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Supplementary Figures 

Supplementary Figure 1 

 

Supplementary Figure 1: Sensitivity analysis for hyperparameters. a, Sensitivity check of the five 

hyperparameters: Batch prior, quantile parameter, fold change threshold, number of marker genes, and non-

zero count cell percentage. Correlation and RMSE are used as evaluation metrics. Default setting is marked 

as red. b, Histograms showing cell numbers and cell type counts per spot. c, Four opinions of Cell numbers 

(N values) of each spot provided by Spotiphy, and their impacts to decomposition outputs. Segmentation: 

N values come from StarDist’s Segmentation results. User input: User manually input the N values. Null: 

User doesn’t input any N values. Count-based estimation: N values come from total count-based estimation. 
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Boxplots illustrating the correlation, absolute error, cosine similarity, square error, and JSD for 

decomposition at each transcriptomic spot generated by each N input opinion. Boxplots are generated in 

the same manner as described in Figure 2. Each platform includes 3476 spots of AD sample. 
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Supplementary Figure 2 

 
Supplementary Figure 2. scRNA reference construction and alignment of images from multiple ST 

datasets. a, UMAP projection of cells from scRNA-seq data used as mouse brain reference. Cells are 

labeled according to sample-of-origin. WT_1 and AD_1 were selected for further analysis in this study. b, 

Heatmap of expression of marker genes among 27 cell types. c, Alignment of Visium H&E image and 
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Xenium DAPI image of AD sample. d, Alignment of Visium H&E images and in-total 20 FOVs of CosMx 

DAPI images of WT and AD samples. e, Alignment of Visium H&E images and IHC staining images of 

WT and AD samples. Visium data includes one biological replicate each for WT and AD samples. Xenium 

data includes one biological replicate each for WT and AD samples. CosMx data includes one biological 

replicate each for WT and AD samples. Scale bar in c-e: 500 μm. 
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Supplementary Figure 3 

 

Supplementary Figure 3. Benchmarking Spotiphy’s cellular deconvolution using matched Xenium 

data. a, Pearson correlation coefficient heatmap of cell-type proportions generated by Xenium, Spotiphy, 

and additional 8 methods selected for benchmarking. b-g, Box plots for correlation (b), absolute error (c), 

fraction of cells correctly mapped (d), cosine similarity (e), square error (f), and JSD (g) of the cell-type 

proportions for each transcriptomic spot generated by each method. Boxplots are generated in the same 

manner as described in Figure 2. Each platform includes 3476 spots of AD sample. 
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Supplementary Figure 4 
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Supplementary Figure 4. Heatmaps depicting the proportion of 27 cell types generated by 

Cell2location (a), CytoSPACE (b), CARD (c), Tangram (d), and RCTD (e) across the histological 

section of AD mouse sample. Visium data of AD sample was used as test data. Scale bar: 500 μm. 
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Supplementary Figure 5 
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Supplementary Figure 5. Heatmaps depicting the proportion of 27 cell types generated by 

SpatialScope (a), Stereoscope (b), SpatialDWLS (c), SPOTlight (d), CIBERSORTx (e), MuSiC (f), 

iStar (g), and Redeconve (h) across the histological section of AD mouse sample. Visium data of AD 

sample was used as test data. Scale bar: 500 μm. 
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Supplementary Figure 6 

 

Supplementary Figure 6. In situ hybridization (ISH) images of selected neutrophil markers from 

Allen Institute Atlas. Lyz2 (100055046), Ncf1 (70546251), Itgb2 (77464984), Ctsg (69608226), and 

Clec4d (71764721) are commonly used markers for neutrophils. Left panel is ISH result, middle panel is 

expression result (fluorescence), right panel is the merged result. Red box showed the positive signals 

around the ventricle. Data were downloaded from Allen Mouse Brain Atlas (mouse.brain-map.org) with 

one replicate for each panel. Scale bar: 500 μm. 
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Supplementary Figure 7 
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Supplementary Figure 7. Heatmaps depicting the absolute number of B cells (a), T cells (b), Microglia 

(c), Macrophage (d), and Neutrophils (e) generated by 14 deconvolution methods across the 

histological section of AD mouse sample. Scale bar: 500 μm. 
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Supplementary Figure 8 

 

Supplementary Figure 8. The ground truth of simulated ST data and performance evaluation of 

methods including Spotiphy using simulated Visium data. a, Heatmaps depicting the ground truth of 

proportion of 27 cell types from simulated ST data across the histological section. Scale bar: 500 μm. b-e, 

Box plots for fraction of cells correctly mapped (b), cosine similarity (c), square error (d), and JSD (e) of 

the cell-type proportions for each transcriptomic spot generated by each method. Boxplots are generated in 

the same manner as described in Figure 2. Each platform includes 3476 spots of AD sample.  
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Supplementary Figure 9 
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Supplementary Figure 9. Heatmaps depicting the proportion of 27 cell types generated by Spotiphy 

(a), Cell2location (b), CytoSPACE (c), CARD (d), Tangram (e), and RCTD (f) across the histological 

section of simulated Visium data. Scale bar: 500 μm. 
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Supplementary Figure 10 

 

Supplementary Figure 10. The performance evaluation of additional methods using simulated 

Visium data. a, Pearson correlation coefficient heatmap of cell-type proportions generated by the simulated 

Visium (Ground truth), Spotiphy, and additional 8 methods selected for benchmarking. b-g, Box plots for 

correlation (b), absolute error (c), fraction of cells correctly mapped (d), cosine similarity (e), square error 

(f), and JSD (g) of the cell-type proportions for each transcriptomic spot generated by each method. 

Boxplots are generated in the same manner as described in Figure 2. Each platform includes 3476 spots of 

AD sample.  
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Supplementary Figure 11 

 

Supplementary Figure 11. The performance benchmarking using additional ST datasets. a-f, Box 

plots for correlation (a), cosine similarity (b), fraction of cells correctly mapped (c), absolute error (d), 

square error (e), and JSD (f) of the cell-type proportions for each transcriptomic spot generated by each 

method. Boxplots are generated in the same manner as described in Figure 2. Each dataset includes 1000 

spots. 
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Supplementary Figure 12 

 
Supplementary Figure 12. UMAP projection of 33,819 cells from iscRNA data using Seurat without 

(a) and with Harmony (b) integration method. 
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Supplementary Figure 13 

 

Supplementary Figure 13. Spotiphy provides cell-type proportions of human breast samples. a-b, 

UMAP projection of cells from scRNA-seq data used as human breast reference. Cells are labeled according 

to cell type (a) and sample-of-origin (b). c, Heatmap of expression of marker genes among 10 cell types. d, 

Heatmaps depicting the proportion of 10 cell types generated by Spotiphy across the histological images of 

three human breast Visium samples. Visium data includes one biological replicate for each tumor sample. 

