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ABSTRACT: Energetic materials undergo hundreds of chemical reactions during
exothermic runaway, generally beginning with the breaking of the weakest chemical
bond, the “trigger linkage.” Herein we report the syntheses of a series of pentaerythritol
tetranitrate (PETN) derivatives in which the energetic nitrate ester groups are
systematically substituted by hydroxyl groups. Because all the PETN derivatives have the
same nitrate ester-based trigger linkages, quantum molecular dynamics (QMD)
simulations show very similar Arrhenius kinetics for the first reactions. However,
handling sensitivity testing conducted using drop weight impact indicates that sensitivity
decreases precipitously as nitrate esters are replaced by hydroxyl groups. These
experimental results are supported by QMD simulations that show systematic decreases
in the final temperatures of the products and the energy release as the nitrate ester
functional groups are removed. To better interpret these results, we derive a simple
model based only on the specific enthalpy of explosion and the kinetics of trigger linkage
rupture that accounts qualitatively for the decrease in sensitivity as nitrate ester groups
are removed.

The initiation of runaway exothermic reactions in an
energetic material involves a spectrum of complex

phenomena that generally begins with the temperature input,
often via hot spots,1 required to break the weakest intra-
molecular bonds, or “trigger linkages”. Those reactions can
either quench or propagate to a self-sustaining deflagration
depending on the interplay between the reaction rates, the
energy release from the reactions, and dissipation to the
environment.2−5 Hence, explosive sensitivity depends, in part,
on the rates of the first reactions and the performance of the
explosive. In order to understand the relative importance of
these factors, we have designed and synthesized a molecular
system based on pentaerythritol tetranitrate (PETN) where
the underlying chemistry, via the trigger linkages, was held
constant, while we systematically varied the explosive perform-
ance via the heat of explosion, Q.
The drop-weight impact test is the most widely utilized

small-scale test to evaluate explosive safety during the initial
design stage. Although there is a high degree of variability in
the results of the impact test,6 in practice, general trends in the
sensitivity of energetic materials have emerged from large-scale
studies. These include the importance of oxygen balance, heat
of explosion, and the type of energetic functional group, all of
which can be connected to trigger linkage strength and/or
explosive performance.7−14 More recently, our group and
others have investigated systematic changes to molecular
structure, hydrogen and intermolecular bonding, and physical
properties in order to modify explosive sensitivity.15−21

Specifically, we have investigated how changes to the PETN
backbone correlate with handling sensitivity.19,22,23

Hundreds or thousands of unique reactions can occur in
explosives on the time scale of the impact test. Nevertheless,
reliable single-step Arrhenius kinetics, κ = A exp(−Ea/kBT),
where κ is a rate, A the pre-exponential factor, Ea the activation
enthalpy, kB the Boltzmann constant, and T the temperature,
which collate all of the reaction steps leading up to an
explosion into a single pre-exponential factor and activation
enthalpy, have been obtained from both experiment and
simulation.24−26 The single-step time-to-explosion kinetics
measured by Wenograd in the 1960s27 and subsequent studies
at Los Alamos by Storm et al. using Rogers’ single-step kinetics
showed that the impact sensitivity of an energetic material
depends partly on the critical temperature that is required to
start a detectable deflagration on the 250 μs duration of the
drop weight test.7,28 These results were confirmed theoretically
using Arrhenius kinetics for the time-to-explosion as a function
of temperature obtained from condensed-phase quantum
molecular dynamics (QMD) simulations.29 We have also
employed ensembles of reactive gas-phase QMD simulations
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to evaluate directly the kinetics of trigger linkage rupture,
which showed a similar strong correlation with experimental
impact sensitivity. These results imply that the relatively simple
kinetics of trigger linkage rupture, which are based only on the
first reactions, are a good surrogate for the kinetics of an
explosive to undergo thermal runaway.
The correlation between explosive performance and

