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A mainstream procedure to analyze the wealth of genomic data available nowadays is the detection of homolo-
gous regions shared across genomes, followed by the extraction of biological information from the patterns of
conservation and variation observed in such regions. Although of pivotal importance, comparative genomic pro-
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cedures that rely on homology inference are obviously not applicable if no homologous regions are detectable.
This fact excludes a considerable portion of “genomic dark matter” with no significant similarity — and, conse-
quently, no inferred homology to any other known sequence — from several downstream comparative genomic
methods. In this review we compile several sequence metrics that do not rely on homology inference and can be
used to compare nucleotide sequences and extract biologically meaningful information from them. These metrics
comprise several compositional parameters calculated from sequence data alone, such as GC content, dinucleo-

tide odds ratio, and several codon bias metrics. They also share other interesting properties, such as pervasiveness
(patterns persist on smaller scales) and phylogenetic signal. We also cite examples where these homology-
independent metrics have been successfully applied to support several bioinformatics challenges, such as
taxonomic classification of biological sequences without homology inference. They where also used to detect
higher-order patterns of interactions in biological systems, ranging from detecting coevolutionary trends be-
tween the genomes of viruses and their hosts to characterization of gene pools of entire microbial communities.
We argue that, if correctly understood and applied, homology-independent metrics can add important layers of

biological information in comparative genomic studies without prior homology inference.
© 2015 Coutinho et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction pressures are distinct transition/transversion ratios [ 15], CpG underrep-

Most computational methods available for comparative genomics
rely on initial similarity searches to infer homology relationships and,
consequently, analyze the wealth of genomic data currently available.
Among others, current methods for comparative genomic analysis
based on the detection of homologous sequences allow the 1) determi-
nation of the time of divergence between taxa through the theory of
molecular clock [1]; 2) automatic annotation of new genomes based
on orthology inference [2]; 3) estimation of the rates of evolution of
protein families [3]; 4) analysis of the overall evolution of genomes
through genome-scale analysis of patterns of gain/loss of genomic
elements [4]; 5) searching for higher-order layers of positional genomic
information (haplotypic blocks, synteny, etc.) [5]; and 6) genomic-scale
search for patterns of positive Darwinian selection [6], among many
others.

The computational methods for comparative genomic analysis
based in the detection of homologous regions, from now on referred
as homology-dependent (HD) methods, although crucial for several
bioinformatic pipelines, are limited to genomic sequences with detect-
able homologous regions, usually identified through computationally
intensive software that contains somewhat arbitrary cut-offs to define
groups of homologous sequences [7,8]. The failure to detect such
regions prevents the application of virtually any HD method and
excludes several interesting classes of DNA sequences from further
analysis. ORFans — orphans Open Reading Frames (ORFs) without any
detectable similarity to other sequences — are commonly found in
complete genomes and in environmental sequences and constitute a
true “dark matter” of biological data that cannot be surveyed using
traditional HD methods [9,10]. In some newly discovered taxa, such as
the large DNA viruses from Mimiviridae, the vast majority of coding se-
quences do not share significant similarity with known proteins [11].

In this mini-review we compile a list of metrics used in comparative
genomic studies that share an unusual property for this purpose: they
do not rely on initial homology inference, and can be calculated from
individual sequence data alone. Such metrics, from now on referred as
homology-independent (HI) metrics, can be easily calculated for
virtually any fragment of any genome that fulfills a few criteria, such
as minimum length and complexity. These metrics usually detect biases
by comparing the observed frequencies of nucleotide words, especially
dinucleotide and codons, with expected frequencies for the same
words. The dinucleotide usage patterns in a given genome are common-
ly referred in the scientific literature as genomic signatures, since they
are also taxon-specific and highly conserved in a given genome
[12-14]. Here we also highlight the relative strengths and weaknesses
of such metrics and report comparative genomic studies that applied
such metrics to extract biologically meaningful information that
would be otherwise impossible to obtain using common HD compara-
tive genomic methods.

2. Homology-Independent Metrics: Causes and Properties
2.1. Causes of Variation in Homology-Independent Metrics

Most explanations for the biased values observed in HI metrics are
due to a complex interplay between three broad groups of phenomena
that shape together the use of nucleotide words in genomes. One of
these groups is composed of mutational pressures where a given
nucleotide word is significantly more (or less) used than its expected
frequency due to mutational events. Possible sources of mutational

resentation in vertebrate genomes due to methylation/deamination
processes occurring in this dinucleotide [16] and distinct nucleotide
incorporation efficiency by polymerases during genome replication
[17], among many others.