Scale bars: 500 μm. 
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Supplementary Figure 14 

 
Supplementary Figure 14. a-b, UMAP projection of 7,183 spots from three human breast samples. c, 

inferCNV results using spot-level ST data. d, Transcriptomic spots from the Visium data are color-coded 

according to their spots’ clusters. 
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Supplementary Figure 15 

 

Supplementary Figure 15. a-b, Human colorectal cancer sample. a, UMAP projection of 18,462 cells of 

iscRNA data. b, inferCNV results using iscRNA data. c-d, Human lung cancer sample. c, UMAP projection 

of 11,423 cells of iscRNA data. d, inferCNV results using iscRNA data. 
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Supplementary Figure 16 

 

Supplementary Figure 16. Decomposition Evaluation using simulated Visium data of mouse brain. a, 

Box plots represents the correlation, absolute error, cosine similarity, square error, and JSD of the cell-type-

level expression profiles for each transcriptomic spot generated by each method. Boxplots are generated in 

the same manner as described in Figure 2. Each platform includes 27 cell-type of AD sample. b, Confusion 

matrix for each method for Matthew’s correlation coefficient (MCC) calculation. TP: true positive, FP: 

false positive, FN: false negative, TN: true negative. c, Decomposition processing time per spot. 
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Supplementary Figure 17 

 

Supplementary Figure 17. Decomposition Evaluation using real Visium data of mouse brain. a, 

Pearson correlation coefficient heatmap of cell-type-level expression profiles generated by all methods 

selected for benchmarking. b, Selected SVGs distribution patterns across the histological section of AD 

mouse sample. 
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Supplementary Figure 18 

 

Supplementary Figure 18. Imputation evaluations using Xenium datasets. a-c, The correlation between 

distance and cellular proportion for 50-μm spots in mouse brain (a), human lung cancer (b), human 

colorectal (c) tissues. The error bands represent the standard deviations for each data point. d-f, Comparison 

between Xenium (the ground truth, left panel) and Spotiphy’s imputation results (right panel) based on in-

spot data of mouse brain (d), human lung cancer (e), human colorectal (f). Shadows in right panels represent 

spot location. Scale bar: 500 μm.  
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Supplementary Figure 19 

 

Supplementary Figure 19. Summary of benchmarking methods with Spotiphy. a, Major features of all 

methods benchmarked with Spotiphy in this study. b, Gene coverage of iscRNA data generated from 

Visium datasets used in this study. Left panel represents WT and AD mouse brain samples. Right panel 

represents three human breast samples.  
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Supplementary Figure 20 

 



32 
 

 

Supplementary Figure 20. Pseudo single-cell-resolved whole-transcriptome images with cell 

annotation of WT mouse brain sample (a) and of AD mouse brain sample (b). Color legend in Fig. 6. 

Scale bar: 500 μm. 
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Supplementary Methods 

1 Spotiphy pipeline 

Spotiphy is a unified pipeline that integrates scRNA-seq data, spatial transcriptomics (ST) data, 

and high-resolution histology images to enhance our understanding of complex biological systems. 

The core idea of Spotiphy is to effectively model the posterior distribution of spatial 

transcriptomics considering factors such as the single-cell reference, cell type proportions, and 

batch effects. With the generative modeling, Spotiphy primarily performs three tasks: 1. estimating 

the proportion of cell types at each capture area (e.g., circular spots) of the tissue; 2. generating 

inferred single-cell RNA expression matrix (iscRNA data); 3. generating pseudo single-cell 

resolution images. In this section, we present the workflow and detailed mathematics behind the 

pipeline. The structure of this section is illustrated in Supplementary Information Fig. 1. 

 

The most commonly used notations in this section are briefly introduced as follows. We use bold 

uppercase letters to denote matrices and sets, bold lowercase letters to denote vectors, and 

unbolded letters to denote scalars. Besides, for a matrix 𝑴𝑴, we use the corresponding lower letter 

notations 𝑚𝑚𝑖𝑖,𝑗𝑗 and 𝒎𝒎𝑖𝑖 to denote its 𝑖𝑖𝑖𝑖-th entry and 𝑖𝑖-th row. We let 𝑿𝑿 ∈ ℝ𝑆𝑆×𝐺𝐺  denote the spatial 

expression count matrix after counts per million (CPM) normalization, where 𝑆𝑆 is the number of 

capture areas (locations) and 𝐺𝐺 is the number of gene types. Thus, 𝑥𝑥𝑠𝑠,𝑔𝑔 represents the normalized 

expression of gene 𝑔𝑔 at location 𝑠𝑠. We let 𝒀𝒀 ∈ ℝ𝐶𝐶×𝐺𝐺 denote the normalized scRNA expression 

matrix, where 𝐶𝐶 is the number of cells. In addition, to fully leverage matrix 𝒀𝒀, the cell types of all 

cells need to be annotated. We let 𝜏𝜏(𝑐𝑐) ∈ {1, 2,⋯ ,𝑇𝑇} denote the type of cell 𝑐𝑐, where 𝑇𝑇 is the 

number of cell types. 
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1.1 Marker gene selection 

ST data and scRNA-seq data typically detect over 10,000 pre-designed genes. However, not all of 

these genes are informative in differentiating cell types and estimating cell type proportions. For 

example, some genes may not be differentially expressed across different cell types, while others 

may have low expression levels that make them difficult to be detected reliably. Therefore, it is 

important to identify a subset of marker genes that are informative in our analysis to enhance both 

the speed and accuracy of the estimation. Similar to the literature, the marker genes in Spotiphy 

are defined as the genes that exhibit significantly higher expression levels in one specific cell type 

compared to all other cell types. 

 

In the literature, marker genes are usually selected based on one-vs-rest comparisons. Specifically, 

to determine whether a gene 𝑔𝑔 is a marker gene for cell type 𝑡𝑡, statistical tests (or comparisons) 

are performed based on two populations: 1. the expression of gene 𝑔𝑔 in type 𝑡𝑡 cells, and 2. the 

expression of gene 𝑔𝑔 in cells of all other types. However, one issue with this approach is that it 

involves aggregating the expression of gene 𝑔𝑔 across all other types, which may lead to unreliable 

 

Supplementary Information Figure 1. Structure of supplementary methods. 
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results. For example, we let 𝜇𝜇𝑡𝑡,𝑔𝑔  denote the average expression of gene 𝑔𝑔 in type 𝑡𝑡  cells, and 

assume that 𝜇𝜇𝑡𝑡,𝑔𝑔 < 𝜇𝜇𝑡𝑡′,𝑔𝑔. Thus, gene 𝑔𝑔 has a higher expression level in type 𝑡𝑡′ cells and should not 

be selected as the marker gene of cell type 𝑡𝑡. Nevertheless, after aggregating the expression of 

gene 𝑔𝑔 in all cells that do not belong to type 𝑡𝑡, the mean of the first population can be significantly 

higher than that of the second population. In this case, the one-vs-rest approach may wrongly select 

gene 𝑔𝑔 as the marker gene of cell type 𝑡𝑡. Another issue of the one-vs-rest approach is that the 

comparison results are influenced by the number of cells belonging to each cell type in the scRNA-

seq data. For example, if 98% of the cells in the scRNA-seq data belong to cell type 𝑡𝑡, then the 

marker genes of cell type 𝑡𝑡′ can merely distinguish cell types 𝑡𝑡 and 𝑡𝑡′. 