sensitivity is well-known since, in general, the most powerful
explosives are also the most sensitive. Both the body of work
from Zeman12,30,31 and recent studies by our team32 find that
the Bell-Evans−Polanyi principle33,34 provides the best
description of the dependence between sensitivity and
performance, through the specific heat of explosion, Q.
Understanding sensitivity trends in an explosive system in
which the energy release is changed while maintaining the
trigger linkage chemistry is difficult, because modifications to
molecular structure often change a range of physical properties,
such as melting point, density, and crystal packing, all of which
are thought play a role in determining handling sensitivity. In
this work we investigate the explosive PETN and its hydroxyl-
based analogs, namely, PETriN, PEDN, and PEMN (Scheme
1). Modification of PETN in this manner allows for

preservation of the -ONO2 trigger linkage chemistry while
systematically altering the heat of explosion. We evaluate their
experimental drop-weight impact sensitivity values, H50, as we
replace the energetic nitrate ester functional group with inert
hydroxyl groups, and we calculate reaction rates and heats of
explosion in order probe the importance of trigger linkage/
functional group versus overall energy output. Finally, we
derive a simple model that accounts for the precipitous
decrease in sensitivity as nitrate ester groups are substituted.
To our knowledge, this is the first example of the analysis of an
explosive system where the trigger linkage is held constant with
systematic changes in energy release. This study is particularly

timely, considering the recent interest in explosive design in
numerous seemingly disparate fields of study, from the
synthesis of new energetics,35−37 the computational design of
new explosives,38 to the machine learning-based evaluation of
large historical data sets for the importance of various
molecular descriptors in influencing impact sensitivity.39−44

The following synthesized energetic molecules react to stimuli
such as impact, spark, and friction and should only be prepared by
trained explosives handlers with the proper safety precautions. The
hydroxyl derivatives of PETN (Scheme 1) are commonly made
either through a reduction of PETN or a nitration of
pentaerythritol. In addition to their potential medicinal
properties,45 PETriN and PEDN are known thermal, radiation,
and biological decomposition products of PETN.46 PETriN
was synthesized following a patent procedure47 in which
pentaerythritol was nitrated using a mixed acid synthesis in the
presence of dichloromethane. The use of dichloromethane
prevents full nitration of the pentaerythritol to PETN. PEDN
was synthesized though a hydrazine reduction of PETN48 in
which two of the nitrate esters are reduced to the alcohol.
Finally, PEMN was synthesized using a modified procedure48

where a bromide-substituted pentaerythritol substrate is
reacted with silver nitrate in acetonitrile (Scheme 1).
Purification of PEMN is difficult using common chromatog-
raphy practices due to the highly polar nature of the material.
We developed a procedure to purify PEMN through protection
of the alcohol groups with tert-butyldimethylsilyl chloride,
followed by removal of the protecting groups in an acid-based
workup.
Drop-weight impact sensitivity testing was conducted by

placing a 40 mg sample of material between a steel anvil and
0.8 kg striker. A 2.5 kg weight was adjusted to different heights
and dropped on the material. When the material generated an
average sound reading of higher than 117 dB on the two sound
meters, an energetic event was determined to have occurred,
and the drop was considered a “Go.”49 The higher the drop
height needed to cause a go, the less sensitive the material is
determined to be. A series of at least 15 drops from various
heights was performed and then analyzed using the Neyer
statistical method to determine the height (and therefore
energy) at which 50% of the samples react (H50).

50

Drop heights from impact testing are given in Table 1, along
with friction, electrostatic discharge, and calorimetry data. For
consistency, all of the impact data presented in Table 1 were
collected using the Type 12B tool on a bare anvil with a
polished steel striker, though tests run with standard grit paper
(Type 12) gave similar results for the PETN derivatives
(Supporting Information). In this system of PETN derivatives,
the loss of each nitrate ester functional group led to a decrease
in the impact sensitivity of the material (i.e., an increase in
H50). Consistent with literature data,

6 PETN (s) has a drop
height of 20.8 ± 4.3 cm when collected on a bare anvil. The

Scheme 1. Chemical Structures and Syntheses of PETriN,
PEDN, and PEMN

Table 1. Sensitivity Data and Sound Levels for PETN and Hydroxyl PETN Derivatives at Room Temperature

materiala
impact DH50

(cm)
average sound level (dB) for

“Go”b
average sound level (dB) for

“No Go”
friction DH50

(N)
electrostatic
discharge (J)

