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Supplementary Figure 1: Sensitivity analysis for hyperparameters. a, Sensitivity check of the five

hyperparameters: Batch prior, quantile parameter, fold change threshold, number of marker genes, and non-

zero count cell percentage. Correlation and RMSE are used as evaluation metrics. Default setting is marked

as red. b, Histograms showing cell numbers and cell type counts per spot. ¢, Four opinions of Cell numbers

(N values) of each spot provided by Spotiphy, and their impacts to decomposition outputs. Segmentation:

N values come from StarDist’s Segmentation results. User input: User manually input the N values. Null:

User doesn’t input any N values. Count-based estimation: N values come from total count-based estimation.



Boxplots illustrating the correlation, absolute error, cosine similarity, square error, and JSD for
decomposition at each transcriptomic spot generated by each N input opinion. Boxplots are generated in

the same manner as described in Figure 2. Each platform includes 3476 spots of AD sample.



Supplementary Figure 2
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Supplementary Figure 2. scRNA reference construction and alignment of images from multiple ST
datasets. a, UMAP projection of cells from scRNA-seq data used as mouse brain reference. Cells are
labeled according to sample-of-origin. WT 1 and AD_1 were selected for further analysis in this study. b,

Heatmap of expression of marker genes among 27 cell types. ¢, Alignment of Visium H&E image and



Xenium DAPI image of AD sample. d, Alignment of Visium H&E images and in-total 20 FOVs of CosMx
DAPI images of WT and AD samples. e, Alignment of Visium H&E images and IHC staining images of
WT and AD samples. Visium data includes one biological replicate each for WT and AD samples. Xenium
data includes one biological replicate each for WT and AD samples. CosMx data includes one biological

replicate each for WT and AD samples. Scale bar in c-e: 500 um.



Supplementary Figure 3
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Supplementary Figure 3. Benchmarking Spotiphy’s cellular deconvolution using matched Xenium
data. a, Pearson correlation coefficient heatmap of cell-type proportions generated by Xenium, Spotiphy,
and additional 8 methods selected for benchmarking. b-g, Box plots for correlation (b), absolute error (c),
fraction of cells correctly mapped (d), cosine similarity (e), square error (f), and JSD (g) of the cell-type
proportions for each transcriptomic spot generated by each method. Boxplots are generated in the same

manner as described in Figure 2. Each platform includes 3476 spots of AD sample.



Supplementary Figure 4
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Supplementary Figure 4. Heatmaps depicting the proportion of 27 cell types generated by
Cell2location (a), CytoSPACE (b), CARD (c¢), Tangram (d), and RCTD (e) across the histological

section of AD mouse sample. Visium data of AD sample was used as test data. Scale bar: 500 um.



Supplementary Figure 5
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iStar results of AD sample
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Supplementary Figure 5. Heatmaps depicting the proportion of 27 cell types generated by
SpatialScope (a), Stereoscope (b), SpatialDWLS (c), SPOTlight (d), CIBERSORTX (e), MuSiC (f),
iStar (g), and Redeconve (h) across the histological section of AD mouse sample. Visium data of AD

sample was used as test data. Scale bar: 500 pum.
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Supplementary Figure 6
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Supplementary Figure 6. In situ hybridization (ISH) images of selected neutrophil markers from
Allen Institute Atlas. Lyz2 (100055046), Ncfl (70546251), Itgh2 (77464984), Ctsg (69608226), and
Clec4d (71764721) are commonly used markers for neutrophils. Left panel is ISH result, middle panel is
expression result (fluorescence), right panel is the merged result. Red box showed the positive signals
around the ventricle. Data were downloaded from Allen Mouse Brain Atlas (mouse.brain-map.org) with

one replicate for each panel. Scale bar: 500 um.
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Supplementary Figure 7
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Supplementary Figure 7. Heatmaps depicting the absolute number of B cells (a), T cells (b), Microglia

(c), Macrophage (d), and Neutrophils (e) generated by 14 deconvolution methods across the

histological section of AD mouse sample. Scale bar: 500 um.
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Supplementary Figure 8
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Supplementary Figure 8. The ground truth of simulated ST data and performance evaluation of

methods including Spotiphy using simulated Visium data. a, Heatmaps depicting the ground truth of

proportion of 27 cell types from simulated ST data across the histological section. Scale bar: 500 pm. b-e,

