581462 III I Gastric and GEJ adenocarcinoma FLOT vs. FLOT + Herceptin/Pertuzumab PFS and CPR
NCT02564263 III II Advanced oesophageal and GEJ

adenocarcinoma
Pembrolizumab vs. investigator’s choice standard therapy OS

NCT02661971 III I Gastric and GEJ adenocarcinoma FLOT vs. FLOT/Ramucirumab OS and CPR
NCT03221426 III 1 Localized gastric and GEJ

adenocarcinoma
Pembrolizumab + Chemotherapy (FP or XP) vs. Placebo +
Chemotherapy (FP or XP)

OS, EFS
and CPR

NCT02743494 III II Oesophageal and GEJ
adenocarcinoma

Nivolumab vs. Placebo DFS and OS

Abbreviations: GEJ, gastroesophageal junction; FP, 5-fluorouracil; XP, Cisplatin plus Capecitabine; EFS, event free survival; DFS, disease free survival; PFS, progression free survival; CPR,
complete pathologic response

FIGURE 1 | Mechanisms of drug resistance. Multiple different
mechanisms contribute to the development of drug resistance in cancer.
These include the interaction between the tumour and its microenvironment;
secretion of paracrine growth factors which promote tumour growth;
tumour heterogeneity; physical barriers and the ‘undruggable genome’, which
refers to mutations which have not yet been targeted by anti-cancer therapies.
The blue cells in the background are B lymphocytes. The green cells in the
background are T lymphocytes. The bright green cells in the tumour mass are
cancer stem cells.
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suppressor genes, many of which have yet to be targeted by
anti-cancer therapies, including TP53 and MYC: the presence
of this “undruggable genome” further contributes to tumour
cell heterogeneity and hence drug resistance (Vasan et al.,
2019).

Most tumours are comprised of a phenotypically diverse
population of cancer cells, driven by a complex array of genetic
and phenotypic alterations that disrupt normal cell cycle and cellular
processes at multiple levels, including genomic, transcriptomic and
influences from the tumour microenvironment (Prasetyanti and
Medema, 2017; Shibue and Weinberg, 2017; Sharma et al., 2019;
Tripathi et al., 2020). This diversity is known as intra-tumour
heterogeneity and is thought to play a crucial role in the
development of treatment resistance (Prasetyanti and Medema,
2017). Putative personalised therapies often fail because a single
biopsy may sample only one sub-population of tumour cells, thus
underestimating the heterogeneity present within a tumour
(Gerlinger et al., 2012). Contributing to this complex
heterogeneity is the presence of cancer stem cells (CSCs). This
tumour cell population is of critical clinical importance and is
known to contribute to resistance to anti-cancer therapies in
many solid organ malignancies (Li and Li, 2014;Nunes et al., 2018).

Cancer Stem Cells
CSCs are a small but crucially important sub-population of
tumour cells which drive tumorigenesis, metastasis and

treatment resistance (Prasetyanti and Medema, 2017). They
are undifferentiated and capable of limitless self-renewal,
with potential for subsequent differentiation into various
non-CSC cell types which lack capacity for self-renewal or
migration and instead form the bulk of the tumour (Reya
et al., 2001). They were first identified in the 1990s when
CD34+, CD38− leukemic cells were shown to have bone
marrow hematopoietic stem cell characteristics (Lapidot
et al., 1994; Bonnet and Dick, 1997). In the 2003 seminal
paper, Al-Hajj et al identified CSCs in solid tumours by
demonstrating tumorigenic (stem) cells with cell surface
marker profile CD44+, CD24−/low in breast cancer (Al-Hajj
et al., 2003). Shortly after, CSC markers were identified for
other malignancies including prostate, colon, liver and lung
(Medema, 2013; Eun et al., 2017).