 

To address these issues, we propose a new method to select marker genes, which is based on 

pairwise 𝑧𝑧 -test, pairwise fold changes, and coverage rates. Specifically, we let 𝑨𝑨𝑡𝑡 =

{𝑐𝑐 = 1, 2,⋯ ,𝐶𝐶|𝜏𝜏(𝑐𝑐) = 𝑇𝑇} denote the set of cell indices that belongs to cell type 𝑡𝑡. Then the mean 

and variance of gene 𝑔𝑔 expression in type 𝑡𝑡 cells are estimated as 

𝜇̂𝜇𝑡𝑡,𝑔𝑔 =
∑ 𝑦𝑦𝑡𝑡,𝑔𝑔𝑐𝑐∈𝑨𝑨𝑡𝑡

|𝑨𝑨𝑡𝑡|
, 𝜎𝜎�𝑡𝑡,𝑔𝑔 = �∑ �𝑦𝑦𝑡𝑡,𝑔𝑔 − 𝜇̂𝜇𝑡𝑡,𝑔𝑔�

2
𝑐𝑐∈𝑨𝑨𝑡𝑡

|𝑨𝑨𝑡𝑡| − 1
, �1� 

where |𝑨𝑨𝑡𝑡| is the cardinality of set 𝑨𝑨𝑡𝑡. Thus, to determine whether 𝜇𝜇𝑡𝑡,𝑔𝑔 > 𝜇𝜇𝑡𝑡′,𝑔𝑔, we conducte 𝑧𝑧-

test with null hypothesis 𝐻𝐻0: 𝜇𝜇𝑡𝑡,𝑔𝑔 ≤ 𝜇𝜇𝑡𝑡′,𝑔𝑔  and alternative hypothesis 𝐻𝐻1: 𝜇𝜇𝑡𝑡,𝑔𝑔 > 𝜇𝜇𝑡𝑡′,𝑔𝑔 . The test 

statistic is derived as 

𝑧𝑧𝑔𝑔,𝑡𝑡,𝑡𝑡′ =
𝜇̂𝜇𝑡𝑡,𝑔𝑔 − 𝜇̂𝜇𝑡𝑡′,𝑔𝑔

��𝜎𝜎�𝑡𝑡,𝑔𝑔�
2

|𝑨𝑨𝑡𝑡|
+
�𝜎𝜎�𝑡𝑡′,𝑔𝑔�

2

|𝑨𝑨𝑡𝑡′|

. �2�
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We let  𝜆𝜆𝑔𝑔,𝑡𝑡,𝑡𝑡′ denote the 𝑝𝑝-value of this test. Besides, we let 𝑭𝑭𝑔𝑔,𝑡𝑡 = �𝜇̂𝜇𝑡𝑡,𝑔𝑔/𝜇̂𝜇𝑡𝑡′,𝑔𝑔�𝑡𝑡′ ≠ 𝑡𝑡� denote the 

set of fold changes for gene 𝑔𝑔 when comparing gene expressions in cell type 𝑡𝑡 with each other cell 

type. We let 𝑓𝑓𝑔𝑔,𝑡𝑡(𝑣𝑣) denote the 𝑣𝑣-th sample quantile for the values in set 𝑭𝑭𝑔𝑔,𝑡𝑡. Furthermore, we let 

𝑤𝑤𝑡𝑡,𝑔𝑔 =
∑ 𝐼𝐼(𝑦𝑦𝑡𝑡,𝑔𝑔>0)𝑐𝑐∈𝑨𝑨𝑡𝑡

|𝑨𝑨𝑡𝑡|  be the coverage rate of gene 𝑔𝑔 in type 𝑡𝑡 cells, where 𝐼𝐼 is the indicator function 

that takes the value 1 when the specified condition is satisfied and 0 otherwise. With these 

preparations, gene 𝑔𝑔 is selected as a candidate of type 𝑡𝑡 marker genes when the following three 

conditions are satisfied: 

• 𝑤𝑤𝑡𝑡,𝑔𝑔 > 𝑙𝑙cover, 

• max �𝜆𝜆𝑔𝑔,𝑡𝑡,𝑡𝑡′�𝑡𝑡′ ≠ 𝑡𝑡� < 𝑙𝑙𝜆𝜆, 

• 𝑓𝑓𝑔𝑔,𝑡𝑡(𝑣𝑣) > 𝑙𝑙fold. 

 

The first condition requires that the gene 𝑔𝑔 be expressed in a certain proportion of the type 𝑡𝑡 cells. 

The second condition requires all pairwise statistics related to 𝜇𝜇𝑡𝑡,𝑔𝑔 are significant. Finally, the last 

condition guarantees that the gene 𝑔𝑔 exhibits higher expression in type 𝑡𝑡 cells compared to cells 

of other types, in terms of fold change. Note that for the fold change requirement, we incorporate 

the parameter 𝑣𝑣 for calculating the quantiles instead of using the minimum fold change from set 

𝑭𝑭𝑔𝑔,𝑡𝑡 . This is because setting a requirement for the minimum fold change to exceed a certain 

threshold can be overly stringent, particularly when some cell types are very similar, such as 

neurons at different layers of the cerebral cortex. 

 

In these conditions, 𝑙𝑙fold, 𝑙𝑙𝜆𝜆, and 𝑙𝑙cover are predetermined thresholds and 𝑣𝑣 is the predetermined 

quantile level. Besides, if cell type 𝑡𝑡 has more than 𝑛𝑛select candidate genes, we rank them based 
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on the fold change quantile 𝑓𝑓𝑔𝑔,𝑡𝑡(𝑣𝑣), and only select the top 𝑛𝑛select genes. In this way, the selected 

marker gene will not be dominated by any single cell type. We repeat this process for all cell types 

and aggregate the selected marker genes. Based on our preliminary results, the proposed method 

works well when we select 𝑙𝑙fold = 1.5, 𝑙𝑙𝜆𝜆 = 0.1, 𝑙𝑙cover = 60%, 𝑣𝑣 = 0.15, and 𝑛𝑛select = 50.  

 

By only keeping the marker genes in matrices 𝑿𝑿 and 𝒀𝒀, we obtain matrices 𝑿𝑿(m) ∈ ℝ𝑆𝑆×𝐺𝐺m and 

𝒀𝒀(m) ∈ ℝ𝐶𝐶×𝐺𝐺m , where 𝐺𝐺m is the total number of selected marker genes, and the superscript and 

subscript “m” means that only the marker genes are considered. 