Box plots for fraction of cells correctly mapped (b), cosine similarity (c), square error (d), and JSD (e) of

the cell-type proportions for each transcriptomic spot generated by each method. Boxplots are generated in

the same manner as described in Figure 2. Each platform includes 3476 spots of AD sample.
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Supplementary Figure 9

et

werenx

sucnan

et

e

18

Spotiphy results of simulated ST data

et

wone cre

e

uamen

e




CytoSPACE results of simulated ST data

wsemerc

wsemorc

19

sk CTX

weren

unmen

weron

Lomen

wmen




Tangram results of simulated ST data

R EE R EE
BB EE B S

f RCTD results of simulated ST data

o oy wamen: wrenx

wewerx

Supplementary Figure 9. Heatmaps depicting the proportion of 27 cell types generated by Spotiphy
(a), Cell2location (b), CytoSPACE (c¢), CARD (d), Tangram (e), and RCTD (f) across the histological

section of simulated Visium data. Scale bar: 500 pm.
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Supplementary Figure 10
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Supplementary Figure 10. The performance evaluation of additional methods using simulated

Visium data. a, Pearson correlation coefficient heatmap of cell-type proportions generated by the simulated

Visium (Ground truth), Spotiphy, and additional 8 methods selected for benchmarking. b-g, Box plots for

correlation (b), absolute error (¢), fraction of cells correctly mapped (d), cosine similarity (e), square error

(f), and JSD (g) of the cell-type proportions for each transcriptomic spot generated by each method.

Boxplots are generated in the same manner as described in Figure 2. Each platform includes 3476 spots of

AD sample.
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Supplementary Figure 12
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Supplementary Figure 12. UMAP projection of 33,819 cells from iscRNA data using Seurat without

(a) and with Harmony (b) integration method.
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Supplementary Figure 13
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Supplementary Figure 13. Spotiphy provides cell-type proportions of human breast samples. a-b,
UMAP projection of cells from scRNA-seq data used as human breast reference. Cells are labeled according
to cell type (a) and sample-of-origin (b). ¢, Heatmap of expression of marker genes among 10 cell types. d,
Heatmaps depicting the proportion of 10 cell types generated by Spotiphy across the histological images of

three human breast Visium samples. Visium data includes one biological replicate for each tumor sample.

Scale bars: 500 um.
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Supplementary Figure 14
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Supplementary Figure 14. a-b, UMAP projection of 7,183 spots from three human breast samples. ¢,
inferCNV results using spot-level ST data. d, Transcriptomic spots from the Visium data are color-coded

according to their spots’ clusters.
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Supplementary Figure 15
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Supplementary Figure 15. a-b, Human colorectal cancer sample. a, UMAP projection of 18,462 cells of
iscRNA data. b, inferCNV results using iscRNA data. e-d, Human lung cancer sample. ¢, UMAP projection

of 11,423 cells of iscRNA data. d, inferCNV results using iscRNA data.
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Supplementary Figure 16
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Supplementary Figure 16. Decomposition Evaluation using simulated Visium data of mouse brain. a,
Box plots represents the correlation, absolute error, cosine similarity, square error, and JSD of the cell-type-
level expression profiles for each transcriptomic spot generated by each method. Boxplots are generated in
the same manner as described in Figure 2. Each platform includes 27 cell-type of AD sample. b, Confusion

matrix for each method for Matthew’s correlation coefficient (MCC) calculation. TP: true positive, FP:

iStar

false positive, FN: false negative, TN: true negative. ¢, Decomposition processing time per spot.
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Supplementary Figure 17
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Supplementary Figure 17. Decomposition Evaluation using real Visium data of mouse brain. a,
Pearson correlation coefficient heatmap of cell-type-level expression profiles generated by all methods
selected for benchmarking. b, Selected SVGs distribution patterns across the histological section of AD