DSC (°C) melt/decomp
onsetb

PETN (s) 20.8 ± 4.3 130 ± 3 100 ± 5 56.0 ± 2.2 0.0625 140.87/165.26
PETriN (l) 27.0 ± 2.2 134 ± 3 99 ± 1 > 360 0.0625 --/163.95
PEDN (l) 120.5 ± 3.4 121 ± 2 108 ± 7 > 360 0.0625 --/166.4
PEMN (s) >320 -- 111 ± 5 > 360 0.0625 57.7/162.4

aSolids are designated as (s), and liquids are designated as (l). bThe use of “--” indicates that no data is available.
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drop height of PETriN (l) was found to be higher, at 27.0 ±
2.0 cm, indicating a less-sensitive explosive. In general, liquids
typically exhibit smaller drop heights than solids for a given
material16 because they have different mechanisms for ignition
under impact testing conditions.51 PEDN was generally
isolated as an oil, though it could sometimes be purified as a
solid. Both phases of the material were tested for impact
sensitivity, with similar values of ∼120 cm, even with
differences in phase and grit paper (Supporting Information).
PEMN was also isolated as an oil or waxy solid and only
exhibited borderline Go reactions at the maximum height of
the impact drop tower (320 cm).
Recent analyses of drop-weight impact test decibel levels

indicated that well-behaved explosives (i.e., those that do not
undergo partial reactions with unreacted material left on the
anvil after a go) exhibit an “S”-shaped curve in a plot of drop
height versus sound level.52,53 We hypothesized that, in the
drop weight impact test, explosives with more energetic groups
would generate larger decibel readings during reaction due to
their larger specific heat of explosion and gas releases and that
the sound levels would decrease systematically as explosive
groups were sequentially removed. Figure 1 gives the sound

level of each drop for each PETN derivative, and Table 1
shows the average sound levels collected for each PETN
derivative during a Go as well as averages obtained for each
“No Go” (partial or no reaction). PETN, PETriN, and PEDN
generated the expected S-curve behavior (see Supporting
Information for an expanded view of PETN and PETriN), with
maximum sound levels for PEDN (121−124 dB) that were

significantly lower than those of PETN and PETriN (129−134
dB). Most sound levels for PEMN fell below the threshold to
be considered a Go, at the approximate sound level expected
for an inert material in this test.53

Static total energy and reactive gas-phase and condensed-
phase QMD simulations have been performed for the PETN
derivatives using density functional tight binding (DFTB)
theory with the lanl31 parametrization for molecules
containing C, H, N, and O. Details on how the simulations
were set up and performed are provided in the Supporting
Information.
The energy release for the four molecules has been

estimated by two methods. First, the gas-phase heat of
formation, ΔHf, of the PETN derivatives was computed from
the total DFTB energy, u, using the seven-parameter atom-
equivalent energies developed for the lanl31 parametrization in
ref 54. The DFTB-predicted ΔHf presented in Table 2 are
within a few kcal/mol of those obtained from the more
computationally expensive density functional theory-based
formalism of Byrd and Rice55 (Supporting Information). The
heat of explosion, Q, is obtained from the difference in the heat
of formation between the reactants and products

i
k
jjjjjj

y
{
zzzzzz=Q n H H1

Mol. Wt.
( )

i
i i ff

p

(1)

where ni is the number of moles of product species, i, with heat
of formation (ΔHfp)i derived from one mole of reactants (Mol.
Wt. indicates molecular weight).56 The quantities and types of
the product species are assumed to be fully determined by the
stoichiometry of the reactants according to the oxidation
priority established in ref 57, and the corresponding ΔHfp
values were obtained from the NIST Chemistry WebBook.58