 

1.2 Construction of scRNA-seq reference matrix 

We let 𝜱𝜱(m) ∈ ℝ𝑇𝑇×𝐺𝐺m be the scRNA-seq reference matrix constructed based on 𝒀𝒀(m), where 𝜑𝜑𝑡𝑡,𝑔𝑔
(m) 

represents the average proportion of gene 𝑔𝑔  in expression of type 𝑡𝑡  cells. Thus, we have 

∑ 𝜑𝜑𝑡𝑡,𝑔𝑔
(m)𝐺𝐺m

𝑔𝑔=1 = 1 for 𝑡𝑡 = 1, 2,⋯ ,𝑇𝑇. Similar to BayesPrism69, we assumed that the expression of 

each cell follows the multinomial distribution: 

𝒚𝒚𝑐𝑐
(m)~multinomial(𝑚𝑚𝑐𝑐,𝝋𝝋𝜏𝜏(𝑐𝑐)

(m) ), �3� 

where 𝒚𝒚𝑐𝑐
(m) is the 𝑐𝑐-th row of matrix 𝒀𝒀(m), 𝑚𝑚𝑐𝑐 = ∑ 𝑦𝑦𝑐𝑐,𝑔𝑔

(m)𝐺𝐺m
𝑔𝑔=1  is the total gene count of cell type 𝑐𝑐, 

𝜏𝜏(𝑐𝑐) is the cell type index of cell 𝑐𝑐 , and 𝝋𝝋𝜏𝜏(𝑐𝑐)
(m)  is the 𝜏𝜏(𝑐𝑐)-th row of reference matrix 𝜱𝜱(m) . 

Therefore, the likelihood of 𝝋𝝋𝑡𝑡
(m) is expressed as 

𝐿𝐿�𝝋𝝋𝑡𝑡
(m)� ∝� � �𝜑𝜑𝑡𝑡,𝑔𝑔

(m)�
𝑦𝑦𝑐𝑐,𝑔𝑔

(m)𝐺𝐺m

𝑔𝑔=1𝑐𝑐∈𝑨𝑨𝑡𝑡
, �4� 

By maximizing the likelihood, the entries of reference matrix 𝜱𝜱(m) is estimated as 
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𝜑𝜑�𝑡𝑡,𝑔𝑔
(m) =

∑ 𝑦𝑦𝑐𝑐,𝑔𝑔
(m)

𝑐𝑐∈𝑨𝑨𝑡𝑡

∑ ∑ 𝑦𝑦𝑐𝑐,𝑔𝑔′
(m)𝐺𝐺m

𝑔𝑔′=1𝑐𝑐∈𝑨𝑨𝑡𝑡

. �5� 

 

An issue with this approach is that CPM normalization may cause the value of 𝑦𝑦𝑐𝑐,𝑔𝑔 to be a non-

integer, making the distribution assumption (3) invalid. To address this issue, we can round the 

matrix 𝒀𝒀 such that all the entries are integers. However, since the calculation of 𝜑𝜑�𝑡𝑡,𝑔𝑔 in equation 

(5) does not require 𝑦𝑦𝑐𝑐,𝑔𝑔 to be an integer, rounding the matrix 𝒀𝒀 only has a minor influence on the 

estimated value of 𝜑𝜑�𝑡𝑡,𝑔𝑔, and thus is not necessary. In the following step, we will discard the scRNA 

expression matrix 𝒀𝒀(m)  and only used the estimated single-cell reference matrix 𝜱𝜱� (m)  in our 

analysis. 

 

1.3 Probabilistic generative model 

To infer the cell type proportions and decompose expression at the single-cell level, we leverage 

a probabilistic generative model where both the spatial expression and the scRNA reference are 

integrated. The model is depicted in Supplementary Information Fig. 2, where the gray circles 

represent the known variables or observations, the white circles represent the unknown parameters 

that need to be estimated, and the squares represent the hyperparameters we choose before the 

inference. 

 

Specifically, we let 𝑸𝑸 ∈ ℝ𝑆𝑆×𝑇𝑇 be the proportion matrix of contributed genes, where 𝑞𝑞𝑠𝑠,𝑡𝑡 denotes 

the proportion of genes at location 𝑠𝑠 that are contributed by type 𝑡𝑡 cells. Thus, ∑ 𝑞𝑞𝑠𝑠,𝑡𝑡
𝑇𝑇
𝑡𝑡=1 = 1 for 

𝑠𝑠 = 1, 2,⋯ , 𝑆𝑆. It is worth noting that 𝑞𝑞𝑠𝑠,𝑡𝑡 does not equal to 𝑝𝑝𝑠𝑠,𝑡𝑡, which is the proportion of type 𝑡𝑡 

cells at location 𝑠𝑠. This is because when only considering the 𝐺𝐺𝑚𝑚 marker genes, cells belongs to 
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different cell type have different average total count in spatial tissues. For example, suppose 

𝑝𝑝𝑠𝑠,𝑡𝑡1 = 𝑝𝑝𝑠𝑠,𝑡𝑡2 = 0.5, which means the two cell types have the same number of cells at location 𝑠𝑠. If 

type 𝑡𝑡1 cells have higher total expression than type 𝑡𝑡2 cells at location 𝑠𝑠, then we have 𝑞𝑞𝑠𝑠,𝑡𝑡1 >

0.5 > 𝑞𝑞𝑠𝑠,𝑡𝑡2. For location 𝑠𝑠 = 1, 2,⋯ , 𝑆𝑆, we let the prior distribution of 𝒒𝒒𝑠𝑠 = [𝑞𝑞𝑠𝑠,1,𝑞𝑞𝑠𝑠,2,⋯ , 𝑞𝑞𝑠𝑠,𝑇𝑇] be 

𝒒𝒒𝑠𝑠~Dirichlet(𝜶𝜶), �6� 

where 𝜶𝜶 = [3, 3,⋯ ,3] is the hyperparameter that indicates a weak prior. Note that we have tested 

other values of 𝜶𝜶, and the results are very similar, except when the prior is highly informative.  

 

Recall that 𝜑𝜑𝑡𝑡,𝑔𝑔
(m) represents the average proportion of gene 𝑔𝑔 in type 𝑡𝑡 cells. Thus, if there is no 

batch effect, the proportion of gene 𝑔𝑔 at location 𝑠𝑠 can be derived as  

𝜌𝜌𝑠𝑠,𝑔𝑔 = � 𝑞𝑞𝑠𝑠,𝑡𝑡 ∙ 𝜑𝜑𝑡𝑡,𝑔𝑔
(m)

𝑇𝑇

𝑡𝑡=1
. �7� 

The intuition behind equation (7) is that when one gene at location 𝑠𝑠 is randomly selected, there is 

a probability 𝑞𝑞𝑠𝑠,𝑡𝑡 that this gene is contributed by cells of type 𝑡𝑡. When such gene is contributed by 

cells of type 𝑡𝑡, the probability that it belongs to gene type 𝑔𝑔 is 𝜑𝜑𝑡𝑡,𝑔𝑔
(m).  