mouse sample.
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Supplementary Figure 18
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Supplementary Figure 18. Imputation evaluations using Xenium datasets. a-c, The correlation between
distance and cellular proportion for 50-pm spots in mouse brain (a), human lung cancer (b), human
colorectal (¢) tissues. The error bands represent the standard deviations for each data point. d-f, Comparison
between Xenium (the ground truth, left panel) and Spotiphy’s imputation results (right panel) based on in-
spot data of mouse brain (d), human lung cancer (e), human colorectal (f). Shadows in right panels represent

spot location. Scale bar: 500 um.
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Supplementary Figure 19
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Supplementary Figure 19. Summary of benchmarking methods with Spotiphy. a, Major features of all
methods benchmarked with Spotiphy in this study. b, Gene coverage of iscRNA data generated from
Visium datasets used in this study. Left panel represents WT and AD mouse brain samples. Right panel

represents three human breast samples.
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Supplementary Figure 20

Pseudo single-cell-resolved whole-transcriptome image with cell annotation of WT mouse brain sample
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Pseudo single-cell-resolved whole-transcriptome image with cell annotation of AD mouse brain sample

Supplementary Figure 20. Pseudo single-cell-resolved whole-transcriptome images with cell
annotation of WT mouse brain sample (a) and of AD mouse brain sample (b). Color legend in Fig. 6.

Scale bar: 500 um.
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Supplementary Methods

1 Spotiphy pipeline

Spotiphy is a unified pipeline that integrates sScRNA-seq data, spatial transcriptomics (ST) data,
and high-resolution histology images to enhance our understanding of complex biological systems.
The core idea of Spotiphy is to effectively model the posterior distribution of spatial
transcriptomics considering factors such as the single-cell reference, cell type proportions, and
batch effects. With the generative modeling, Spotiphy primarily performs three tasks: 1. estimating
the proportion of cell types at each capture area (e.g., circular spots) of the tissue; 2. generating
inferred single-cell RNA expression matrix (iscCRNA data); 3. generating pseudo single-cell
resolution images. In this section, we present the workflow and detailed mathematics behind the

pipeline. The structure of this section is illustrated in Supplementary Information Fig. 1.

The most commonly used notations in this section are briefly introduced as follows. We use bold
uppercase letters to denote matrices and sets, bold lowercase letters to denote vectors, and
unbolded letters to denote scalars. Besides, for a matrix M, we use the corresponding lower letter
notations m; ; and m; to denote its ij-th entry and i-th row. We let X € R5*G denote the spatial
expression count matrix after counts per million (CPM) normalization, where S is the number of
capture areas (locations) and G is the number of gene types. Thus, x, , represents the normalized
expression of gene g at location s. We let Y € R¢*¢ denote the normalized scRNA expression
matrix, where C is the number of cells. In addition, to fully leverage matrix Y, the cell types of all
cells need to be annotated. We let 7(c) € {1, 2,---, T} denote the type of cell ¢, where T is the

number of cell types.
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1.1 Marker gene selection

ST data and scRNA-seq data typically detect over 10,000 pre-designed genes. However, not all of
these genes are informative in differentiating cell types and estimating cell type proportions. For
example, some genes may not be differentially expressed across different cell types, while others

may have low expression levels that make them difficult to be detected reliably. Therefore, it is

Task 1 Estimation of cell type
proportions

1.1 Marker gene selection

1.2 Construction of scRNA-
seq reference matrix

1.3 Probabilistic generative
model 1.6 Task 2: Generation of
l iscRNA data

1.4 Model inference :
1.7 Task 3: Generation of

pseudo images

1.5 Nucleus segmentation
and cell boundary inference

Supplementary Information Figure 1. Structure of supplementary methods.

important to identify a subset of marker genes that are informative in our analysis to enhance both
the speed and accuracy of the estimation. Similar to the literature, the marker genes in Spotiphy
are defined as the genes that exhibit significantly higher expression levels in one specific cell type

compared to all other cell types.