CSCs hold a Darwinian survival advantage over other
subclones within a single tumour due to their endogenous
resistance against chemo-radiotherapy regimes (Eun et al.,
2017; Prieto-Vila et al., 2017). Their ability to generate
phenotypically varied clonal populations within a single
tumour increases the likelihood of at least one group of
tumour cells surviving the assault of anti-cancer treatments
(Brooks et al., 2015; Eun et al., 2017). It has been proposed
that the limited efficacy of conventional anti-cancer therapies
is attributable to the fact that these treatments target the bulk
population of non-CSCs within a tumour, allowing small
populations of CSCs to persist and propagate, leading to a
clinical relapse (Reya et al., 2001; Shibue andWeinberg, 2017),
(Figure 2). CSCs are therefore one of the most clinically
important contributors to intra-tumour heterogeneity and
thus resistance to anti-cancer treatments.

CSCs have recently been shown to possess the ability to
dynamically switch between CSC and non-CSC states. This
cellular plasticity is regulated by a number of extrinsic and
intrinsic factors (Batlle and Clevers, 2017). Extrinsic factors
include niches, which are a specialised component of the
tumour microenvironment which act to regulate the fate of
stem cells via extrinsic signals and cellular interactions,
allowing them to interconvert between differentiated and
stem-like states (Quail et al., 2012; Cabrera et al., 2015). In
addition to this, intrinsic factors at both the genetic and
epigenetic level are also implicated, including regulatory
transcription factors (TF), DNA methylation and histone
modifications (Thankamony et al., 2020). CSCs are
regulated by a number of signalling pathways associated
with stemness, including Notch, Hedgehog, Wnt/
β-Catenin, JAK/STAT, and NF-κB (Chen et al., 2013a).
These pathways play a role in the maintenance of stem cell
properties and/or regulation of their differentiation through
alteration of messenger RNA (mRNA) expression via a
specific subset of TFs including OCT3/4, SOX2, c-MYC
and Klf-4 (Takahashi and Yamanaka, 2006; Eun et al.,
2017). These TFs, amongst others, are thought to act in
concert with each other and additional complex molecular
processes, including regulatory microRNAs (miRNA), to
establish CSC traits in neoplastic cells. The overlapping
influences upon CSC plasticity clearly demonstrate the

FIGURE 2 | Response of tumours to conventional and targeted
drug therapies. Tumours are comprised of a heterogenousmix of cancer cells,
including both cancer stem cells (CSC) and non-CSC. Conventional anti-cancer
therapies primarily target non-CSCs, allowing CSCs to selectively survive
and propagate, producing a tumour mass comprised of both CSC and non-
CSC subclones. By comparison, some novel precision medicine therapies
target CSCs, eradicating the CSC population. The residual non-CSC population
have no capacity for self-renewal and thus the tumour regresses or is eradicated,
leading to clinical remission. Bright green cells indicate CSCs.
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barriers posed to the development of effective anti-cancer
drug therapies for GEJA and other malignancies.

MicroRNAs as Regulators of CSC
miRNAs are a class of small non-coding RNAs which are
involved in regulating gene expression through either
degradation of their target mRNA or inhibition of mRNA
translation, with an overall effect of altered protein expression
within cells (Hezova et al., 2016). miRNAs are key in
regulating a range of essential biological processes
including proliferation, differentiation, survival and
apoptosis in many different cell types (Hezova et al., 2016).
They have been shown to be aberrantly expressed in various
human cancers and play a part in the regulation of CSC
characteristics (Khan et al., 2019). In their latter role, they
act by targeting many of the mRNAs which are associated with
stemness properties (Khan et al., 2019). Certain miRNAs may
also contribute to tumorigenesis by regulating the cell cycle
components of CSCs to inhibit apoptosis and promote cellular
proliferation (Mens and Ghanbari, 2018).