 

 

Supplementary Information Figure 2. Graphical illustration of the probabilistic 
generative model. 
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However, one issue of equation (7) is that the batch effects between the scRNA-seq expression 

and the spatial expression are not considered. To quantify the batch effects, we introduce batch 

effect parameters 𝒓𝒓 = {𝑟𝑟1, 𝑟𝑟2,⋯ , 𝑟𝑟𝐺𝐺}, where  

𝑟𝑟𝑔𝑔~Unif(0, 1),   for 𝑔𝑔 = 1, 2,⋯ ,𝐺𝐺𝑚𝑚. �8� 

Then the proportion of gene 𝑔𝑔 at location 𝑠𝑠 is adjusted as 

𝜌𝜌�𝑠𝑠,𝑔𝑔 =
𝜌𝜌𝑠𝑠,𝑔𝑔 ∙ 2𝛾𝛾𝑟𝑟𝑔𝑔

∑ 𝜌𝜌𝑠𝑠,𝑔𝑔′ ∙ 2𝛾𝛾𝑟𝑟𝑔𝑔′𝐺𝐺m
𝑔𝑔′=1

. �9� 

where 𝛾𝛾 = 2 is a hyperparameter. From equation (9), we deduce the following two findings. First, 

when 𝑟𝑟𝑔𝑔 is large, gene 𝑔𝑔 has higher proportion in spatial expression due to the batch effect. Second, 

the hyperparameter 𝛾𝛾 controls the dispersion of the batch effects among the genes. In other words, 

in equation (9), the highest possible weight of 𝜌𝜌𝑠𝑠,𝑔𝑔 is 2𝛾𝛾 and the lowest possible weight of 𝜌𝜌𝑠𝑠,𝑔𝑔 is 

1. According to our experiments, 𝛾𝛾 should not be larger than 4. 

 

With the preparation above, the conditional distribution of 𝒙𝒙𝑠𝑠
(m) is modeled as the multinomial 

distribution:  

𝒙𝒙𝑠𝑠
(m)�𝑸𝑸, 𝒓𝒓,𝜱𝜱(m), 𝛾𝛾 ∼ Multinomial�𝑚𝑚𝑠𝑠

′ , �𝜌𝜌�𝑠𝑠,1,𝜌𝜌�𝑠𝑠,2,⋯ ,𝜌𝜌�𝑠𝑠,𝐺𝐺m��, �10� 

where 𝑚𝑚𝑠𝑠
′ = ∑ 𝑥𝑥𝑠𝑠,𝑔𝑔

(m)𝐺𝐺m
𝑔𝑔=1  is the total gene count at location 𝑠𝑠. 

 

This generative model describes the generation of spatial expression in a probabilistic manner 

based on relevant parameters. Our model offers two unique advantages compared to existing 

probabilistic generative models used in cell type deconvolution. Firstly, it uniquely considers how 

spatial expression at location 𝑠𝑠 can be decomposed for each cell type. This feature enables the 

generation of iscRNA data in Subsection 1.6. Secondly, in comparison to other methods, our model 
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is more straightforward, with significantly fewer tuning parameters. This simplicity contributes to 

reduced computational time. 

 

1.4 Model inference 

In the probabilistic generative model, the unknown parameters are the proportion matrix 𝑸𝑸 and the 

batch effect parameter 𝒓𝒓. To estimate these parameters through the model, we need to conduct 

Bayesian inference and calculate the posterior distributions P(𝑸𝑸�𝑿𝑿(m),𝜱𝜱(m), 𝛾𝛾)  and 

P(𝒓𝒓�𝑿𝑿(m),𝜱𝜱(m), 𝛾𝛾). However, calculating the exact posterior distributions is intractable due to the 

inherent complexity of the model. Therefore, we leverage variational inference to approximate the 

true posterior distributions. 

 

Specifically, we assume that 

P(𝑸𝑸,𝒓𝒓�𝑿𝑿(m),𝜱𝜱(m), 𝛾𝛾) ≈ ∏ 𝑄𝑄(𝒒𝒒𝑠𝑠|𝜶𝜶𝑠𝑠)𝑆𝑆
𝑠𝑠=1 ∏ 𝑄𝑄�𝑟𝑟𝑠𝑠�𝜇𝜇𝑔𝑔

(𝑟𝑟),𝜎𝜎𝑔𝑔
(𝑟𝑟)�𝐺𝐺𝑚𝑚

𝑔𝑔=1 , �11�

where 𝑄𝑄(𝒒𝒒𝑠𝑠|𝜶𝜶𝑠𝑠)  is the probability density function (PDF) of distribution Dirichlet(𝜶𝜶𝑠𝑠) , and 

𝑄𝑄�𝑟𝑟𝑠𝑠�𝜇𝜇𝑔𝑔
(𝑟𝑟),𝜎𝜎𝑔𝑔

(𝑟𝑟)� is the PDF of distribution 𝑁𝑁(𝜇𝜇𝑔𝑔
(𝑟𝑟),𝜎𝜎𝑔𝑔

(𝑟𝑟)). By applying variational inference, we 

optimize the parameters 𝜶𝜶𝑠𝑠, 𝜇𝜇𝑔𝑔
(𝑟𝑟), and 𝜎𝜎𝑔𝑔

(𝑟𝑟) to maximize the Evidence Lower Bound (ELBO). This 

maximization is equivalent to minimizing the Kullback-Leibler (KL) divergence between 

distributions P(𝑸𝑸, 𝒓𝒓�𝑿𝑿(m),𝜱𝜱(m), 𝛾𝛾)  and ∏ 𝑄𝑄(𝒒𝒒𝑠𝑠|𝜶𝜶𝑠𝑠)𝑆𝑆
𝑠𝑠=1 ∏ 𝑄𝑄�𝑟𝑟𝑠𝑠�𝜇𝜇𝑔𝑔

(𝑟𝑟),𝜎𝜎𝑔𝑔
(𝑟𝑟)�𝐺𝐺𝑚𝑚

𝑔𝑔=1 . The variational 

inference is implemented using the Python package Pyro70, which supports GPU acceleration. 

