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Non-coding RNAs (ncRNAs) are reported to be expressed in human cancers, including

pancreatic ductal adenocarcinoma (PDAC). These ncRNAs affect the growth, migration

and invasion of tumor cells by regulating cell cycle and apoptosis, as well as playing

important roles in epigenetic processes, transcription and post-transcriptional regulation.

It is still unclear whether alterations in ncRNAs influence PDAC development and

progression. Because of this, analysis based on existing data on ncRNAs, which

are crucial for modulating pancreatic tumorigenesis, will be important for future

research on PDAC. Here, we summarize ncRNAs with tumor-promoting functions:

HOTAIR, HOTTIP, MALAT1, lncRNA H19, lncRNA PVT1, circ-RNA ciRS-7, circ-0030235,

circ-RNA_100782, circ-LDLRAD3, circ-0007534, circRHOT1, circZMYM2, circ-IARS,

circ-RNA PDE8A, miR-21, miR-155, miR-221/222, miR-196b, miR-10a. While others

including GAS5, MEG3, and lncRNA ENST00000480739, has_circ_0001649, miR-34a,

miR-100, miR-217, miR-143 inhibit the proliferation and invasion of PDAC. Hence, we

summarize the functions of ncRNAs in the occurrence, development and metastasis of

PDAC, with the goal to provide guidance in the clinical diagnosis and treatment of PDAC.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor with a high incidence, malignancy
andmortality rate. PDAC is the seventh leading cause of cancer-related death throughout the world
(1). According to 2019 statistics from the American Cancer Society, PDAC mortality rate ranks
4th in both men and women (2). Due to a lack of effective treatments, the 5-years survival rate
for PDAC remains below 8% (3). This high mortality rate is largely due to late presentation and
detection of the disease, when patients become non-candidates for surgical resection. In addition,
the mechanisms behind PDAC tumorigenesis and progression are still unclear.

Mutations inKRAS,TP53, SMAD4,CDKN2A commonly contribute to PDACprogression (4–7).
In addition, PDAC development requires the involvement of various signal transduction pathways
including the Hippo, Hedgehog, Wnt/Notch, JNK, PI3K, K-ras, and transforming growth factor
(TGF) -β signaling pathways. Moreover, genome-wide association studies (GWAS) have identified
a large number of pathways and gene sets involved in the development of PDAC (8, 9).

Non-coding RNAs (ncRNAs) have widely been identified in mammals as unique RNA
transcripts. Nc-RNAs are classified as small RNAs (<200 bp) and long RNAs (>200 bp) based
on nucleotide length, and include microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small
interfering RNAs (siRNAs), small nucleolar RNAs (snoRNAs), tRNA-derived stress-induced RNAs
(tiRNAs), enhancer non-coding RNAs (eRNAs), circular RNAs (circRNAs), and long non-coding
RNAs (lncRNAs) (10, 11). In addition, ncRNAs are also categorized based on their localization
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into cytoplasmic and nuclear ncRNAs. Even though ncRNAs are
not translated into proteins, they are critical for DNA replication,
translation, RNA splicing and epigenetic regulation. NcRNAs
also participate in the cellular processes including differentiation,
proliferation, apoptosis andmetabolism. Subsequent studies have
shown that ncRNAs play a vital role as either oncogenes or
tumor suppressors in tumorigenesis. Herein, we summarize the
roles and functions of ncRNAs in the diagnosis and treatment
of PDAC.

LncRNAs
LncRNAs, which contain a length of more than 200 nucleotides,
are transcribed by RNA polymerase II and contain a 5′

cap and 3′ poly A tail (12). These ncRNAs are widely
distributed throughout the genome but have zero protein-
coding capacity. They are involved in many biological processes,
including transcriptional regulation in cis or trans, chromatin
remolding, nuclear transport, genomic imprinting and oncogenic
progression. Most lncRNAs are expressed in specific different
tumor types, making them potential targets for cancer diagnosis
and treatment. LncRNAs act as candidate diagnostic biomarkers
for PDAC as summarized in Table 1. The functions and
regulatory mechanisms of lnRNAs and other ncRNAs are

TABLE 1 | LncRNAs as diagnostic biomarkers in PDAC.