miRNAs involved in CSC regulation include the miR-17-92
family, which regulates the MYC oncogene to protect CSCs
against apoptosis; the let-7 family, whose decreased expression
is associated with metastasis and chemoresistance; and a wide
range of others including miR-21, miR-16 and miR-200 (Li et al.,
2014; Mens and Ghanbari, 2018). Although many miRNA
families have been shown to regulate organ-specific CSCs,
there is considerable overlap between the expression of
miRNAs in different solid organ malignancies (Chakraborty
et al., 2016). For example, miR-17 is downregulated in OAC
and renal cell carcinoma CSCs, yet miR-17 over-expression has
been demonstrated in colorectal CSCs (Lichner et al., 2015; Xi
et al., 2016). This highlights the molecular complexities of CSC
regulation, and thus the difficulties in identifying a suitable
targeted therapeutic agent for individual malignancies. Table 3
lists a number of miRNAs known to play a role in regulating
gastric and oesophageal CSCs.

EMT as a Regulator of CSC
Epithelial mesenchymal transition (EMT) is also believed to play
a crucial role in the regulation of CSCs. First described in 1982 by

Greenberg and Hay (Greenburg and Hay, 1982), it is a process of
lineage transition whereby epithelial cells lose their adhesive
properties and acquire a mesenchymal cell phenotype, with
corresponding changes in cell morphology and expression of
surface markers (Kalluri and Weinberg, 2009). This phenotypic
change in neoplastic cells facilitates tumour cell invasion,
metastasis and drug resistance (Lamouille et al., 2014; Chen
et al., 2017), (Figure 3).

EMT itself is tightly regulated by a wide spectrum
of complex cellular signalling pathways. The tumour
microenvironment–comprised of a large cohort of stromal
cells including cancer associated fibroblasts (CAF),
T-lymphocytes, macrophages and myeloid derived suppressor
cells–releases a range of cytokines, chemokines and growth
factors which act in a paracrine fashion to induce EMT
(Kalluri and Weinberg, 2009; Dongre and Weinberg, 2019).
These mediators are involved in the activation of a group of
EMT-TFs, including the Zeb, Snail, Twist and FOXC families

TABLE 3 | List of miRNAs Involved in Regulating Gastric and Oesophageal CSCs.

miRNA ID Tumour Type Pattern of Expression Functional Significance Reference

miR-15a-3p Gastric adenocarcinoma Downregulated Tumour suppressor (Wang et al., 2017)
miR-16-1-3p Gastric adenocarcinoma Downregulated Tumour suppressor (Wang et al., 2017)
miR-17-5p OAC Downregulated Enhanced radiosensitivity (Lynam-Lennon et al., 2017)
miR-10b Gastric adenocarcinoma, OAC Upregulated. Upregulated Oncomir. Oncomir (Wang et al., 2015), (Tian et al., 2010)
miR-200a Gastric adenocarcinoma, OAC Downregulated, Upregulated Tumour suppressor. Oncomir (Chen et al., 2013c)
miR-146b-5p Gastric adenocarcinoma Upregulated Oncomir (Chen et al., 2013c)
miR-93-5p Gastric adenocarcinoma Upregulated Oncomir (Li et al., 2018)
miR-219-5p Gastric adenocarcinoma Downregulated Tumour suppressor (Li et al., 2017)
miR-193-3p Gastric adenocarcinoma Downregulated Tumour suppressor (Jian et al., 2016)
miR-192 Gastric adenocarcinoma Downregulated Tumour suppressor (Chiang et al., 2012)
miR-215 Gastric adenocarcinoma Downregulated Tumour suppressor (Chiang et al., 2012)
miR-221 OAC Upregulated Enhanced chemoresistance (Wang et al., 2016)

Abbreviations: miRNA, microRNA; miR, microRNA; OAC, oesophageal adenocarcinoma.