 

By slightly abusing the notation, we let 𝜶𝜶𝑠𝑠, 𝜇𝜇𝑔𝑔
(𝑟𝑟), and 𝜎𝜎𝑔𝑔

(𝑟𝑟) denote the optimized parameters. Then 

the parameters 𝑸𝑸 and 𝒓𝒓 are estimated by the posterior mean: 
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𝑞𝑞�𝑠𝑠,𝑡𝑡 =
𝛼𝛼𝑠𝑠,𝑡𝑡

∑ 𝛼𝛼𝑠𝑠,𝑡𝑡′
𝑇𝑇
𝑡𝑡′=1

, �12� 

𝑟̂𝑟𝑔𝑔 = 𝜇𝜇𝑔𝑔
(𝑟𝑟). �13� 

 

Recall that 𝑞𝑞𝑠𝑠,𝑡𝑡  represents the proportion of genes contributed by type 𝑡𝑡  cells, rather than the 

proportion of type 𝑡𝑡 cell in terms of absolute cell numbers. To get the proportion of type 𝑡𝑡 cells at 

location 𝑠𝑠, we let ℎ𝑡𝑡 be the average total gene count of type 𝑡𝑡 cells when only the marker genes 

are considered, which is calculated as ℎ𝑡𝑡 = 1
|𝑨𝑨𝑡𝑡|

∑ ∑ 𝑦𝑦𝑐𝑐,𝑔𝑔
(m)𝐺𝐺𝑚𝑚

𝑔𝑔=1𝑐𝑐∈𝑨𝑨𝑡𝑡 . Finally, the following 

transformation are used to estimate the proportion of type 𝑡𝑡 cells at location 𝑠𝑠: 

𝑝̂𝑝𝑠𝑠,𝑡𝑡 =
𝑞𝑞�𝑠𝑠,𝑡𝑡/ℎ𝑡𝑡

∑ �𝑞𝑞�𝑠𝑠,𝑡𝑡′/ℎ𝑡𝑡′�𝑇𝑇
𝑡𝑡′

. �14� 

 

1.5 Nucleus segmentation and cell boundary inference 

High-resolution Hematoxylin and Eosin (H&E) staining images provide us with information on 

nucleus locations, as hematoxylin stains the nuclei purple and eosin stains the surrounding 

cytoplasm pink. In Spotiphy, we utilize high-resolution H&E staining images for two primary 

purposes. Firstly, they allow us to determine the location of nuclei and infer cell boundaries based 

on the image data. These outcomes are necessary for generating pseudo single-cell resolution 

images. Secondly, using the identified nuclei locations, we can calculate the number of cells in 

each capture area and decompose the expression of each capture area to the single-cell level, 

thereby generating iscRNA data. Although high-resolution images are recommended, they are not 

necessary for generating iscRNA data. Further details on alternative options are described in 

Subsection 1.6.  
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To extract useful information from H&E stained images, segmentation is required to separate the 

pixels of nuclei from the background. In Spotiphy pipeline, we adopted the pretrained deep 

learning model from Stardist71,72 to segment the nuclei. After the segmentation, the background 

pixels are labeled as 0 and the pixels of each nucleus are labeled as the index of the nucleus. With 

the segmentation results, we assume that a cell is located at position 𝑠𝑠 if the center of the cell’s 

nucleus falls within the capture area.  

 

We then let 𝑁𝑁𝑠𝑠 denote the number of cells at location 𝑠𝑠. To infer the cell boundaries based on the 

segmentation result, we let distmax  denote the maximum distance from a point on the cell 

boundary to the corresponding nuclei center and let Areamax denote the maximum area of a cell. 

Both quantities are measured by the image pixels. Initially, we set 𝜔𝜔 = 1 and assume each cell 

only occupies one pixel, which is the center of the nuclei. In each iteration, we expand the pixels 

of each cell. Specifically, we increase 𝜔𝜔 by Δ𝜔𝜔. Then, we iterate over all cells, allowing each cell 

to occupy all the background pixels within a Euclidean distance of 𝜔𝜔 pixels from its nucleus center. 

 

Supplementary Information Figure 3. Illustration of the cell expansion when 𝒓𝒓 ≤ 𝟕𝟕. 
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The expansion of a cell is halted when all surrounding pixels are occupied by other cells, or the 

constraints set by distmax and Areamax restrict further expansion of the cell. The cell boundaries 

can then be determined as the pixels of cell that are sufficiently close to other cells or the 

background. The first seven iterations of this algorithm when we set Δ𝜔𝜔 = 1 is illustrated in 

Supplementary Information Fig. 3.  

 

1.6 Generation of iscRNA data 

To generate iscRNA data for all cells in the tissue, we first generate iscRNA data for cells within 

the capture areas. Since the expressions of each area are known, the iscRNA data for these cells 

can be obtained by decomposing spatial expressions to the single-cell level. For cells outside the 

capture areas, obtaining their iscRNA data is more challenging and may introduces larger errors, 

since even aggregated expressions are unavailable. To this end, we provide an optional function 

in Spotiphy to impute the expression of cells outside the capture areas using the kernel smoothing 

method. 

 

1.6.1 Decomposition of spatial expression 

When a cell type does not exist at location 𝑠𝑠 and we try to assign some spatial expression at 

location 𝑠𝑠 to that cell type, the decomposition of spatial expression may have large errors. Thus, 

we first update the estimated cell type proportions before the decomposition based on the number 

of cells at each location. Specifically, we let 𝑁𝑁𝑠𝑠  denote the number of cells at location 𝑠𝑠 . In 

Spotiphy, we offer four options for 𝑁𝑁𝑠𝑠 value. 
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First, when H&E staining image is available, 𝑁𝑁𝑠𝑠 can be calculated based on nucleus segmentation 

result. Second, when the high-resolution image is not available, we can estimate the value of 𝑁𝑁𝑠𝑠 

based on the size of the raw counts at location 𝑠𝑠. Furthermore, we can also manually set the value 

according to domain knowledge. For 𝑡𝑡 = 1, 2,⋯ ,𝑇𝑇, we let 𝑛𝑛𝑠𝑠,𝑡𝑡 denote the number of type 𝑡𝑡 cells 

at location 𝑠𝑠. Then the number of each cell type at location 𝑠𝑠 can be determined by solving the 

following optimization problem: 

min � �
𝑛𝑛𝑠𝑠,𝑡𝑡

𝑁𝑁𝑠𝑠
− 𝑝𝑝𝑠𝑠,𝑡𝑡�

𝑇𝑇

𝑡𝑡=1
, �15� 

s. t.� 𝑛𝑛𝑠𝑠,𝑡𝑡

𝑇𝑇

𝑡𝑡=1
= 𝑁𝑁𝑠𝑠. �16� 

This optimization problem can be easily solved using greedy algorithms. As a result, cell type 

proportions at location 𝑠𝑠 are updated as 𝑝𝑝�𝑠𝑠,𝑡𝑡 = 𝑛𝑛𝑠𝑠,𝑡𝑡/𝑁𝑁𝑠𝑠, for 𝑡𝑡 = 1, 2,⋯ ,𝑇𝑇.  

