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Alterations in cyclic nucleotide phosphodiesterase
activities in omental and subcutaneous adipose
tissues in human obesity
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Objective: To elucidate the activity and expression of cyclic nucleotide phosphodiesterase (PDE) families in omental (OM) and
subcutaneous (SC) adipose tissue and adipocytes, and to study alterations in their activity in human obesity.
Design: Cross-sectional, translational research study.
Patients: In total, 25 obese and 9 non-obese subjects undergoing gastrointestinal surgery participated in the study.
Results: Inverse correlations between PDE activities and body mass index (BMI) were seen in both SC and OM adipose tissue.
Inverse correlations between total PDE and PDE3 activity and BMI were seen in OM adipocytes but not in SC adipocytes. In both
SC and OM adipose tissue of obese patients, total PDE and PDE3 activities were decreased compared with the controls. In SC
adipose tissue of Type 2 diabetes (T2D) patients, the PDE activity not inhibitable by PDE3 or PDE4 inhibitors (PDEn) was
increased compared with obese non-diabetic patients. In addition to PDE3 and 4 isoforms, PDE7B, PDE9A and PDE10A proteins
were also detected in adipose tissue or adipocytes.
Conclusions: Multiple PDE families are present in human adipose tissue and their activities are differentially affected by obesity
and T2D.
Nutrition and Diabetes (2011) 1, e13; doi:10.1038/nutd.2011.9; published online 8 August 2011
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Introduction

The incidence of obesity in the developed world is increasing

at an alarming rate. Concurrent with the increase in the

incidence of obesity is an increase in the incidence of Type 2

diabetes (T2D). It has been reported that over 80% of adults

diagnosed with T2D are obese.1 The connection between

obesity and the development of T2D has been the focus of

intense research in recent years. It has been demonstrated

that a low-grade, systemic inflammation originating from

adipose tissue is one of the factors associated with systemic

insulin resistance.2 Adipose tissue secretes numerous adipo-

kines, which have been shown to affect whole body’s insulin

sensitivity and dysregulation of the secretion of these factors

could contribute to the development of insulin resistance in

obesity.3 Also, excess fatty acids released from the adipocytes

of obese persons contribute to ectopic fat storage in non-

adipose tissues such as liver and muscle, exacerbating their

insulin resistance.4

Cyclic nucleotide phosphodiesterases (PDEs) regulate in-

tracellular signaling in many different cell types by degrad-

ing cyclic adenosine monophosphate (cAMP) and cyclic

guanosine monophosphate (cGMP).5 There are currently 21

genes, which code for distinct PDE enzymes. The enzymes

can be further divided, based on sequence and chemical

properties, into 11 different families denoted PDE1-11.5 PDEs

are expressed in virtually all cell types in the body and have

specific roles in the regulation of diverse biological functions

by controlling discrete pools of cyclic nucleotides. Inhibitors

to specific PDE families, such as PDE3 and PDE5 inhibitors,

are currently used in clinical practice.6,7

In adipocytes, the ability of insulin to antagonize cAMP-

induced lipolysis is mainly due to insulin-induced activation

of PDE3B.8–9 PDE3B has also been shown to have a role in

calcium-induced anti-lipolysis in human adipocytes.10

PDE3B has a central role in the regulation of not only

lipolysis but also other biological functions in adipocytes

such as lipogenesis and glucose uptake, as evidenced byReceived 4 February 2011; revised 10 June 2011; accepted 24 June 2011
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studies with PDE3B-deficient mice and PDE3 inhibitors.11,12

PDE4 is another PDE, which is highly expressed in adipo-

cytes. There are four different isoforms of PDE4, which have

been shown to be expressed in rodent adipocytes;13 however,

there is little known about their function in adipocytes. A

deletion mutant mouse model of one PDE4 isoform suggests

a potential role in metabolic homeostasis. Mice deficient in

PDE4B show reduced body weight and reduced adipose

tissue mass compared with wild-type animals, and are

resistant to high-fat diet-induced weight gain and adipose

tissue inflammation.14 Although PDE3B and PDE4 isoforms

appear to comprise most of the PDE activity in rodent

adipocytes, the activity of other PDEs in adipocytes and

adipose tissue have been described. Calcium-inducible

(PDE1) and cGMP inducible (PDE2) PDE activities have been

identified in rat adipocytes.15,16 PDE5A has been studied in

differentiated human adipocytes, but its expression de-

creases as adipocytes mature.17 The mRNA expression level

of a number of PDE family members has been recently

determined in a number of rat tissues, including adipose

tissue.18 Among the PDEs expressed were PDE9A, PDE10A

and PDE11A.18 The protein regulation and biological func-

tion of these PDEs in adipose tissue are not known at this

time, however, there are indications that some of these

enzymes contribute to the regulation of adipose tissue

homeostasis. Deletion mutant mouse models of PDE9A and

PDE10A display reduced body weight or reduced adipose

tissue mass compared with wild-type mice.19,20

Although there have been previous reports to changes in

PDE activity in subcutaneous (SC) adipose tissue in patients

with non-insulin-dependent diabetes mellitus,21 to date

there have been no thorough investigations of PDE expres-

sion and activities in different human adipose tissue depots.