FIGURE 3 | Relationship between epithelial mesenchymal
transition and stemness properties. The process of epithelial
mesenchymal transition involves a loss of epithelial phenotypic traits and a
concurrent acquisition of a mesenchymal phenotype. EMT is associated
with the development of stemness traits, including invasiveness, metastasis
and drug resistance. These processes are tightly regulated by overlapping
signalling pathways.
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(Medici et al., 2008; Kalluri and Weinberg, 2009; Galvan et al.,
2015; Wei et al., 2015; Yu et al., 2015). Once activated, they
orchestrate the EMT programme through a series of frequently
overlapping intracellular signalling pathways including MAPK,
ERK, PI3K, SMADs and Wnt/β-catenin (Tse and Kalluri, 2007;
Kalluri and Weinberg, 2009). These pathways are further
regulated by multiple intricate cellular interactions involving
miRNAs, epigenetic modulators and exogenous inducers
(Chen et al., 2017). The TFs, signalling pathways and indeed
the regulatory miRNAs which govern EMT have been shown to
intersect with those involved in the regulation of CSC
characteristics.

An association between EMT and CSC traits was first
proposed as an explanation for the ability of tumour cells at
the invasive tumour front to metastasize to distant sites (Brabletz,
2012). This relationship has been extensively investigated, with
early experimental studies demonstrating an association between
EMT and CSC traits in neoplastic cells across a wide range of
human carcinomas (Chen et al., 2017). In 2008 Mani et al were
the first to demonstrate a direct link between EMT and CSCs by
inducing EMT in human mammary epithelial cells (HMLE) via
ectopic expression of Snail or Twist, or exposure to TGF-β
stimulation. Following this, expression of a mesenchymal
phenotype and acquisition of stemness traits was witnessed:
cells acquired a CD44high/CD24low phenotype with the ability
to form a mammosphere (Mani et al., 2008). Morel et al similarly
demonstrated the acquisition of CSC traits in HMLEs following
activation of the Ras-MAPK pathway, which is involved in EMT
(Morel et al., 2008). However, these in vitro studies induced pure
epithelial and mesenchymal states, leading to the assumption that
the EMT programme represented a binary switch between
phenotypic states, with mesenchymal cells believed to
represent CSCs and epithelial cells non-CSCs. Recent evidence
now indicates that EMT is best viewed as along continuum,
whereby some cancer cells may undergo partial EMT, resulting in
a hybrid epithelial/mesenchymal (E/M) phenotype (Grosse-
Wilde et al., 2015; Beerling et al., 2016; Nieto et al., 2016;
Bierie et al., 2017; Kröger et al., 2019).

This E/M state, rather than the pure mesenchymal phenotype,
has recently been shown to correlate with tumour aggressiveness
and a poor clinical prognosis (Jolly et al., 2019). Efforts have thus
been made to identify the molecular components which promote
and regulate this hybrid state, which are referred to as phenotypic
stability factors (PSF). Bocci et al demonstrated that high
expression of nuclear factor erythroid 2-related factor 2
(NRF2) is involved in stabilising the hybrid E/M phenotype,
which in turn correlated with poor survival outcomes (Bocci et al.,
2019). Additional studies identified GRHL2, OVOL2, NUMB and
ΔNp63α as other important PSFs (Watanabe et al., 2014; Dang
et al., 2015; Jolly et al., 2016; Bocci et al., 2017). Expression of
these factors, in tandem with the EMT-TFs described above, have
been shown to facilitate cell migration by preventing cells from
undergoing complete EMT. Further interrogation of this model
of cellular plasticity is required in order to improve our
understanding of cancer progression, metastasis and
potentially mechanisms of resistance to anti-cancer drug
therapies in GEJA and other malignancies.