A second group of phenomena responsible for HI biases in genomes
is composed of selection pressure events, in which natural selection
shapes the differential usage of nucleotide motifs. In fact, several nucle-
otide motifs (such as the “TATA box”) interact with the transcription/
translation machinery and are classic examples of conservation of
nucleotide words in genomic sequences due to selection pressure [18].
Another classic cause of variation in nucleotide words (codons) induced
by selection pressure is the more-than-expected usage of synonymous
codons that corresponds to the more abundant aminoacyl-tRNAs in
cell cytoplasm in order to increase translation speed/efficiency, a selec-
tion pressure particularly strong in single-celled organisms [19] and in
highly-expressed genes [20]. A final broad class of factors known to
influence the use of nucleotide words in genomes is the occurrence of
neutral processes such as genetic drift during the course of evolution
[21]. Therefore, if properly modeled and interpreted, the results obtain-
ed through HI metrics in comparative genomic studies can highlight
broad patterns of mutational and selective forces as well as random
variations acting in the genomes under analysis.

2.2. General Properties of Homology-Independent Metrics

Besides not requiring previous homology relationships to analyze
genomic data, HI metrics contain other general properties shared by
most or all of them. An interesting property is that most HI metrics
contain null models that take into account major factors already
known to influence the frequencies of nucleotide words. Different HI
metrics consider factors such as GC content, observed frequencies of
smaller words that compose the word under analysis, degeneracy of
the genetic code and amino acid usage, among others, when calculating
null models. Therefore, any bias detected using HI metrics with proper
null models is not explainable by factors already taken into account
when computing null models, and represent biological phenomena
that require further explanation/investigation. Also, several HI metrics
are pervasive in the sense that values for whole genomes should persist
at smaller scales. Some HI metrics remain reasonably constant for
fragments with as few as 125 base pairs when compared with values
calculated for entire genomes, or even when comparing coding and
non-coding regions of genomes, making HI metrics a robust option to
develop procedures to classify nucleotide sequences to taxonomic
units, as in the case of genomic signatures [13].

Another useful aspect of HI metrics when applied to comparative
genomics is the fact that some of them generate results that contain
phylogenetic signal and are able to represent phylogenetic relation-
ships, arguably with a more global view of the evolutionary process
[22]. The patterns of DOR and codon usage bias in complete genomes
of prokaryotes present a strong correlation with phylogenetic trees
of 16S ribosomal RNA and housekeeping genes [14,23]. Comparative
genomics using HI metrics may better reflect the global phylogenetic re-
lationships between complete genomes by considering, for instance,
events of horizontal transfer (HGT, one of the many factors known to
change local frequencies of nucleotide words in genomic sequences)
as part of the evolutionary signal in opposition to the reductionist anal-
ysis of single genes as proxies to faithfully represent the phylogenetic
history of the entire genome.
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3. Main Metrics for Homology-Independent Analyses

Several HI metrics have been used for comparative genomics.
Supplementary Table 1 contains a non-exhaustive list of software to cal-
culate HI metrics to allow users to analyze their own data. Below follows
a formal description of the most common metrics:

3.1. Genomic Signatures

Genome signature is an umbrella term used to refer to similar
concepts, but to different HI metrics. A genome signature refers to any
HI metric that can be calculated from a DNA sequence with sufficient
length and compositional complexity that enables the correct classifica-
tion of the sequence to its source genome [12,24]. An ideal genomic
signature should satisfy three major criteria: 1) it should be species-
specific; 2) it should reflect phylogenetic history and 3) it should be
pervasive [12].

3.1.1. GC Content

The simplest known HI metric used as genomic signature is the GC
content of genomic sequences (percentage of G + C in a sequence).
Despite being a simple metric, GC presents a huge variation across ge-
nomes, ranging from approximately 20% in Plasmodium falciparum
[25] to 70% in some actinobacteria [26]. GC content is reasonably con-
stant within a given genome, and was already found to be correlated
with several universal factors of microbial lifestyles such as temperature
[27], niche complexity [28] and aerobiosis [29].