In this study, we investigated PDE expression and activities

in human adipose tissue. We further compared the activities

of PDEs in different adipose tissue depots in non-obese and

obese subjects.

Patients and methods

Patients

Patients with scheduled gastrointestinal surgeries at Skåne

University Hospital were recruited by the surgeons involved

in the study. Adipose tissue biopsy samples, weighing

0.25–2.5 g, were obtained from patients undergoing bariatric

surgery or cholecystectomy operations. The criterion for

acceptance for bariatric surgery was morbid obesity defined

as a body mass index (BMI) greater than 35 kg m�2. In this

study, patients with a BMIX30 were considered obese and

BMIo30 were considered non-obese. Subcutaneous adipose

tissue biopsy samples were obtained from the abdomen and

visceral adipose tissue biopsy samples were obtained from

the greater omentum in each patient after informed consent

was given. Patients were not excluded for any conditions and

a detailed accounting of all pre-existing conditions and

medications taken by the patients was kept for reference. All

experiments were approved by the Regional Ethics Commit-

tee in Lund, Sweden.

Adipocyte isolation

Human adipocytes were isolated by collagenase digestion as

previously described.22 Adipocytes were diluted in Krebs–

Ringer buffer containing 25 mM Hepes, 200 nM adenosine,

2 mM glucose and 1% bovine serum albumin. Adipocytes

were washed twice in BSA-free Krebs–Ringer buffer and

homogenized in 1.5 volumes of a buffer containing 50 mM

TES, 2 mM EGTA, 1 mM EDTA, 250 mM sucrose, 40 mM

phenylphosphate, 5 mM NaF, 1 mM dithioerythriol, 0.5 mM

sodium orthovanadate, 10 mg ml�1 antipain, 10 mg ml�1 leu-

peptin, 1mg ml�1 pepstatin A, pH 7.4. Homogenates were

centrifuged at 10 000� g for 10 min at 4 1C, the fat cake was

removed and protein concentrations were determined by the

method of Bradford.23

Immunoblotting

Adipose tissue homogenates were prepared as described

above for adipocytes. Human adipocytes and adipose tissue

homogenates, 20 and 30 mg protein, respectively, were

subjected to SDS-PAGE on 7–8% acrylamide gels followed

by transfer to nitrocellulose membranes (GE Healthcare,

Amersham UK). Membranes were blocked in 10% non-fat

dry milk with 0.1% Tween-20 for 1 h before overnight

incubation at 4 1C with primary antibodies (Scottish Biome-

dical, Glasgow, Scotland, UK), as indicated in Results. After

primary antibody incubation, membranes were washed and

incubated with HRP-conjugated secondary antibodies (Thermo

Scientific, Rockford, IL, USA) and diluted in 5% non-fat dry

milk for 1 h at room temperature. Chemiluminesence of

immunoreactive bands was obtained using Supersignal West

Pico Stable reagents (Thermo Scientific). Immunoblot images

were captured with an IR-LAS1000 ECL camera (FUJIfilm,

Stamford, CT, USA).

cAMP PDE assay

PDE activities were measured in duplicate in the presence or

absence of the PDE3 inhibitor OPC3911 (Otsuka Pharma-

ceuticals, Tokyo, Japan) or the PDE4 inhibitor Rolipram

(Biomol International, Exeter, UK) as previously described.24

The assay was performed at 30 1C for 45 min in a total

volume of 300 ml of reaction buffer containing 50 mM TES,

pH 7.4, 250 mM sucrose, 1 mM EDTA, 0.1 mM EGTA, 8.3 mM

MgCl2, 0.5 mM cAMP, 1 mCi ml�1 3H-cAMP and 0.6 mg ml�1

ovalbumin. PDE activity was calculated as pmol 3H-cAMP

hydrolyzed per minute per milligram of protein. The PDE3

and PDE4 activities were calculated as the proportion of the

total activity that is inhibited by the PDE3 and PDE4

inhibitors, respectively.
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Statistical analysis

Data are expressed as the mean±s.e.m. Statistical signifi-

cance was determined using unpaired two-tailed Student’s

t-tests, unless otherwise indicated. Correlation was deter-

mined using Pearson’s correlation coefficient. The differ-

ences were considered statistically significant if Po0.05.

Statistical analysis was performed using Graph Pad Prism

version 4 software (GraphPad Software, La Jolla, CA, USA).