Interestingly, both EMT and CSCs are also associated with
tumour budding, which is defined as the presence of isolated
tumour cells or clusters of up to four tumour cells present in the
stroma at the invasive tumour front (Lino-Silva et al., 2018).
Tumour buds (TB) are thought to represent the histological
correlate of EMT, as they may transiently acquire a
mesenchymal phenotype due to activation of the WNT
signalling pathway, with associated loss of membranous
e-cadherin expression and gain of strong nuclear beta-catenin
staining (Zlobec and Lugli, 2010). TBs in colorectal cancer have
also been shown to express stem cell markers including LGR5,
ALDH1 and CD44, indicating a link between transition to the
mesenchymal phenotype and acquisition of stemness traits (Lugli
et al., 2020). The presence of TBs has demonstrated utility as a
prognostic tool, correlating with risk of disease relapse and death
from disease in upper gastrointestinal tumours including OAC
and GEJA (Brown et al., 2010; Koelzer et al., 2014; Landau et al.,
2014), whilst their potential as a predictive tool remains under
investigation. Furthermore, TBs are associated with resistance to
conventional anti-cancer therapies, which may be explained by
their low proliferative activity and resistance to apoptosis due to
up-regulation of anti-apoptotic proteins including RAF-kinase
inhibitor protein (RKIP) (Dawson et al., 2014). The presence of
these cells in epithelial malignancies, including GEJA, clearly
holds potential as a future oncotarget.

THE ROLE OF EMT AND CSC IN DRUG
RESISTANCE

Intra-tumour heterogeneity contributes to the efficacy of anti-
cancer drug therapies through intrinsic and acquired drug
resistance, which develops as a result of both genetic and
epigenetic alterations of sub-populations of cancer cells within
the tumour mass (Esteller, 2008; Shibue and Weinberg, 2017).
The relative sensitivities of isolated CSC-enriched tumour sub-
populations to chemotherapy, radiotherapy, immunotherapy and
molecularly targeted therapies have been extensively investigated,
with analyses demonstrating a far greater survival of CSCs
compared to non-CSCs across all treatment modalities and
across multiple different cancer types (Graham et al., 2002;
Levina et al., 2008; Dallas et al., 2009; Shibue and Weinberg,
2017).

EMT activation confers resistance to many different types of
therapeutic agents through a range of mechanisms, including
elevated expression of anti-apoptotic proteins such as Bcl-XL;
slow stem cell proliferation rates and increased levels of ATP-
binding cassette (ABC) transporters that mediate drug reflux
(Singh and Settleman, 2010; Shibue and Weinberg, 2017). For
example, Snail and Slug confer resistance to chemotherapy in
many cancers through antagonization of p53-mediated apoptosis
and by regulation of other genes involved in cell death (Dongre
and Weinberg, 2019). The miR-200 family play a contributory
role in treatment resistance, restoring chemosensitivity in
aggressive cancer cells through reversal of EMT (Cochrane
et al., 2010). This association is further corroborated by
studies which demonstrated a strong link between treatment
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resistance and the altered expression of genes associated with
EMT in cancer cells (Farmer et al., 2009; Byers et al., 2013).

Early results from clinical trials indicate that CSCs play a key
role in regulation of resistance to anti-cancer drugs. A phase II
clinical trial of patients with gastric cancer showed that patients
who received chemotherapy with Vismodegib–a hedgehog
inhibitor–held a survival advantage if their tumour had high
expression of CSC marker CD44 (Yoon et al., 2014). The use of
immunotherapy approaches to target CSCs are also under
investigation, focusing on therapies which target the CSC traits
of immune resistance and immunosuppression (Codd et al.,
2018). Despite these early advances, a greater understanding of
the relationship between EMT, CSCs and their mechanisms of
drug resistance would undoubtedly enhance drug development
and clinical outcomes for patients.

CSC Markers in GEJA
Therapeutic targeting of CSCs is limited by difficulties in
characterization of appropriate CSCs across many solid and
haematological malignancies. A range of markers have been
recognised for identification of CSCs, including cell surface
markers CD133, CD44, CD24 and CD66 and ALDH1A1
(Prasetyanti and Medema, 2017). Unsurprisingly, given their
shared characteristics, the markers used to isolate CSCs
overlap greatly with those used in the identification of normal
adult stem cells in non-neoplastic tissues (Brungs et al., 2016).
Their clinical utility is somewhat hampered by the fact that
expression of CSC markers is not uniform across different
malignancies: heterogenous expression may be observed within
a single tumour, between cancer subtypes and even between
patients within the same tumour subtype (Visvader and
Lindeman, 2012). Furthermore, the inherent plasticity in the
process of acquisition of CSC traits further complicates the
isolation of CSCs for further study.