3.1.2. Dinucleotide Odds Ratio

Dinucleotide Odds Ratio (DOR) is defined as the ratio between ob-
served and expected frequencies of a dinucleotide in a sequence, and
is perhaps the canonical example of both an HI metric and a genomic
signature [24]. The expected frequency of a dinucleotide (null model)
is defined as the product of the observed frequencies of its two nucleo-
tides in the sequence under analysis, therefore removing background
nucleotide frequency as a possible source of bias. DOR values close to
one indicate observed frequencies close to expectation, and values sig-
nificantly above or below one indicate the presence of mutational
and/or selection bias actively shaping the frequency of dinucleotides.
As arbitrary cutoff, DOR values observed outside the range of 0.78-
1.25 are commonly considered to have low or high relative abundance,
respectively [30]. Eq. (1) describes the DOR calculation for dinucleotide
xy for a single-stranded sequence.

fxy

ny:fx—fy» (1)

Eq. (1) describes the calculation of dinucleotide odds ratio (Pyy) for
single-stranded genomes. f, and f, denote the frequency of mononucle-
otides x and y in a given sequence, and f,, denotes the observed frequen-
cy of dinucleotide xy in the same sequence.

The calculation shown in Eq. (1) is valid only for single-stranded se-
quences that do not obey the first Chargaff's parity rule. For double-
stranded genomes the frequency of each nucleotide is calculated in a
symmetrical way to take into account the complementary nucleotide
located at the opposite strand. If we denote the nucleotide frequencies
in double stranded genomes with “*”, f°(T) = f°(A) = (f(A) + f(T)) /
2 and f°(C) = f°(G) = (f(C) + f(G)) / 2. Based on the above equation
and the first Chargaff's parity rule, the DOR for double-stranded
sequences is calculated as follows:

Py = M 2)
(Fufy) Fof)

Eq. (2) describes the calculation of dinucleotide odds ratio (Py,) for
double-stranded genomes. f, and f, denote any two nucleotides, and f;
and f,, denote the frequencies of nucleotides z and w, complementary
to y and x, respectively.

3.1.3. Relative Synonymous Codon Usage (RSCU)

This metric is commonly used to estimate bias in the use of synony-
mous codons and removes the differences in the frequencies of amino
acids as a possible bias factor (null model) [31]. Observed values are
the counts of the jth codon for the ith amino acid, and expected values
are calculated by counting the total of codons encoding the amino acid
iin a given sequence divided by the degeneracy class of amino acid i
(two, three, four or six). RSCU values for each codon are calculated
according to Eq. (3):

i

X
RSCUij = 1. 3)

El

Eq. (3) describes the calculation of RSCU for codon j. X — observed
number of occurrences of the jth codon for the ith amino acid. E} — ex-
pected number of occurrences of jth codon for the ith amino acid. Ex-
pected values are calculated by counting all synonymous codons
coding for amino acid i in a sequence divided by the number of synon-
ymous codons that code for this amino acid (amino acid degeneracy
class).

3.1.4. Genomic Signatures Using Longer Words

Genomic signatures based on nucleotide words with length two and
three are commonly used as HI metrics due to the immediate biological
relevance of words of these lengths for pivotal biological processes
involving nucleic acids, such as DNA modification mechanisms in verte-
brates which recognize dinucleotides as modification sites [16] and trans-
lation, which is indissociable of the codon concept. However, using longer
DNA words as genomic signatures adds more dimensions to compare and
stratify sequence data (e.g. there are, respectively, 16, 64, 256 and 1024
different DNA words of lengths 2, 3, 4 and 5, respectively). Although not
possessing a clear, intuitive biological relevance such as words of length
two or three, the length increase arguably improves classification perfor-
mance of genomic signatures metrics [32-35]. Null models for words of
these lengths often involve more complex procedures, such as zero- or
higher-order Markov models to account for the frequencies of smaller
words that compose each DNA word [35].

3.2. Effective Number of Codons (NC) and Variations

3.2.1. Effective Number of Codons (NC)

The effective number of codons (NC) is calculated for coding regions
and represents the overall bias of preferential use of synonyms codons
in a given gene/genome. The equation to calculate NC is conceptually
similar to the calculation of the effective population size used in popula-
tion genetics. It generates a single number that ranges from 20 (extreme
codon usage bias where each amino acid is coded by only one codon) to
61 (absence of bias in the choice of synonyms codons, indicating equal
usage for all codons) [36]. Extreme values of CG content in coding
regions restrict the number of codons effectively available and, conse-
quently, NC values are heavily influenced by CG content [37]. This
metric is one of the most sensitive to detect biases in codon usage,
and is calculated using the following equations (from [38]):

k
0, — naZizlpfz_l (4)
a- ng—1 :
Eq. (4) describes the calculation of 8, (homozygosity of amino acid

a). p; — frequency of codon i; k — number of synonymous codons for
amino acid a (amino acid degeneracy class); n, — observed number of
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codons for amino acid a (only for amino acids with degeneracy class
greater than one).