 

Finally, when the value of 𝑁𝑁𝑠𝑠 cannot be calculated or estimated, we also provide the option to 

indicate that the value of 𝑁𝑁𝑠𝑠 is missing. In this case, we define the threshold 𝑙𝑙p and assume that if 

𝑝𝑝𝑠𝑠,𝑡𝑡 < 𝑙𝑙p , there is no strong evidence to suggest the existence of cell type 𝑡𝑡  at location 𝑠𝑠 . 

Consequently, the proportion is updated as follows: 

𝑝𝑝�𝑠𝑠,𝑡𝑡 = �
0, 𝑝𝑝𝑠𝑠,𝑡𝑡 < 𝑙𝑙p

∑ 𝑝𝑝𝑠𝑠,𝑡𝑡2 ∙ 𝐼𝐼(𝑝𝑝𝑠𝑠,𝑡𝑡1 ≥ 𝑙𝑙p)𝑇𝑇
𝑡𝑡1=1

∑ 𝐼𝐼(𝑝𝑝𝑠𝑠,𝑡𝑡2 ≥ 𝑙𝑙p)𝑇𝑇
𝑡𝑡2=1

, 𝑝𝑝𝑠𝑠,𝑡𝑡 ≥ 𝑙𝑙p
, �17� 

where 𝐼𝐼(∙) is the indicator function. In default, the threshold 𝑙𝑙p is set to 0.1. After updating the cell 

type proportions, we let 𝑷𝑷� ∈ ℝ𝑆𝑆×𝑇𝑇 be the corresponding matrix where the 𝑠𝑠𝑠𝑠-th entry is 𝑝𝑝�𝑠𝑠,𝑡𝑡. 
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To make sure that the decomposed spatial expression can facilitate more downstream analysis, we 

aim to decompose the spatial expression of all 𝐺𝐺 genes, rather than the 𝐺𝐺𝑚𝑚 marker genes. Thus, 

we construct the single-cell reference matrix 𝜱𝜱 ∈ ℝ𝑇𝑇×𝐺𝐺  using the full scRNA count matrix 𝒀𝒀 

according to Subsection 1.2. In addition, we let 𝑼𝑼 ∈ ℝ𝑆𝑆×𝐺𝐺×𝑇𝑇 denote a 3-dimensional tensor, where 

𝑢𝑢𝑠𝑠,𝑡𝑡,𝑔𝑔  is the expression of gene 𝑔𝑔  in type 𝑡𝑡  cells at location 𝑠𝑠 . As a result, 𝒖𝒖𝑠𝑠,𝑔𝑔 =

[𝑢𝑢𝑠𝑠,𝑔𝑔,1,𝑢𝑢𝑠𝑠,𝑔𝑔,2,⋯ ,𝑢𝑢𝑠𝑠,𝑔𝑔,𝑇𝑇]  is the decomposition of spatial expression 𝑥𝑥𝑠𝑠,𝑔𝑔 , where we have 

∑ 𝑢𝑢𝑠𝑠,𝑔𝑔,𝑡𝑡
𝑇𝑇
𝑡𝑡=1 = 𝑥𝑥𝑠𝑠,𝑔𝑔. Note that we assume that when considering all 𝐺𝐺 genes, the total expression of 

each cell at location 𝑠𝑠 is identical. Therefore, when all genes are considered, the probability that a 

randomly picked gene at location 𝑠𝑠 belongs to type 𝑡𝑡 cells 𝑝𝑝�𝑠𝑠,𝑡𝑡. 

 

By apply the probabilistic model again without considering the batch effect, we have 

𝑢𝑢𝑠𝑠,𝑔𝑔,𝑡𝑡~Binomial�� 𝑢𝑢𝑠𝑠,𝑔𝑔,𝑡𝑡

𝐺𝐺

𝑔𝑔=1
,𝑝𝑝�𝑠𝑠,𝑡𝑡𝜑𝜑𝑡𝑡,𝑔𝑔� , �18� 

and �𝑢𝑢𝑠𝑠,𝑔𝑔,𝑡𝑡;  𝑔𝑔 = 1, 2,⋯ ,𝐺𝐺;  𝑡𝑡 = 1, 2,⋯ ,𝑇𝑇� follow the multinomial distribution. The intuition is 

that with probability 𝑝𝑝�𝑠𝑠,𝑡𝑡𝜑𝜑𝑡𝑡,𝑔𝑔, a randomly selected gene at location 𝑠𝑠 is a gene 𝑔𝑔 contributed by a 

cell that belongs to type 𝑡𝑡 . Finally, condition on 𝑥𝑥𝑠𝑠,𝑔𝑔 = ∑ 𝑢𝑢𝑠𝑠,𝑔𝑔,𝑡𝑡
𝑇𝑇
𝑡𝑡=1 , 𝒖𝒖𝑠𝑠,𝑔𝑔  also follows the 

multinomial distribution, 

𝒖𝒖𝑠𝑠,𝑔𝑔�𝑥𝑥𝑠𝑠,𝑔𝑔 ∼ Multinomial�𝑥𝑥𝑠𝑠,𝑡𝑡, �𝜔𝜔𝑠𝑠,𝑔𝑔,1,𝜔𝜔𝑠𝑠,𝑔𝑔,2,⋯ ,𝜔𝜔𝑠𝑠,𝑔𝑔,𝑇𝑇��, �19� 

where 𝜔𝜔𝑠𝑠,𝑔𝑔,𝑡𝑡 = 𝑝𝑝�𝑠𝑠,𝑡𝑡∙𝜑𝜑𝑡𝑡,𝑔𝑔

∑ 𝑝𝑝�𝑠𝑠,𝑡𝑡′∙𝜑𝜑𝑡𝑡′,𝑔𝑔
𝑇𝑇
𝑡𝑡′=1

. Then 𝑢𝑢𝑠𝑠,𝑡𝑡,𝑔𝑔  can be estimated as the posterior mean: 𝑢𝑢�𝑠𝑠,𝑡𝑡,𝑔𝑔 = 𝑥𝑥𝑠𝑠,𝑡𝑡 ∙

𝜔𝜔𝑠𝑠,𝑔𝑔,𝑡𝑡. Note that when the proportion 𝑝𝑝�𝑠𝑠,𝑡𝑡 is 0, the decomposed spatial expression for type 𝑡𝑡 cells 

at location 𝑠𝑠 is always 0. Finally, the iscRNA data for cells inside the capture areas are obtained 

by reshaping the tensor 𝑼𝑼. 
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1.6.2 Imputation of expression for cells in non-capture areas 

Spotiphy includes an optional function to impute the expression for cells in non-capture areas 

through kernel smoothing. Specifically, for a cell 𝑐𝑐 belonging to type 𝑡𝑡 in a non-capture area, we 

consider all type 𝑡𝑡 cells within the captured areas and derive weights for these cells based on their 

distance from cell 𝑐𝑐. Consequently, the expression of cell 𝑐𝑐 is obtained as the weighted sum of the 

expressions of type 𝑡𝑡 cells in the capture areas. 