Results

Correlation between PDE activities and BMI in adipose tissue

Analysis of adipose tissue biopsy samples revealed a sig-

nificant inverse correlation between total PDE activity and

BMI in both SC and omental (OM) adipose tissue (Figures 1a

and b). The total PDE activity is the sum of the activities of

several different PDE enzyme families. Selective inhibitors to

PDE3 and PDE4 family enzymes were used to identify PDE3

and PDE4 activities in adipose tissues. In SC adipose tissue,

there was a negative correlation between PDE3 activity and

BMI, which was the strongest correlation of all measured

(Figure 1c). The negative correlation between PDE3 activity

and BMI in OM adipose tissue was also significant

(Figure 1d), as was the negative correlation between PDE4

and BMI in both depots (Supplementary Figures 1a and 1b).

There was a substantial amount of PDE activity remaining

after inhibiting PDE3 and PDE4. The combined activities of

these isoforms are hereafter referred to as PDEn. PDEn

activity was significantly negatively correlated with BMI in

SC adipose tissue (Supplementary Figure 1c), but did not

correlate with BMI in OM adipose tissue (Supplementary

Figure 1d).

PDE activities in adipose tissue: effects of obesity and adipose
tissue depot

PDE activity was investigated with respect to differences in

obesity and between adipose tissue depots. In obese patients,

total PDE, PDE3 and PDE4 activities were significantly

reduced in both OM and SC adipose tissue depots compared

with non-obese patients (Table 1). PDEn activity in SC

adipose tissue from obese patients was significantly lower

than that of non-obese patients (Table 1), whereas no

differences were seen in PDEn activity in OM adipose tissue.

When comparing the SC and OM adipose tissue depots,

non-obese patients had no significant differences in any of

the PDE activities, whereas obese patients had significantly
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Figure 1 Correlation between BMI and PDE activities in adipose tissue. Correlation between BMI and SC (a) (n¼22) or OM (b) (n¼ 23) adipose tissue total PDE

activity. Correlation between BMI and SC (c) (n¼ 22) or OM (d) (n¼ 23) adipose tissue PDE3 activity. The squares of the Pearson correlation coefficients are shown

on each graph.

Table 1 PDE activities in whole adipose tissue

Activity

(pmol min�1 per mg)

Non-obese SC

n¼ 6

Obese SC

n¼ 16

Non-obese OM

n¼ 6

Obese OM

n¼17

Total 18.9±4.4 6.7±0.9a 21.1±4.0 11.7±1.8b,c

PDE3 9.1±2.3 2.8±0.5a 8.1±1.5 4.2±0.8b

PDE4 4.1±1.4 1.7±0.3d 6.4±1.0 3.4±0.8c

PDEn 6.3±1.6 2.3±0.5a 6.1±2.1 3.9±0.5c

Abbreviations: PDE, phosphodiesterase; OM, omental; SC, subcutaneous.
aNon-obese SC vs obese SC, Po0.01; bNon-obese OM vs obese OM, Po0.05;
cObese SC vs Obese OM, Po0.05; dNon-obese SC vs obese SC, Po0.05.
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lower total PDE, PDE4 and PDEn activity in SC adipose tissue

compared with OM adipose tissue (Table 1). PDE3 activity

did not differ significantly between depots in obese patients.

PDE activity in patients with T2D

Phosphodiesterase activities were measured in the adipose

tissues of patients with T2D (n¼5) and compared with

patients without diabetes (n¼11) with matching mean BMI.

There was a significant increase in PDEn activity in the SC

adipose tissue of patients with T2D compared with obese

patients without diabetes (Figure 2). This difference was not

seen in OM adipose tissue. There were no other significant

differences in PDE activities when comparing obese T2D

patients with obese patients without diabetes.

PDE activities in isolated adipocytes: effects of obesity and
adipose tissue depot

Adipose tissue not only contains primarily adipocytes but

also a stromal and vascular cell fraction. In a subset of

patients, adipose tissue biopsy samples were used for

isolation of primary adipocytes and measurement of PDE

activities. There were inverse correlations between BMI and

both total PDE (Figure 3b) and PDE3 activities in isolated

adipocytes from OM adipose tissue (Figure 3d). There were

no such correlations in the SC depot (Figures 3a and c).

Furthermore, there were no correlations between BMI and

PDE4 or PDEn activities in adipocytes from OM or SC depots

(data not shown).