Source Name Alteration Study

sample

Sensitivity

(%)

Specificity

(%)

Clinicopathological

association

References

Single Serum;

serum EV

HULC Up PC vs. HC 93.33 96.67 Tumor size, T

staging, M staging,

and vascular invasion

(13, 14)

Up PC vs. BPD 80.00 80.00 (14)

Serum HOTAIR Up PC vs. HC - - Tumor stage (15)

Saliva HOTAIR Up PC vs. HC 78.20 85.60 Unknown (16)

Up PC vs. BPD 80.00 90.00 Unknown (16)

Saliva PVT1 Up PC vs. HC 96.40 63.60 Unknown (16)

Up PC vs. BPD 69.10 95.00 Unknown (16)

Tissue MALAT1 Up PC vs. HC 66.00 72.00 Tumor size, clinical

stage, lymph node

metastasis, distant

metastasis

(17)

Plasma PINT Down PC vs. HC 87.50 77.10 Tumor recurrence (18)

Plasma ABHD11-AS1 Up PC vs. HC 89.40 88.60 Early pancreatic

cancer

(19)

Plasma SNHG15 Up PC vs. HC 68.30 89.60 Tumor differentiation,

lymph node

metastasis and tumor

stage

(20)

Combination

(lncRNA)

Saliva HOTAIR/PVT1 Up PC vs. HC 78.20 90.90 Unknown (16)

Up PC vs. BPD 81.80 95.00 Unknown (16)

Combination

(lncRNA+CA199)

Plasma ABHD11-AS1 Up PC vs. HC 98.50 100.00 Early pancreatic

cancer

(19)

Plasma PINT Down PC vs. HC 85.90 82.90 Tumor recurrence (18)

EV, extracellular vesicle; CA199, carbohydrate antigen 199; PC, pancreatic cancer; HC, healthy control; BPD, benign pancreatic disease.

depicted in Figure 1. Therefore, lncRNAs are of interest in the
exploration of novel diagnostic and therapeutic approaches.

LncRNAs as Potential Oncogenes and
Biomarkers in PDAC
MALAT1

Metastasis-associated lung adenocarcinoma transcript-1
(MALAT1, also known as NEAT2) was initially discovered
in lung cancer and has been subsequently detected to be
overexpressed in multiple tumors as a negative prognosis factor.
MALAT1 is highly expressed in PDAC tissues and positively
correlates with tumor size, clinical stage, lymph node metastasis,
distant metastasis and prognosis (21, 22). Its expression is
also up-regulated in cancer stem cells (CSCs), which is closely
related to drug resistance. In addition, it can interact with
RNA-binding protein human antigen R (HuR) to regulate T-cell
intracellular antigen-1 (TIA-1) mediated autophagic activation at
the post-transcriptional level. Furthermore, it can also regulate
KRAS expression through competitive inhibition to promote
PDAC cell proliferation (21, 23). Recently, human enhancer
of zeste homology 2 (EZH2) was shown to be recruited to
the E-cadherin promoter through MALAT1, which repressed
the expression of E-cadherin and facilitated the invasion and
metastasis of PDAC cells (24). Knockout of MALAT1 induced
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FIGURE 1 | The functions and regulatory mechanisms of ncRNAs in PDAC. NcRNAs regulate tumor progression, such as proliferation, invasion, metastasis,

angiogenesis and chemoresistance.

G2/M cell cycle arrest, inhibition of epithelial-mesenchymal
transition (EMT), decreased cancer stem cell-like properties,
repressed N-myc downregulated gene-1 (NORG-1) and hindered
the growth and invasion of cancer cells (25, 26). Other work
has used different databases to identify the top three key target
genes of MALAT1, which include CCND1, RAF-mitogen-
activated kinase 8 (MAPK8) and VEGFA (17). This suggests
that these may participate in the mTOR signaling pathway,
pathways in cancer, and the MAPK signaling pathway in PDAC.
Diminished expression of MALAT1 decreases the expression
of Yes-associated protein 1 (YAP1) and elevates large tumor
suppressor 1 (LATS1) levels (27). It has been suggested that
MALAT1 regulates PDAC via the Hippo-YAP pathway. It
also has been reported to regulate multiple signaling pathway,
including phosphoinositide-3-kinase-AKT (PI3K-AKT), NF-κb,
mTOR, MAPK and WNT pathways in multiple cancer types.
Thus, the complex mechanisms and roles that MALAT1 plays in
PDAC are worth further exploration.