From the values of 6, for each amino acid one should compute the
average values 6, for each amino acid degeneracy class (e.g. two,
three, four or six-fold degeneracy) (Eq. (5)):

1
0, =— 0q. 5
' nRCaEZRCﬂ ()

Eq. (5) describes the calculation of average values 8, for each class of
codons r. ngc — number of amino acids in a degeneracy class; RC — set of
all amino acids belonging to a degeneracy class.

Finally, NC is computed as described in Eq. (6):

e (960 0)

Eq. (6) describes the calculation of NC. Each 6 value in equation cor-
responds to an average value (6,) calculated for each amino acid degen-
eracy class (two, three, four and six).

3.2.2. NC-Plot

Since NC values are strongly influenced by GC content [36] it is use-
ful to compare observed NC values against theoretical values calculated
in function of GC content (null model) in order to exclude GC content as
a possible source of variation. An approach in this direction is the calcu-
lation of NC plots, which consists of a theoretical curve correlating
expected values of NC as a function of GC content at third bases of
synonymous codons (GC3S). GC3S are commonly assumed to be a
good proxy of “true” background genome composition regarding
nucleotide frequencies since these positions are supposed to be under
a more relaxed selection pressure (although there are controversies,
see e.g. [39]). By including in the chart the observed values of GC3S
and NC for a given coding sequence and finding points located above
or below the theoretical curve it is possible to detect coding sequences
with biased observed NC values after considering GC3S values. Eq. (7)
generates the theoretical curve of NC plots:

29
NCiheoretical = 2 + fess + <> (7)
o fecss + (1=focss)’

Eq. (7) describes the theoretical values of NC as a function of GC3S.
focss — frequency of GC3S. The resolution of this equation with fsc3s pa-
rameter ranging from zero to one generates the theoretical curve of NC
plot.

3.2.3. Effective Number of Codons Considering the GC Content (NC')

Another approach to deal with the strong influence of GC content
over NC values was the development of a new metric, conceptually
similar to NC, but that takes into account GC content, called NC’ [38].
Therefore, any bias evidenced by NC' must be interpreted excluding GC
content as a possible source of variation. However, other biases were
introduced in this new metric. For instance, while NC values range
from 20 to 61 and have clear and intuitive biological meaning, the NC’'
values range from 0 to 61, which are not readily interpretable [40].

NC’ metric uses the chi-square test (X?) to calculate the deviation of
observed frequencies of use of each codon i (p;, Eq. (8)) when compared
with expected values (e;). Expected values may be calculated in various
ways, such as from the frequencies of mono, di or trinucleotides com-
prising the codon, therefore accounting for distinct null model scenari-
os. The expected deviation value for each amino acid (X2) is calculated
as follows:

k

2
Xg _ Zna(pi_ei) ) (8)

i=1 €i

Eq. (8) describes the calculation of expected deviation values for
each amino acid a. i — codon under analysis; k — amino acid degeneracy
class; n, — number of observed codons for amino acid a; p; — observed
frequency of codon i; e; — expected frequency of codon i.

Having the X2 values one can compute 6, (conceptually similar to 6,
used in NC calculation) as shown in Eq. (9):

o X2 4ng—k
0a = k(ng—1) ~ ©)
Eq. (9) describes the calculation of modified homozygosity values
(8) for amino acid a. n, — number of observed codons for amino acid
a; k — amino acid degeneracy class.
From the values of 6, one can calculate NC’ in a manner similar to NC
computation as described in Eqgs. (5) and (6).

4. Current Applications of Homology-Independent Metrics in
Comparative Genomics

The first and still the most popular field in comparative genomics
with extensive application of HI metrics is the taxonomic classification
of biological sequences or subsequences without prior phylogenetic
tree reconstruction, such as in the case of genomic signatures. For
instance, several pipelines for classification of sequences from environ-
mental genomics to taxonomic space (binning procedures in
metagenomics studies) rely on HI metrics [41-43]. Additionally, other
classification methods to detect subsequences with biased distribution
of HI metrics within longer genomic sequences could be used to detect
several cases of exogenous DNA in a given genome. Several tools already
make use of HI metrics for this purpose aiming at detecting important
classes of evolutionary events, such as general cases of horizontal gene
transfer (HGT) [44-46] and the detection of particular cases of HGT,
such as genomic/pathogenicity islands [47] and phage integration
sites [48]. For some groups of organisms such as large DNA viruses, HI
metrics are sometimes the only class of tools available to study how
these genomes evolved such large repertories of ORFans and to demon-
strate that they arrived through multiple HGT events [11].