In the literature, marker genes are usually selected based on one-vs-rest comparisons. Specifically,
to determine whether a gene g is a marker gene for cell type t, statistical tests (or comparisons)
are performed based on two populations: 1. the expression of gene g in type t cells, and 2. the
expression of gene g in cells of all other types. However, one issue with this approach is that it

involves aggregating the expression of gene g across all other types, which may lead to unreliable
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results. For example, we let u; , denote the average expression of gene g in type t cells, and
assume that y; ; < p,r 4. Thus, gene g has a higher expression level in type ¢’ cells and should not
be selected as the marker gene of cell type t. Nevertheless, after aggregating the expression of
gene g in all cells that do not belong to type t, the mean of the first population can be significantly
higher than that of the second population. In this case, the one-vs-rest approach may wrongly select
gene g as the marker gene of cell type t. Another issue of the one-vs-rest approach is that the
comparison results are influenced by the number of cells belonging to each cell type in the scCRNA-
seq data. For example, if 98% of the cells in the scRNA-seq data belong to cell type t, then the

marker genes of cell type t' can merely distinguish cell types t and t’.

To address these issues, we propose a new method to select marker genes, which is based on
pairwise z -test, pairwise fold changes, and coverage rates. Specifically, we let A, =
{c =1,2,:+,C|t(c) = T} denote the set of cell indices that belongs to cell type t. Then the mean

and variance of gene g expression in type t cells are estimated as

n 2
A ZceAt Yt.g 5 = ZceAt(yt,g — 'ut,g) (1)
Ht,g 14, t.g |4, —1 ’

where |A,| is the cardinality of set A,. Thus, to determine whether yi; 5 > . 4, we conducte z-
test with null hypothesis Hy: p, g < piy7 4 and alternative hypothesis Hy: pg g > pyr o The test

statistic is derived as

feg = il
Zgtt' = tgz = > (2)
(6e)" , (60rg)
IAtl |At’|
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Welet 4,4, denote the p-value of this test. Besides, we let Fy, = {ﬁt,g / ﬁtr,g|t' * t} denote the

set of fold changes for gene g when comparing gene expressions in cell type t with each other cell
type. We let f; (v) denote the v-th sample quantile for the values in set F ;. Furthermore, we let

w _ ZceAtI(Yt,g>O)
tg |A¢|

be the coverage rate of gene g in type t cells, where [ is the indicator function
that takes the value 1 when the specified condition is satisfied and 0 otherwise. With these
preparations, gene g is selected as a candidate of type t marker genes when the following three

conditions are satisfied:

® Wiy > lcovera

e max{d,. |t #t} <,

*  f5:(v) > lso1a-

The first condition requires that the gene g be expressed in a certain proportion of the type t cells.
The second condition requires all pairwise statistics related to u; 4 are significant. Finally, the last
condition guarantees that the gene g exhibits higher expression in type t cells compared to cells
of other types, in terms of fold change. Note that for the fold change requirement, we incorporate
the parameter v for calculating the quantiles instead of using the minimum fold change from set
F, .. This is because setting a requirement for the minimum fold change to exceed a certain
threshold can be overly stringent, particularly when some cell types are very similar, such as

neurons at different layers of the cerebral cortex.

In these conditions, lgy14, L3, and l.qyer are predetermined thresholds and v is the predetermined

quantile level. Besides, if cell type t has more than ngejet candidate genes, we rank them based
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on the fold change quantile f, ;(v), and only select the top ngejecr genes. In this way, the selected

marker gene will not be dominated by any single cell type. We repeat this process for all cell types
and aggregate the selected marker genes. Based on our preliminary results, the proposed method

works well when we select [z = 1.5, [; = 0.1, l.oyer = 60%, v = 0.15, and ngejecr = 50.

By only keeping the marker genes in matrices X and ¥, we obtain matrices X(™) € RS*¢m and
y(m € RC*6m where G, is the total number of selected marker genes, and the superscript and

subscript “m” means that only the marker genes are considered.