HOTAIR

HOX antisense transcript intergenic RNA (HOTAIR) transcribed
from the HOXC locus. Its overexpression has been linked to
the poor prognosis of different cancers, including breast, gastric,
colorectal, bladder and esophageal squamous cell carcinoma (28–
30). Increased expression of HOTAIR has been observed in
PDAC tissues and is negatively correlated with overall survival.
HOTAIR inhibits the expression of cell cycle interferon related
genes, targets and binds to the tumor suppressor gene GDF15,

and accelerates the proliferation of pancreatic cancer cells.
Furthermore, knockout of HOTAIR in the pancreatic cancer cell
lines Panc-1 and L3.6Pl significantly decreases the progression
of cells and interacts with the Polycomb Repressive Complex
2 (PRC2) (28, 31). HOTAIR promotes the proliferation of
pancreatic cancer cells by acting as a competing endogenous RNA
via sponging miR-613 to regulate the expression of NOTCH3
(32). Overexpressing HOTAIR regulates the trimethylation of
histone H3 at lysine 27 to inhibit the expression of TRAIL
receptor death receptor 5 (DR5) through EZH2. HOTAIR
overexpression also improves the resistance of pancreatic cancer
cells to TRAIL induced apoptosis (33). In addition, knockout
of HOTAIR can enhance the radio-sensitivity of PDAC cells by
increasing the expression ofWnt inhibitory factor 1 (WIF-1) (34).
The HOTAIR-WIF-1 axis can be used as a potential target for
PDAC radiotherapy, which needs to be further evaluated. The
salivary HOTAIR of pancreatic cancer patients was significantly
higher than expression levels observed in healthy individuals.
The expression of HOTAIR in patients’ saliva was significantly
reduced after the PDAC tumor was surgically removed (16). This
indicates that HOTAIR can be evaluated in patients undergoing
resection and that it may be a promising novel diagnostic marker
and therapeutic target.

HOTTIP

The lincRNA HOXA distal transcript antisense RNA (HOTTIP)
is another HOX-related lncRNA. Studies have found that
the expression levels of HOTTIP are significantly increased
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in multiple PDAC cell lines and PDAC specimens (35).
HOTTIP interacts with the WD repeat containing protein 5
(WDR5)/mixed lineage leukemia (MLL) complex to enhance
the methylation of histone 3 on lysine 4 (H3K4) in order to
modulate the proliferation and differentiation of PDAC cells
(36, 37). Up-regulation of HOTTIP promotes the secretion of
IL-6 and expression of PD-L1 in neutrophils, thereby inhibiting
the activity of T cells and promoting the immune escape of
ovarian cancer cells (38). This may be used for reference in
immunotherapy of PDAC. Decreased expression of HOTTIP
in pancreatic cancer cells leads to increased G0/G1 phase
cells, decreased Vimentin and Snai1 expression, and increased
E-cadherin expression. Furthermore, HOTTIP knockout can
reduce the expression level of HOXA13 and enhance the
sensitivity of human pancreatic cancer cells to gemcitabine (35).
In turn, others have shown that HOTTIP is not involved in
the regulation of HOXA13, but regulates several other HOX
genes (39). Further studies will be required to fully understand
these relationships.

PVT1

Plasmacytoma variant translocation 1(PVT1) was the first
lncRNA gene identified in human Burkitt’s lymphoma as a
recurrent breakpoint. PVT1 and MYC have correlated one
another and co-amplified. It was confirmed in a variety of
solid tumors, including colon and breast cancers, that increased
expression of PVT1 could increase MYC protein (40). A GWAS
study identified a risk locus at 8q24.21, which interacts with
MYC promoters, that reached genome-wide significance located
PVT1 (41). It was also identified that in human PDAC cells,
PVT1 acts as an oncogene promoting EMT via TGF-β/Smad
signaling (42). PVT1 also acts as a sponge for miRNAs to
regulate the development of PDAC. PVT1 could promote
the proliferation and metastasis of PDAC cells by acting as
a miR-448 sponge to inhibit SERBP1 (43). It has also been
reported that PVT1 acts as a sponge to modulate cytoprotective
autophagy and promote the development of PDAC via the
PVT1/miR-20a-5p/ULK1/autophagy pathway (44). Of note,
PVT1 also participates in drug resistance. Research indicates that
PVT1 regulates gemcitabine chemosensitivity in PDAC through
miR1207 (45). Curcumin can inhibit the PRC2-PVT1-c-Myc axis
by inhibiting the PRC2 subunit Enhancer of EZH2 to enhance the
sensitivity of PDAC cells to gemcitabine (46). PVT1, along with
MALAT1 and HOTTIP, could act as a prospective biomarker to
predict the efficacy of gemcitabine in PDAC patients (47), and as
such, future assessment is warranted.