 

 

1.7 Generation of pseudo images 

Recall that we can estimate the exact numbers of each cell type within each capture area. However, 

we are not able to identify which specific nuclei belong to each cell type. Thus, given that there 

are 𝑛𝑛𝑠𝑠,𝑡𝑡 cells of type 𝑡𝑡 at location 𝑠𝑠, we randomly assign 𝑛𝑛𝑠𝑠,𝑡𝑡 nuclei as belonging to cell type 𝑡𝑡 

within the capture area. 

 

For nuclei outside the capture areas, we have not collected any data. Thus, assume that the 

proportion of each cell type changes smoothly over the entire tissue. This assumption allows us to 

employe a Gaussian Process to impute the cell type proportions. Specifically, we let 𝑓𝑓𝑡𝑡(𝝅𝝅) denote 

the proportion of cell type 𝑡𝑡 at location 𝝅𝝅 = [𝜋𝜋𝑥𝑥,𝜋𝜋𝑦𝑦]. We then assume the function 𝑓𝑓𝑡𝑡(𝝅𝝅) follows 

a Gaussian Process with the kernel function 𝑘𝑘. In other words, 

�
𝑓𝑓(𝝅𝝅1)
⋮

𝑓𝑓(𝝅𝝅𝑛𝑛)
�~𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝑲𝑲 + 𝜎𝜎2𝑰𝑰), �20� 
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where 𝑰𝑰 is the identical matrix, and the 𝑖𝑖𝑖𝑖-th entry of matrix 𝑲𝑲 is 𝑘𝑘𝑖𝑖𝑖𝑖 = 𝑘𝑘(𝝅𝝅𝑖𝑖,𝝅𝝅𝑗𝑗). In this study, we 

use the squared exponential kernel, with the kernel function being expressed as 

𝑘𝑘(𝝅𝝅𝑖𝑖,𝝅𝝅𝑗𝑗) = exp�−
�𝝅𝝅𝑖𝑖 − 𝝅𝝅𝑗𝑗�2

2

2𝜃𝜃2
� , �21� 

where �𝝅𝝅𝑖𝑖 − 𝝅𝝅𝑗𝑗�2 represents the Euclidean distance between the two locations, 𝜃𝜃 is the length-

scale of the process. The parameters 𝜎𝜎  and 𝜃𝜃  are estimated by maximizing the likelihood. 

Therefore, we can use the Gaussian Process to estimate the proportion of each cell type in the 

neighborhood of each nucleus outside the capture areas. The estimated proportions at each location 

are normalized to ensure their sum equals 1. In this way, we assign a cell type to each nucleus 

outside the capture area by randomly sampling according to the estimated cell type proportions. 

 

Through annotating the nuclei and inferring the cell boundaries, we obtain a pseudo single-cell 

resolution image that closely resembles the output of image-based spatial transcriptomics approach 

(Supplementary Fig. 19).  

 

2 Generation of simulated spatial transcriptomics datasets 

To create synthetic spatial transcriptomics datasets that closely resemble the actual dataset, we use 

the estimated number of each cell type at every location, as determined by Spotiphy, as the ground 

truth. Specifically, for generating the spatial expression at a given location 𝑠𝑠, we randomly sample 

𝑛𝑛𝑠𝑠,𝑡𝑡  cells of type 𝑡𝑡  cells from the scRNA-seq data, for 𝑡𝑡 = 1, 2,⋯ ,𝑇𝑇. We then merge all the 

scRNA-seq expressions. To enhance the resemblance of the synthetic expression to real data, we 

introduced three types of disturbance to the aggregated scRNA-seq data at each location: batch 

effect, artificial zero reads, and random noise. Specifically, let 𝑥𝑥�𝑠𝑠𝑠𝑠 denote the total count of gene 
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𝑔𝑔 at location 𝑠𝑠 after aggregating the single cell gene expressions. We assume the batch effect 

parameter 𝑟𝑟𝑔𝑔 independently follows the lognormal distribution with mean of 0 and sigma 𝜎𝜎batch. 

To introduce the artificial zero reads, we randomly sample 𝛿𝛿𝑠𝑠𝑠𝑠 from Bernoulli distribution with 

mean of 𝜇𝜇𝛿𝛿. When 𝛿𝛿𝑠𝑠𝑠𝑠 is 0, we set 𝑥𝑥�𝑠𝑠𝑠𝑠 to 0. Finally, random noise is introduced by sampling 𝜀𝜀𝑠𝑠𝑠𝑠 

independently from lognormal distribution with mean of 0 and sigma 𝜎𝜎noise . With these 

preparations, the generated expression of gene 𝑔𝑔 at location 𝑠𝑠 can be expressed as 

𝑥𝑥�𝑠𝑠𝑠𝑠 = 𝑥𝑥�𝑠𝑠𝑠𝑠𝑟𝑟𝑔𝑔𝛿𝛿𝑠𝑠𝑠𝑠𝜀𝜀𝑠𝑠𝑠𝑠. �22� 

 

Since we aim to investigate the robustness of various deconvolution algorithm to disturbance, we 

consider three different levels of disturbance in this study. The parameters are chosen as follows. 

Small disturbance: 𝜎𝜎batch = 0.1 , 𝜇𝜇𝛿𝛿 = 0.7 , 𝜎𝜎noise = 0.05 . Medium disturbance: 𝜎𝜎batch = 0.5 , 

𝜇𝜇𝛿𝛿 = 0.4, 𝜎𝜎noise = 0.2. Large disturbance: 𝜎𝜎batch = 0.6, 𝜇𝜇𝛿𝛿 = 0.3, 𝜎𝜎noise = 0.4. 
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Supplementary Tables 

Supplementary Table S1: Data processing details for all samples 

Supplementary Table S2: Marker gene list of mouse brain scRNA reference 

Supplementary Table S3: Ground truth and estimations of cell type proportions in AD sample 

Supplementary Table S4: Ground truth and estimations of cell type proportions in the simulated 

sample 

Supplementary Table S5: Astrocyte subtype differential expression analysis results 

Supplementary Table S6: Astrocyte subtype GSEA analysis results 

Supplementary Table S7: Microglia subtype differential expression analysis results 

Supplementary Table S8: Microglia subtype GSEA analysis results 

Supplementary Table S9: β-amyloid signal intensity for each spot from AD sample 

Supplementary Table S10: DAM subtype differential expression analysis results 

Supplementary Table S11: DAM subtype GSEA analysis results 

Supplementary Table S12: Marker gene list of human breast scRNA reference 

Supplementary Table S13: LumSec subtype differential expression analysis results 

Supplementary Table S14: LumHR subtype differential expression analysis results 

Supplementary Table S15: LumSec subtype GSEA analysis results 

Supplementary Table S16: LumHR subtype GSEA analysis results 
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