1.2 Construction of scRNA-seq reference matrix
We let @™ € R7Xm be the scRNA-seq reference matrix constructed based on Y™, where <p( )
represents the average proportion of gene g in expression of type t cells. Thus, we have
Z g= 1<pt(r;) =1fort=1,2,---,T. Similar to BayesPrism”, we assumed that the expression of
each cell follows the multinomial distribution:

ygm)~mu1tinomia1(mc, (ps(r?)), (3)

where ygm) is the c-th row of matrix Y™, m, = Z g=1 yC(I;) is the total gene count of cell type c,

7(c) is the cell type index of cell ¢, and (pT(C) is the 7(c)-th row of reference matrix @™

Therefore, the likelihood of (pgm) is expressed as

(m)

(m) 1_[ 1_[ (m) Yeg 4
CEA: g=1 ’ ( )

By maximizing the likelihood, the entries of reference matrix @™ is estimated as
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A(m) _ ZCEAt yg:;l) (5)

tg Gm ,,(m)°
ZceAt Zg’:l yc’g/

An issue with this approach is that CPM normalization may cause the value of y, ; to be a non-
integer, making the distribution assumption (3) invalid. To address this issue, we can round the
matrix ¥ such that all the entries are integers. However, since the calculation of ¢ 4 in equation
(5) does not require y, 4 to be an integer, rounding the matrix ¥ only has a minor influence on the
estimated value of @, 4, and thus is not necessary. In the following step, we will discard the sScRNA
expression matrix Y™ and only used the estimated single-cell reference matrix @™ in our

analysis.

1.3 Probabilistic generative model

To infer the cell type proportions and decompose expression at the single-cell level, we leverage
a probabilistic generative model where both the spatial expression and the scRNA reference are
integrated. The model is depicted in Supplementary Information Fig. 2, where the gray circles
represent the known variables or observations, the white circles represent the unknown parameters
that need to be estimated, and the squares represent the hyperparameters we choose before the

inference.

Specifically, we let Q € R**T be the proportion matrix of contributed genes, where g, denotes
the proportion of genes at location s that are contributed by type t cells. Thus, .7, qs: = 1 for
s=1,2,--,8. It is worth noting that g, does not equal to ps ., which is the proportion of type t

cells at location s. This is because when only considering the G,,, marker genes, cells belongs to
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Hyperparameters

Unknown parameters

Known variables

Supplementary Information Figure 2. Graphical illustration of the probabilistic
generative model.

different cell type have different average total count in spatial tissues. For example, suppose
Dsit, = Pst, = 0.5, which means the two cell types have the same number of cells at location s. If
type t; cells have higher total expression than type t, cells at location s, then we have q,,, >
0.5 > qs,. For location s = 1, 2,---, S, we let the prior distribution of g = [qs1, 452, ", qs1] be

qs~Dirichlet(a), (6)
where a = [3, 3, -++,3] is the hyperparameter that indicates a weak prior. Note that we have tested

other values of a, and the results are very similar, except when the prior is highly informative.

Recall that (pt(’l;) represents the average proportion of gene g in type t cells. Thus, if there is no

batch effect, the proportion of gene g at location s can be derived as

2 :T (m)
Ps,g = st " Peg - (7)
t=1

The intuition behind equation (7) is that when one gene at location s is randomly selected, there is

a probability g, . that this gene is contributed by cells of type t. When such gene is contributed by

(m)

cells of type ¢, the probability that it belongs to gene type g is ¢ ;.
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However, one issue of equation (7) is that the batch effects between the scRNA-seq expression
and the spatial expression are not considered. To quantify the batch effects, we introduce batch

effect parameters r = {ry,1,, -+, 75}, where
1,~Unif(0,1), forg =1,2,-+,Gp. (8)
Then the proportion of gene g at location s is adjusted as

Psg " 2¥7g

G yr -
Zgrlnzlps,g’ 209

(9)

ﬁs,g =

where y = 2 is a hyperparameter. From equation (9), we deduce the following two findings. First,
when 7 is large, gene g has higher proportion in spatial expression due to the batch effect. Second,
the hyperparameter y controls the dispersion of the batch effects among the genes. In other words,
in equation (9), the highest possible weight of p, 4 is 2¥ and the lowest possible weight of p; 4 is

1. According to our experiments, y should not be larger than 4.

With the preparation above, the conditional distribution of xgm) is modeled as the multinomial

distribution:
x™ |Q, 7, ®™,y ~ Multinomial(my, [fs1, sz, Ps,a,|), (10)
where mg = er;ll xg;) is the total gene count at location s.