H19

LncRNA H19 is a maternally imprinted gene that is highly
expressed in PDAC tissues and is involved in tumor progression.
It increases high-mobility group AT-hook 2 (HMGA2) mediated
EMT by antagonizing let-7 and promotes both tumor cell
metastasis and invasion (48, 49). MiR-675 reduces the activation
of H19 by binding to the 3′ untranslated region (UTR) on E2F-
1 mRNA and altering the expression of E2F-1 protein (50). In
addition, the Wnt-signaling pathway is involved in regulating

PDAC cell proliferation and migration via the H19/miR-
194/PFFTK1 axis (51). H19 is also believed to play a role in
cancer therapy and is the earliest lncRNA used in the treatment
of PDAC. BC-819 (DTA-H19) carries a diphtheria toxin-A
chain (DTA), which can be applied to the treatment of tumors
expressing high levels of H19 (52). DTA-H19 combined with
gemcitabine can reduce the tumor size and delay the progression
of PDAC in vivo. Altogether, these data suggest that H19 is a
promising therapeutic marker for PDAC.

HULC

Highly up-regulated in liver cancer (HULC) is another lncRNA
that modulates the proliferation of PDAC. HULC can regulate
the viability, proliferation, migration and invasion of PDAC
cells. Up-regulation of HULC activates the PI3K/AKT pathway
via negative regulation of miR-15a expression (53). HULC
levels are significantly increased in PDAC compared to the
non-tumor tissues. Higher expression of HULC in PDAC is
correlated with poor clinical outcomes in patients. It is thus
suggested that HULC is a promising prognostic biomarker
candidate (54). Recently, a report suggested that serum
extracellular vesicle (EV) HULC expression is increased in
PDAC patients in comparison to intraductal papillary mucinous
patients and healthy individuals (13). Thus, HULC may be
a new potential diagnosis maker for PDAC and may merit
further investigation.

LncRNAs as Potential Suppressors and
Biomarkers in PDAC
GAS5

Growth arrest-specific transcript 5 (GAS5) was originally
identified by screening potential tumor suppressor genes
expressed at high levels during growth using a functional cDNA
library (55). GAS5 is one of the few lncRNAs that are negatively
correlated with tumor development in breast cancer, malignant
pleural mesothelioma and hepatocellular carcinoma (56–58).
GAS5 negatively regulates miR-32-5p to promote the expression
of pleiotrophin (PTEN), which can block the activation of the
PI3K/Akt signaling pathway, inhibiting the proliferation and
survival of PDAC cells (59). Studies have found that GAS5
overexpression can significantly inhibit both the proliferation
and invasion of PANC-l and BxPC-3 cells in vitro (60). After
inhibiting of GAS5 expression by RNA interference, a larger
number of cells were found to be arrested in the S phase
of the cell cycle. This suggested that GAS5 regulates the cell
cycle of PDAC. Furthermore, GAS5 regulates the cell cycle of
PDAC cells by inhibiting cyclin-dependent kinase 6 (CDK6)
and blocking proliferation and differentiation. Studies have
shown that GAS5 inhibits drug resistance in PDAC by negative
regulation of miR-181c-5p and reducing the inactivation of
the Hippo signal transduction pathway (61). Overexpression
of GAS5 inhibits PDAC cell proliferation, migration and
gemcitabine resistance through miR-221/suppressor of cytokine
signaling 3 (SOCS3) mediated EMT and tumor CSCs (62).
Overall, GAS5 could be as a novel target for PDAC drug
resistance therapy.
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TABLE 2 | Function of circRNAs in PDAC.

circRNAs Alteration Function Targeted miRNA Involved genes/pathways References

ciRS7 Up Promote invasion

and metastasis

miR-7 EGFR/STAT3 signaling

pathway

(77)

circ_0030235 Up Promote tumor progression;

prognostic marker

miR-1253 and miR-1294 - (78)

circRNA_100782 Up Promote cell proliferation miR-124 IL6-STAT3 pathway (79)

circ-LDLRAD3 Up Promote tumor invasion, and

metastasis;

diagnosis biomarkers

miR-137-3p PTN (80, 81)

circ_0007534 Up Promote tumor progression;

diagnosis and prognostic factor

miR-625 and miR-892b - (82)

circRHOT1 Up Promote tumor cell proliferation,

invasion, and metastasis

miR-26b, miR-125a,

miR-330 and miR-382

- (83)

circZMYM2 Up Promote proliferation and

invasion, and inhibit apoptosis

miR-355-5p JMJD2C (84)

circ-PDE8A Up Promote tumor progression;

prognostic factor

miR-338 MACC/MET/ERK pathway (85)

circ-IARS Up Promote metastasis; prognostic

factor

miR-122 - (86)

circ-ASH2L Up Promote tumor invasion,

proliferation and angiogenesis

miR-34a - (87)

chr14:101402109-

101464448+,

chr4:52729603-

52780244+

Up Chemo-resistant Unknown Unknown (88)

has_circ_0001649 Down Inhibit cell proliferation,

prognostic factor

Unknown Unknown (89)