Several studies exist within the literature regarding the
identification, regulation and clinicopathologic characteristics
of CSCs and CSC-like cells in both gastric and oesophageal
cancers, amongst a wide range of other malignancies. Whilst
studies pertaining specifically to CSCs in GEJA are sparse, it must
be remembered that studies investigating the role of CSCs in both
OAC and gastric cardia adenocarcinomas will include a
proportion of GEJAs. Here we describe some of the most
common CSC markers used in gastric and oesophageal
malignancies.

CD133
CD133, also known as Prolamin-1, is a five transmembrane
glycoprotein plasma membrane protein that has been used to
identify putative CSCs in a range of tumours including colon,
pancreas, prostate, stomach and oesophagus (Brungs et al., 2016).
It plays a role in regulation of the lipid component of the plasma
membrane, yet its precise function remains unknown (Codd
et al., 2018). Whilst frequently used as a marker of CSCs,
CD133 is not a CSC-specific antigen as it is also expressed in
a number of differentiated epithelial cells in various organs (Wu
and Wu, 2009). The use of different CD133 clones complicates
comparisons between studies, leading to poor reducibility and

potential for erroneous results (Hermansen et al., 2011). Despite
this, an early study investigating the utility of CD133 as a target
for anti-CSC therapies in ovarian cancer has shown promising
results (Skubitz et al., 2013).

A meta-analysis investigated the correlation between CD133+

gastric cancers and clinical outcomes in 773 patients, identifying
worse accumulative 5 year OS rates in CD133+ patients (21.4%) as
compared with CD133− patients (55.7%), in addition to a close
correlation between CD133 over-expression and adverse
clinicopathological features (Wen et al., 2013). A more recent
study demonstrated higher levels of CD133+ cells in blood
samples from gastric cancer patients, which correlated with
poor prognosis, as compared to unmatched normal controls
(Xia et al., 2015).

The role of CD133 in drug resistance has been described
through analysis of the ability of SP1049C—a pluronic-based
micellar formulation of Doxorubicin that has demonstrated
safety and efficacy in patients with advanced OAC and GEJA
in a phase II trial–to deplete CD133+ CSCs and decrease cancer
cell tumorigenicity in vivo (Alakhova et al., 2013). These findings
suggest a link between CD133+ CSCs and drug resistance in OAC.

CD44
CD44 is a transmembrane glycoprotein that is expressed on
both CSCs and differentiated adult cells, including endothelial
cells and hepatocytes, thus it cannot be regarded as a CSC-
specific antigen. It has a wide range of physiological roles
including adhesion, migration, differentiation, growth and
survival (Ponta et al., 2003). It serves as a putative CSC
marker in a range of malignancies including colon, brain,
stomach and oesophagus (Brungs et al., 2016). CD44 is
encoded by the 20 exon CD44 gene, which is subject to
alternative splicing (Lau et al., 2014). It has been proposed
that CD44 variants (CD44v) are more specific in their
identification of cells with tumorigenic potential when
compared to the standard isoform (CD44s) (Thapa and
Wilson, 2016). A number of studies have identified CD44v in
metastatic deposits from a range of solid organ malignancies,
which were associated with a poorer prognosis (Mulder et al.,
1994; Kaufmann et al., 1995; Ni et al., 2014; Ozawa et al., 2014).
Specific CD44 isoforms have been identified as potential targets
for anti-cancer therapies: early studies are investigating the
potential for therapeutic targeting of CD44+ CSCs in breast
cancer (Aires et al., 2016).