This generative model describes the generation of spatial expression in a probabilistic manner
based on relevant parameters. Our model offers two unique advantages compared to existing
probabilistic generative models used in cell type deconvolution. Firstly, it uniquely considers how
spatial expression at location s can be decomposed for each cell type. This feature enables the

generation of iscRNA data in Subsection 1.6. Secondly, in comparison to other methods, our model
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is more straightforward, with significantly fewer tuning parameters. This simplicity contributes to

reduced computational time.

1.4 Model inference

In the probabilistic generative model, the unknown parameters are the proportion matrix Q and the
batch effect parameter r. To estimate these parameters through the model, we need to conduct
Bayesian inference and calculate the posterior distributions P(Q|X m) (™) ) and
P(r|X m) (M) 1), However, calculating the exact posterior distributions is intractable due to the
inherent complexity of the model. Therefore, we leverage variational inference to approximate the

true posterior distributions.

Specifically, we assume that

S, )

where Q(qs|a;) is the probability density function (PDF) of distribution Dirichlet(es), and

P(Q,7|Xt™, &1, y) ~ [T5_, Q(qslers) TIS™, Q(n

,ug), a;r)) is the PDF of distribution N (,ug), a;r)). By applying variational inference, we

Q(rs

optimize the parameters a, yér), and ag(r) to maximize the Evidence Lower Bound (ELBO). This

maximization is equivalent to minimizing the Kullback-Leibler (KL) divergence between

™

distributions P(Q, r|X m) @™ ) and [[5_, Q(qslay) ]_[S’;‘l Q(rs g 0g ) . The variational

inference is implemented using the Python package Pyro’®, which supports GPU acceleration.

By slightly abusing the notation, we let a, yér), and ag(r) denote the optimized parameters. Then

the parameters Q and r are estimated by the posterior mean:
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A

. — 12
qs,t Z'{'Izl as,t’ ( )
7=, (13)

Recall that g, represents the proportion of genes contributed by type t cells, rather than the
proportion of type t cell in terms of absolute cell numbers. To get the proportion of type t cells at

location s, we let h; be the average total gene count of type t cells when only the marker genes

Gm (m)

ge1Yeg - Finally, the following

i ) : 1
are considered, which is calculated as h; = cheAtZ
t

transformation are used to estimate the proportion of type t cells at location s:

; Qs.e/he
Pst = ~ : 14
X @se /her) )

1.5 Nucleus segmentation and cell boundary inference

High-resolution Hematoxylin and Eosin (H&E) staining images provide us with information on
nucleus locations, as hematoxylin stains the nuclei purple and eosin stains the surrounding
cytoplasm pink. In Spotiphy, we utilize high-resolution H&E staining images for two primary
purposes. Firstly, they allow us to determine the location of nuclei and infer cell boundaries based
on the image data. These outcomes are necessary for generating pseudo single-cell resolution
images. Secondly, using the identified nuclei locations, we can calculate the number of cells in
each capture area and decompose the expression of each capture area to the single-cell level,
thereby generating iscRNA data. Although high-resolution images are recommended, they are not
necessary for generating iscCRNA data. Further details on alternative options are described in

Subsection 1.6.
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To extract useful information from H&E stained images, segmentation is required to separate the
pixels of nuclei from the background. In Spotiphy pipeline, we adopted the pretrained deep
learning model from Stardist’""’? to segment the nuclei. After the segmentation, the background
pixels are labeled as 0 and the pixels of each nucleus are labeled as the index of the nucleus. With
the segmentation results, we assume that a cell is located at position s if the center of the cell’s

nucleus falls within the capture area.

Initialization

r=4 r=>5 r==6 r=7

Supplementary Information Figure 3. lllustration of the cell expansion when r < 7.