The molar and specific heats of explosion are given in Table 2,
which clearly reflect the expected decrease in explosive
performance when energetic nitrate ester groups are replaced
by inert hydroxy groups.
Our second approach to estimating the energy release from

the derivatives during thermal explosion used a series of
condensed-phase QMD simulations in the microcanonical
ensemble. The extended Lagrangian Born−Oppenheimer MD
formalism of Niklasson et al. was used to ensure the long-term
stability of the trajectories and the precise conservation of the
total energy during reactions.59−62 As in refs 19, 29, and 65, the
conservation of the total energy before, during, and after the
thermal explosion leads to a precipitous increase in the kinetic
temperature during the exothermic runaway stage. The
simulations of crystalline PETN at its ambient density, ρ =
1.78 g/cm3, used a 2 × 2 × 2 periodic supercell containing 16
molecules, while simulations of liquid PETriN, PEDN, and
PEMN used periodic supercells containing eight molecules at

Figure 1. Sound levels in dB for PETN and all hydroxyl derivatives, vs
drop height (in cm) on a bare anvil, showing PETN (black
diamonds), PETriN (red circles), PEDN (blue squares), PEMN
(gray triangles), and inert sugar (small gray ×). A best-fit line is given
for the sugar, in order to show where sound levels should generally be
for inert materials. The S-shaped curve is most clearly visible in the
PEDN sound levels.

Table 2. DFTB-Calculated Heat of Formations, ΔHf, Enthalpies of Explosion, Q, Number of Nitrate Ester Groups, Nx, and the
Pre-Exponential Factors, Â, Activation Enthalpies, Ea, for the Rates of Trigger Linkage Rupture for PETN, PETriN, PEDN,
and PEMN from DFTB-MDa

material ΔHf(kcal/mol) Qm(kcal/mol) Q(kcal/g) Nx Â (ps−1) Ea (eV)

PETN −106.1 463.8 1.47 4 1196 ± 414 1.40 ± 0.04
PETriN −121.8 308.2 1.14 3 1013 ± 321 1.38 ± 0.03
PEDN −134.0 238.7 1.06 2 1318 ± 443 1.39 ± 0.04
PEMN −148.1 188.0 1.04 1 3162 ± 1092 1.47 ± 0.04

aThe mean errors in the predicted ΔHf are estimated to be ±10.4 kcal/mol.
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the mass densities estimated by dispersion-corrected DFTB
simulations in the isothermal−isobaric ensemble (Supporting
Information). The evolution of the temperature in 10
independent simulations of PETN, PETriN, PEDN, and
PEMN after thermalization to an initial temperature of 1500
K are presented in Figure 2. These results illustrate clearly the

decrease in the performance and energy output as nitrate ester
groups are replaced by hydroxyl groups, as depicted by the
systematic decreases in both the final temperature of the
products and the rates of energy release.
The “strength” of the trigger linkages in the four molecules

was estimated from the Arrhenius rates associated with
thermally breaking any covalent bond within the molecules
in the gas phase.29,54,63 The rates were computed from gas-
phase QMD simulations, which were performed in the
canonical ensemble using a Langevin thermostat64 to control
the temperature (Supporting Information). Ensembles of 200
independent trajectories at temperatures from 1100 to 1500 K
were analyzed to determine the time, τ, required to break any
covalent bond.29,65 These results are presented in Arrhenius
plots in Figure 3. Because we found that the first bonds to
break in all four molecules are associated overwhelmingly with

the -ONO2 groups, we have presented the rates, κ = 1/τ,
normalized by the number of nitrate ester groups per molecule,
Nx. Linear regressions to the normalized rates as a function of
inverse temperature show that the strengths of the trigger
linkages are very similar, that is, the normalized rates are the
same to within statistical uncertainties. The activation
enthalpies, Ea, and pre-exponential factors, Â, presented in
Table 2 are also very similar but exhibit greater variation
between the molecules, which we attribute to the so-called
kinetic compensation effect that arises from linear regressions
to noisy data.66