CD44v6 expression in gastric cancer resection specimens is
associated with poorer clinical outcomes including distant
metastasis, lymph node metastasis and depth of invasion (Liu
et al., 2005; Chen et al., 2013b). CD44+ circulating tumour cells
(CTCs) in patients with gastric cancer were also shown to
correlate with the clinicopathologic characteristics of the
resected tumour specimens, including disease stage and venous
invasion, whilst CD44− CTCs did not (Watanabe et al., 2017).
The association between loss of CD44 expression and poor
survival outcomes in patients with OAC has also been
described (Honing et al., 2014). These findings suggest that
CD44 is useful as a putative CSC marker and a predictor of
patient outcomes in gastric adenocarcinoma and OAC.
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ALDH1
Within the human genome, the aldehyde dehydrogenase (ALDH)
family comprises a reported 19 functional genes which encode
enzymes involved in the oxidative metabolization of endogenous
and exogenous aldehyde substrates, including lipids and amino
acids (Tomita et al., 2016). ALDH1 has 3 isoforms (ALDH1A1,
ALDH1A2 and ALD1A3) and is a marker of both stem cells and
CSCs, with expression observed in colon, pancreas, breast and
prostate cancers (Brungs et al., 2016; Tomita et al., 2016). ALDH
has been shown to attenuate oxidative stress: CSCs contain lower
levels of reactive oxygen species (ROS) than differentiated
tumour cells, allowing them to survive under conditions of
metabolic and oxidative stress (Vassalli, 2019). The ALDH
family is in fact a target of the TF NRF2, which is known to
promote the hybrid E/M phenotype and thus tumorigenic
properties, through its antioxidant defences (Luo et al., 2018).

Katsuno et al demonstrated CSC properties of self-renewal
and increased tumorigenicity in isolated ALDH1+ cells from
gastric cancer cell lines (Katsuno et al., 2012). High ALDH
expression has also been correlated with poor clinical
outcomes in pancreatic, ovarian and prostate cancers (Kuroda
et al., 2013; Le Magnen et al., 2013; Fitzgerald and Mccubrey,
2014). Furthermore, acquired drug resistance in tumour cells is
associated with transcriptional activation of ALDH1 expression
(Yoshida et al., 1993). Early studies have investigated the utility of
therapies targeting ALDH1 positive CSCs in breast, ovary and
NSCLC (Li et al., 2008; Duan et al., 2014; Schech et al., 2015; Wu
et al., 2015; MacDonagh et al., 2017). A phase II trial investigated
the effect of administering Disulfiram–a potent ALDH
inhibitor–in addition to standard chemotherapy to patients
with NSCLC, demonstrating good drug tolerance and a
prolonged survival (Nechushtan et al., 2015). Thus, ALDH1
holds great potential as a CSC target for novel drug therapies.

ALDH isoforms ALDH1A3 and ALDH1L1 have shown
potential as prognostic markers and therapeutic targets in
gastric cancer (Li et al., 2016), whilst Ajani et al showed that
ALDH1+ tumour cells from OAC and GEJA resection specimens
were more resistant to chemoradiotherapy, as compared to
tumour cells with low ALDH1 expression (Ajani et al., 2014;
Honing et al., 2014). Brungs et al examined the significance of the
expression of CD133, CD44 and ALDH1 in metastatic deposits of
GEJA: CD44 and ALDH1 expression were both significantly
associated with poorer OS, and CD44 positivity was identified
as an independent prognostic marker (Brungs et al., 2019).