We then let Ng denote the number of cells at location s. To infer the cell boundaries based on the
segmentation result, we let dist,,,x denote the maximum distance from a point on the cell
boundary to the corresponding nuclei center and let Area,,,, denote the maximum area of a cell.
Both quantities are measured by the image pixels. Initially, we set w = 1 and assume each cell
only occupies one pixel, which is the center of the nuclei. In each iteration, we expand the pixels
of each cell. Specifically, we increase w by Aw. Then, we iterate over all cells, allowing each cell

to occupy all the background pixels within a Euclidean distance of w pixels from its nucleus center.
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The expansion of a cell is halted when all surrounding pixels are occupied by other cells, or the
constraints set by dist,,,x and Area, 4 restrict further expansion of the cell. The cell boundaries
can then be determined as the pixels of cell that are sufficiently close to other cells or the
background. The first seven iterations of this algorithm when we set Aw = 1 is illustrated in

Supplementary Information Fig. 3.

1.6 Generation of iscRNA data

To generate iscRNA data for all cells in the tissue, we first generate iscRNA data for cells within
the capture areas. Since the expressions of each area are known, the iscRNA data for these cells
can be obtained by decomposing spatial expressions to the single-cell level. For cells outside the
capture areas, obtaining their iscRNA data is more challenging and may introduces larger errors,
since even aggregated expressions are unavailable. To this end, we provide an optional function
in Spotiphy to impute the expression of cells outside the capture areas using the kernel smoothing

method.

1.6.1 Decomposition of spatial expression

When a cell type does not exist at location s and we try to assign some spatial expression at
location s to that cell type, the decomposition of spatial expression may have large errors. Thus,
we first update the estimated cell type proportions before the decomposition based on the number
of cells at each location. Specifically, we let N; denote the number of cells at location s. In

Spotiphy, we offer four options for N value.
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First, when H&E staining image is available, N can be calculated based on nucleus segmentation
result. Second, when the high-resolution image is not available, we can estimate the value of N
based on the size of the raw counts at location s. Furthermore, we can also manually set the value
according to domain knowledge. For t = 1, 2,---, T, we let ng; denote the number of type t cells
at location s. Then the number of each cell type at location s can be determined by solving the

following optimization problem:

Nt
— Dsit

T
min Z
t=1 Ns

T
s.t.z ng = Nj. (16)

t=1

: (15)

This optimization problem can be easily solved using greedy algorithms. As a result, cell type

proportions at location s are updated as ps, = ng./N;, fort =1,2,---,T.

Finally, when the value of Ny cannot be calculated or estimated, we also provide the option to

indicate that the value of Ny is missing. In this case, we define the threshold [, and assume that if
Ps;: < lp, there is no strong evidence to suggest the existence of cell type t at location s.

Consequently, the proportion is updated as follows:

O) ps,t < lp
ﬁs,t = Z?1=1 Dse, '1(ps,t1 > lp)
’11;2=11(ps,t2 2 lp)

) 17
) ps,t 2 lp ( )

where I(*) is the indicator function. In default, the threshold [, is set to 0.1. After updating the cell

type proportions, we let P € RS*7 be the corresponding matrix where the st-th entry is Dst-
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To make sure that the decomposed spatial expression can facilitate more downstream analysis, we
aim to decompose the spatial expression of all G genes, rather than the G,, marker genes. Thus,
we construct the single-cell reference matrix @ € R7*¢ using the full scRNA count matrix ¥
according to Subsection 1.2. In addition, we let U € R3*¢*T denote a 3-dimensional tensor, where
Ustg 18 the expression of gene g in type t cells at location s. As a result, u;, =
[Us,g,1,Us,g 20"  Us gr] 15 the decomposition of spatial expression x;,, where we have

T, Us g = Xs,g. Note that we assume that when considering all G genes, the total expression of
each cell at location s is identical. Therefore, when all genes are considered, the probability that a

randomly picked gene at location s belongs to type t cells P ;.