Nowadays, HI metrics have been used to answer questions in com-
parative genomics far beyond their initial use as genomic signatures
for taxonomical classification of sequences. Such metrics were recently
used to detect community-specific signatures of synonymous codon
usage biases in metagenomic samples from different ecological niches.
Such biased codons correlate with expression levels and occur regard-
less of individual phylogeny of organisms [49]. Additionally, such
community-specific codon usage biases also predict lifestyle-specific
genes, detecting coding sequences relevant for adaptation of organisms
to specific ecological niches. These studies revealed a higher level of
organization of metagenomic samples, where entire microbial commu-
nities share gene pools optimized for cross-genome translation and
behave as a single meta-genome. Codon usage biases alone are also
capable to predict other features for single microorganisms and/or
microbial communities such as growth speed [50] and can be used
to infer gene function based solely on the evolutionary changes for
translation efficiency [51].

HI metrics have also been used to detect coevolutionary trends in
biological systems composed of viruses and their hosts. The genomes
of such disparate organisms coexist in the same cellular space and
compete for the same resources. Therefore, it is reasonable to assume
viral and host genomes to share some common compositional features
due to constraints induced by host factors, such as the molecular mech-
anisms for the detection of foreign nucleic acids and for the translation
of coding sequences.

The work of Lobo et al. 2009 used HI metrics (DOR and RSCU) to
detect coevolutionary trends in a virus-host biological system [52].
The Flaviviridae family is composed of monophyletic viruses that
infect vertebrate (mammals and birds) and/or invertebrate (ticks and
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mosquitoes) organisms. This work assumes that Flaviviridae that infect
a single host lineage would be subjected to specific host-induced
pressures and, therefore, selected by them. The authors observed
that the two host groups possess very distinctive dinucleotide and
codon usage patterns. A pronounced CpG under-representation was
found in the vertebrate group, possibly induced by the methylation-
deamination process, exclusive of vertebrate genomes, as well as
a prominent TpA decrease. The invertebrate group displayed only a
TpA frequency reduction bias, with no CpG bias. Flaviviridae viruses
mimicked host nucleotide motif usage in a host-specific manner.
Vertebrate-infecting viruses possessed under-representation of CpG
and TpA, and insect-only viruses displayed only a TpA under-
representation bias. Especially, single-host Flaviviridae members
which persistently infect mammals or insect hosts (Hepacivirus and
insect-only Flavivirus, respectively) were found to possess a codon
usage profile more similar to that of their hosts than to phylogenetically
related Flaviviridae. Vertebrates and mosquito genomes are under very
distinct lineage-specific constraints, and Flaviviridae viruses which
specifically infect these lineages appear to be subject to the same evolu-
tionary pressures that shaped their host coding regions, evidencing
lineage-specific coevolutionary processes between viral and host
genomes that could not be surveyed using HD metrics.

5. Summary and Outlook

Since Karlin et al. 1994 described DOR and demonstrated its utility as
a genomic signature [24,30], several compositional parameters calculated
from nucleotide sequence data alone have been developed that fulfill and
even surpass the original requisites to be classified as genomic signatures.
Besides being used for their original purpose (classification of biological
sequences to a taxonomic space), several other layers of biologically
meaningful information are available through these metrics. In common,
all these metrics are: 1) calculated from genomic sequence data alone;
2) do not rely on homology inference and 3) add a new layer of biologi-
cally meaningful data to the genomes under analysis, such as taxonomic
information in the case of genomic signatures, but also other information
such as putative gene expression profiles and convergent coevolutionary
patterns.

The pervasiveness observed in HI metrics that made them useful for
sequence classification into taxonomic space also permeates through
other biological dimensions and could be used to describe and model
biological entities in other classification systems besides biological
taxonomy, with a utility far broader than the original scope of genomic
signatures. For this reason, we argue that these metrics are better
described as homology-independent (HI) metrics for comparative
genomics. Genomic sequences from disparate groups that contain
some niche superposition, such distinct species of microorganisms
belonging to the same ecological community or viruses and their
respective hosts coexisting in the same environment, were found to
possess surprising patterns of coevolutionary events not known before
HI metrics were applied to investigate them. The use of HI metrics as
tools for comparative genomic analysis, if correctly understood and
applied, can reveal important pieces of biological information in
genomic sequences without priorhomology inference.

Appendix A. Supplementary Data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.csbj.2015.04.005.
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