EpCAM
The epithelial molecular adhesion molecule (EpCAM) is a
transmembrane glycoprotein present in most epithelial tissues
that plays a role in cell adhesion, migration and differentiation
(Imano et al., 2013). EpCAM is commonly expressed in gastric
cancer, with one study demonstrating CSC characteristics within
the EpCAM+ tumour population, but not in EpCAM- tumour
cells (Wenqi et al., 2009). Imano et al showed that peritoneal
metastases of gastric cancer express higher levels of EpCAM, as
compared with biopsy samples of the primary tumour, indicating
that only gastric cancer cells with high EpCAM expression may
metastasize to the peritoneum (Imano et al., 2013). Despite this,

most gastric cancers are EpCAM+, thus it must be used in
conjunction with other more specific markers in identification
of gastric CSCs (Brungs et al., 2016). Sun et al demonstrated that
resistance to treatment with Adriamycin, Cisplatin and 5-FU
(ACF) was associated with an increase in EpCAM and CD90
expression in OAC, suggesting a role for these putative CSC
markers in establishing drug resistance (Sun et al., 2018).

miRNAs
A number of miRNAs have been linked to the expression of
gastric CSCs. miR-196a-5p has been shown to be upregulated in
CD44+ gastric CSCs, and to play a key role in EMT and invasion
through targeting of the Smad4 signalling pathway (Pan et al.,
2017). High miR-501-5p levels were associated with poor OS and
were shown to induce a CSC-like phenotype in gastric cell lines
through activation of Wnt/β-catenin signalling pathways (Fan
et al., 2016). Upregulation of miR-132 in gastric CSCs was linked
to chemoresistance (Zhang et al., 2017). These miRNAs hold
great promise as a targetable molecule in the treatment of gastric
cancer, yet extensive work is required to validate their prognostic
significance and mechanisms of action.

miRNAs have also been implicated in the regulation of CSC
traits in OAC tumour cells. Downregulation of miR-17-5p in
OAC tumour cells with CSC traits was shown to produce a

FIGURE 4 | Summary of factors which contribute to
tumorigenesis, drug resistance and metastasis. Cancer stem cells
(CSC), microRNAs (miRNA) and the epithelial/mesenchymal (E/M) phenotype
each contribute to the development of tumorigenesis, drug resistance
and metastasis across a range of malignancies, including gastroesophageal
junction adenocarcinoma (GEJA). E/M and certain miRNAs have been shown
to regulate the acquisition of stemness properties in cancer cells. A selection
of regulatory pathways which govern CSC regulation are listed, in addition to a
selection of miRNAs shown to play a role in regulation of CSCs in gastric and
oesophageal adenocarcinomas. A selection of phenotypic stability factors
which regulate the E/M hybrid state are also listed.
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radioresistant phenotype (Lynam-Lennon et al., 2017). Similarly,
over-expression of miR-221 in OAC was associated with
resistance to 5-FU based chemotherapeutic regimens;
experimental knockdown in resistant cells resulted in
dysregulation of CD44 in addition to other Wnt/β-catenin
signalling target genes (Wang et al., 2016). These findings,
taken in conjunction with protein and potential mRNA CSC
markers, merit greater interrogation as the co-expression of
different molecular markers may hold great promise as targets
for anti-cancer therapies.

DISCUSSION

GEJAs are associated with poor clinical outcomes and high rates
of drug resistance. CSCs present a novel therapeutic target in
GEJA, yet our knowledge of markers of putative GEJA CSCs and
their regulatory pathways has been largely extrapolated from
studies looking at gastric and oesophageal CSCs (Figure 4). Thus,
our understanding of the mechanisms regulating the acquisition
of stemness traits in GEJA neoplastic cells remains incomplete. In
light of the growing opinion that GEJ tumours are best regarded
as a disease entity in their own right, more focused attention is
required to determine the specific molecular characteristics
of GEJA.

The future directions for research into CSCs in GEJA are clear.
An improved understanding of the phenotype of CSCs in GEJA,
as distinct from non-CSCs, is required to guide targeted drug
development. It is also important to accurately characterise the
differences in molecular biology of both primary tumours and

metastatic deposits, as potential variations may render targeted
therapies useful in different disease settings. Furthermore, an
enhanced knowledge of the regulatory pathways and miRNAs
governing CSCs in GEJA would both facilitate drug development
programmes and improve clinical prognostication, thus helping
to provide the best possible treatment for this patient population.
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