By apply the probabilistic model again without considering the batch effect, we have

G
us,g,tvainomial <z Us gt ﬁs,tgot,g), (18)

g=1
and [us,g't; g=12,-,G;t=1,2,-, T] follow the multinomial distribution. The intuition is
that with probability ps ¢, 4, a randomly selected gene at location s is a gene g contributed by a
cell that belongs to type t. Finally, condition on xg, = Z{zlus'g,t, U, 4 also follows the
multinomial distribution,

U g |xs‘g ~ Multinomial(xs,t, [ws,g,l, W g2, ws‘g,T]), (19)

Ps,t P,
where wg g = o2

m. Then ug; 4 can be estimated as the posterior mean: @ls¢ g = X -

wg gt Note that when the proportion P is 0, the decomposed spatial expression for type ¢ cells

at location s is always 0. Finally, the iscRNA data for cells inside the capture areas are obtained

by reshaping the tensor U.
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1.6.2 Imputation of expression for cells in non-capture areas

Spotiphy includes an optional function to impute the expression for cells in non-capture areas
through kernel smoothing. Specifically, for a cell ¢ belonging to type t in a non-capture area, we
consider all type t cells within the captured areas and derive weights for these cells based on their
distance from cell c. Consequently, the expression of cell ¢ is obtained as the weighted sum of the

expressions of type t cells in the capture areas.

1.7 Generation of pseudo images

Recall that we can estimate the exact numbers of each cell type within each capture area. However,
we are not able to identify which specific nuclei belong to each cell type. Thus, given that there
are ng ¢ cells of type t at location s, we randomly assign ng, nuclei as belonging to cell type t

within the capture area.

For nuclei outside the capture areas, we have not collected any data. Thus, assume that the
proportion of each cell type changes smoothly over the entire tissue. This assumption allows us to
employe a Gaussian Process to impute the cell type proportions. Specifically, we let f; (1r) denote
the proportion of cell type t at location T = [my, 7T, ]. We then assume the function f; (7r) follows
a Gaussian Process with the kernel function k. In other words,
f(my)
i |~MVN(0,K + o2I), (20)
f (1)
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where I is the identical matrix, and the ij-th entry of matrix K is k;; = k(7t;, 7t;). In this study, we

use the squared exponential kernel, with the kernel function being expressed as

2
|| — 7Tj||2
k(m;, ;) = exp gz |’ (21)

where ””i — nj”Z represents the Euclidean distance between the two locations, 6 is the length-

scale of the process. The parameters o and 6 are estimated by maximizing the likelihood.
Therefore, we can use the Gaussian Process to estimate the proportion of each cell type in the
neighborhood of each nucleus outside the capture areas. The estimated proportions at each location
are normalized to ensure their sum equals 1. In this way, we assign a cell type to each nucleus

outside the capture area by randomly sampling according to the estimated cell type proportions.

Through annotating the nuclei and inferring the cell boundaries, we obtain a pseudo single-cell
resolution image that closely resembles the output of image-based spatial transcriptomics approach

(Supplementary Fig. 19).

2 Generation of simulated spatial transcriptomics datasets

To create synthetic spatial transcriptomics datasets that closely resemble the actual dataset, we use
the estimated number of each cell type at every location, as determined by Spotiphy, as the ground
truth. Specifically, for generating the spatial expression at a given location s, we randomly sample
ng, cells of type t cells from the scRNA-seq data, for t = 1,2,---,T. We then merge all the
scRNA-seq expressions. To enhance the resemblance of the synthetic expression to real data, we
introduced three types of disturbance to the aggregated scRNA-seq data at each location: batch

effect, artificial zero reads, and random noise. Specifically, let X5, denote the total count of gene
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g at location s after aggregating the single cell gene expressions. We assume the batch effect
parameter 7; independently follows the lognormal distribution with mean of 0 and sigma Gy ,¢ch-
To introduce the artificial zero reads, we randomly sample ;4 from Bernoulli distribution with
mean of us. When &4 is 0, we set X, to 0. Finally, random noise is introduced by sampling &4
independently from lognormal distribution with mean of 0 and sigma g,ise . With these

preparations, the generated expression of gene g at location s can be expressed as

Xsg = XsgTy8sg€sg- (22)

Since we aim to investigate the robustness of various deconvolution algorithm to disturbance, we
consider three different levels of disturbance in this study. The parameters are chosen as follows.
Small disturbance: gpatcn, = 0.1, s = 0.7, 0ppise = 0.05. Medium disturbance: oy ¢ = 0.5,

Us = 0.4, 0,0ise = 0.2. Large disturbance: 0, = 0.6, g = 0.3, 0ppise = 0.4.
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