There were significantly lower total PDE and PDE3

activities in adipocytes from OM adipose tissue of obese

patients compared with that of non-obese patients (Table 2),

but there were no significant differences in the activities of

PDE4 or PDEn in OM adipocytes, when comparing non-

obese and obese patients (Table 2). When comparing the

different PDE activities in adipocytes from SC adipose tissue

from obese and non-obese patients, no significant differ-

ences were detected (Table 2).
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Figure 2 Comparison of PDEn activitiy in adipose tissue from obese non-

diabetic and T2D patients. PDEn activity in adipose tissue from obese non-

diabetic patients (black bars) (n¼ 11) compared with T2D patients (white

bars) (n¼ 4). Data are presented as mean±s.e. *Po0.05.
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In an effort to identify which PDE proteins are expressed in

adipose tissue and adipocytes in addition to PDE3 and 4

isoforms, we made use of antibodies raised against multiple

human PDE isoforms. PDE7B, PDE9A and PDE10A were

detected in homogenates from adipose tissue (Supplemen-

tary Figure 2a), whereas in isolated adipocytes, PDE9A and

PDE10A were detected (Supplementary Figure 2b).

Discussion

This study investigated the activity of PDEs in human

adipose tissue and the differences seen in obesity, T2D and

between adipose tissue depots.

In adipose tissue there was a negative correlation between

PDE activities and BMI. Although the exact effects of

reductions in PDE activities with increasing obesity are not

known, the decreased PDE activities in adipose tissue seen in

obesity might have potential physiological consequences. In

obese subjects the anti-lipolytic effect of insulin is dimin-

ished.25 PDE3B is the central enzyme controlling the anti-

lipolytic effect of insulin.26 Thus, decreased PDE3B activity

with increasing obesity, as seen in our study, may be a

contributing factor to the diminished anti-lipolytic effect of

insulin seen in obese patients. Decreased PDE4 activity in the

adipose tissue of obese patients might also have conse-

quences for lipolysis. Decreased PDE4 activities may poten-

tially raise the rate of lipolysis, as seen in rat adipocytes,12

and lead to an increase in fatty acid release to the circulation.

Excess fatty acids have been shown to interfere with insulin

signaling in liver and skeletal muscle, contributing to the

development of insulin resistance in these tissues.4

This study also demonstrated that PDE activities other

than PDE3 and PDE4 are present in adipose tissue and

adipocytes. These activities were collectively referred to as

PDEn and were also affected by obesity and T2D. PDEn

activity was unique from PDE3 and PDE4 activity in certain

aspects. PDEn activity was increased in SC adipose tissue

from patients diagnosed with T2D. As PDEn does not include

PDE3B, the only PDE isoform known to be regulated by

insulin, it is not likely that the increased PDE activity reflects

insulin supplementation or endogenous hyperinsulinemia.

However, increased PDEn could reflect some other aspect of

T2D. Further work using selective inhibitors of the PDE

families that potentially contribute to PDEn will need to be

carried out in a larger sample of T2D patients to determine

which PDE families are responsible for this increased activity.

One of the hallmarks of obesity is an increase in the

infiltration of adipose tissue by inflammatory cells, with

visceral adipose tissue being more prone to infiltration than

SC adipose tissue.27 The consequences of decreased PDE

activities in adipose tissue in obesity could also include

altered states of inflammation. Previous studies have shown

that the PDE3 inhibitor Cilostazol inhibited inflammatory

cytokine expression in cultured adipocytes as well as in the

db/db mouse, a mouse model of T2D.28 Inhibitors to PDE3

and PDE4 enzymes show anti-inflammatory properties in

certain immune cell types.29,30 In addition, mice deficient in

the PDE4B protein were shown to have reduced adipose

tissue tumor necrosis factor-a, a marker of inflammation,

when fed a high-fat diet.14

In an attempt to understand more about the PDEn pool of

PDEs, we performed western blot analysis of some PDEs for

which selective inhibitors are not available. PDE9A and

PDE10A were expressed in adipose tissue as well as in

adipocytes. PDE7B was detected in adipose tissue but not

in isolated adipocytes. Although PDE9 is selective for cGMP,

PDE10 can hydrolyze both cGMP and cAMP.5 It has been

demonstrated that genetic deficiency of PDE10A in mice

results in decreased body weight, particularly in females.19

PDE9A deficient mice fed a high-fat diet are reported to have

reduced weight gain and fat mass compared with wild-type

mice.20 These studies suggest a role for these PDEs in adipose

tissue homeostasis. Furthermore, the presence of a cGMP-

dependent lipolytic pathway, which is stimulated by atrial

natiuretic peptide has been described in human adipo-

cytes.31 PDE9A and PDE10A might be candidates for the

PDE, responsible for regulating the cGMP pool in adipocytes

associated with atrial natiuretic peptide-induced lipolysis.

In summary, we conclude that PDE activities are reduced

in obesity. Further studies will be performed in order to

connect the altered activity profile of PDEs to different

biological functions and thereby determine whether and

how they have a role in the development of adipose tissue

insulin resistance.
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