While the chemistry and trigger linkage kinetics of the four
PETN derivatives are clearly very similar, our drop weight
impact testing reveals a precipitous increase in H50 when
nitrate esters are replaced by hydroxyl groups. In a recent
publication,32 we proposed that drop weight impact sensitivity
depends jointly on the kinetics of trigger linkage rupture and
the enthalpy of explosion via

H
A E Q k T

1
exp( ( )/ )50

a B (2)

where α is a positive constant. It follows from eq 2 and the
observation that this set of derivatives have similar normalized
rates, activation enthalpies, Ea, and pre-exponential factors, Â,
that the variation of H50 across the series should follow
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where the superscript “0” denotes those parameters for a
reference molecule in the series of derivatives, and γ is a
constant. Equation 3 indicates that H50 should increase relative
to that of PETN as nitrate ester groups are removed through
two routes: the first is connected to the slower rates of trigger
linkage rupture, in an absolute sense when Nx decreases, while
the second and dominant term is the predicted exponential
dependence of H50 on the decrease of the heat of explosion, Q0
− Q, when ONO2 groups are lost. The parameter γ was fitted
to drop weight impact data7 on small sets of nitrotoluene,
nitroaniline, and nitrobenzene explosives that have different
numbers of NO2 groups, plus the set of PETN derivatives
described here (see Supporting Information). We obtained a
value of about γ ≈ 1.6 g/kcal, but we found that γ is somewhat
system-dependent. Equation 3, which depends only on gas-
phase thermochemistry, accounts for at best 70% of the
variation in ln(H50), and we attribute the remaining 30% of the
variation to condensed phase properties and chemistry that are
not captured by the model.32 The intrinsic limitations
associated with eq 3 and the small numbers of families of
explosive molecules that are suitable for parametrization of γ
lead inevitably to significant uncertainties in the values of γ.
Nevertheless, eq 3, which is a physically transparent model for
explosive chemical kinetics, accounts naturally for the
precipitous increase in H50 observed experimentally for both
the PETN derivatives studied here and historic data7 obtained
for several sets of nitrobenzene derivatives. These results are
also consistent with the trends predicted for H50 across the
same sets of nitrobenzene derivatives by other rate-based
models of impact sensitivity.67

Using this system of PETN derivatives, we were able to
systematically evaluate�both experimentally and computa-
tionally�the influence on explosive kinetics and energy release
as we replaced energetic functional groups with inert hydroxyl

Figure 2. Evolution of the kinetic temperature in PETN, PETriN,
PEDN, and PEMN during thermal explosions from DFTB MD
simulations in the microcanonical ensemble.

Figure 3. Arrhenius plots derived from ensembles of normalized time-
to-reaction data, κ/Nx, from gas-phase QMD simulations of PETN,
PETriN, PEDN, and PEMN. The ranges of the rates of bond-breaking
events obtained from our QMD simulations are depicted by the box-
and-whisker symbols.
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groups. As shown in Table 2 and Figure 3, the trigger linkage
kinetics of the PETN derivatives are very similar because all
have nitrate ester functional groups. However, experimental
results from drop weight impact testing indicate lower
generated sound levels (Figure 1) and sensitivities as nitrate
esters are replaced by hydroxyl groups, which are consistent
with a decrease in the heat of explosion. Our condensed-phase
QMD simulations of the four molecules emphasize the critical
role played by the heat of explosion in determining the
sensitivity in molecules with otherwise identical trigger
linkages. Figure 2 shows that, with the exception of a few
trajectories, all of the simulations started reacting within the
first 50 ps, which is consistent with identical trigger linkage
strength and the different numbers of trigger linkages within
each simulation, but we see systematically longer times to the
completion of the reactions, from about 75 to 200 ps for
PETN and PEMN, respectively, as Q decreases because the
smaller energy release hinders the acceleration of the reactions
toward a thermal explosion.
This study directly validates previous models that emphasize

the importance of both functional group and heat of explosion
in predicting energetic sensitivity. Critically, in addition to
guiding future explosives design, these results will direct the
rapidly emerging fields of explosive synthesis, computational
chemistry, and use of machine-learning approaches to
understand the wealth of existing impact test data results in
the literature.
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