LncRNA ENST00000480739

The lncRNA ENST00000480739 is a relatively rare tumor
suppressor that was recently uncovered. ENST00000480739
expression in pancreatic tumor specimens is significantly lower
than that which is observed in adjacent non-tumor tissues (63).
It is also negatively correlated to tumor stage and could be
used as an independent prognostic factor in PDAC patients who
underwent surgery. ENST00000480739 inhibits tumor invasion
through the regulation of osteosarcoma amplified-9 (OS-9),
modulates hypoxia-inducible factor-1α (HIF-1α) and inhibits
EMT (63). It not only has the potential to inhibit metastasis but
can also be used as a biomarker for both risk prediction and
treatment screening in PDAC.

MEG3

Maternally expressed gene 3 (MEG3) acts as a tumor suppressor
and shows to be down-regulated in several tumors, such as
hepatocellular, prostate, gastric and lung cancers (64–67). Hu
et al. (68) found that MEG3 inhibits the proliferation, induces
apoptosis via p53 activation and is upregulated along with
p53 by fenofibrate to restrain the proliferation of PDAC cells.
Other studies found that the MEG3 expression levels in human
pancreatic cancer tissues are lower than corresponding non-
cancerous tissues (69). These were also found to be negatively
correlated to patients’ clinicopathological features. In vitro
studies have shown that MEG3 plays an anticancer role in the
regulation of cell proliferation, migration, invasion, induction
of EMT, and cancer stem cell (CSC) properties. Furthermore,

study has shown that MEG3 overexpression plays an anticancer
role through the in vitro modulation of the PI3K/AKT/ B cell
lymphoma-2 (Bcl-2)/Bax/Cyclin D1/P53 and P13K/AKT/matrix
metalloproteinases-2(MMP-2) /MMP-9 signaling pathways (70).

Numerous lncRNAs participate in pancreatic cancer
tumorigenesis. Further, many of the PDAC susceptibility loci
that were previously identified in GWAS are located in lncRNAs
such as 7q32.3 (LINC-PINT) and 17q25.1 (LINC00673) (41, 71).
Interestingly, LINC-PINT, through the TGF -β pathway, inhibits
PDAC growth in early stages (72). This may be a potential
target for early treatment for patients but it requires further
testing to prove. Additionally, LINC00673 is also correlated with
good outcomes in PDAC patients. It can negatively regulate
miR-504 to inhibit the progression of PDAC (73). There are
many potential lncRNAs biomarkers that remain to be explored
and translated to clinical practices.

CircRNAs
Circular RNAs (circRNAs) are a new type of endogenous ncRNA
that used to be considered as miRNA sponges. CircRNAs are
stable since they lack 5′ cap or 3′ Poly A tail terminal ends that
block traditional RNA degradation pathways, existing as a closed
loop structure. Heterogeneous circRNAs may contribute to the
development of many different tumors.

CircRNAs in PDAC
Numerous studies have demonstrated that circRNAs are
aberrantly expressed in PDAC. One study identified circRNAs
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TABLE 3 | Function of up/down-regulated miRNAs in PDAC.

miRNAs Alteration Function Confirmed targets References

miR-21 Up Promote the cell growth, invasion and migration;

prognostic factor, Chemo-resistant

PI3K/AKT/PTEN, PDCD4, BCL-2, FASL,

TGF-β1, P85α, VHL

(97–101)

miR-155 Up Promote tumor progression, invasive and migration,

mediate apoptosis; therapeutic and

prognostic factor

TP53INP1, SOCS1, SOCS3 (102–104)

miR-

221/222

Up Promote tumor progression, proliferation and

invasion, inhibit apoptosis; Chemo-resistant

MMP-2, MMP-9, TIMP-2, PTEN,

P27kip1, P57kip2, PUMA

(105–107)

miR-320a Up Promote progression, Chemo-resistant PDCD4 (108)

miR-10a Up Promote proliferation, invasion and metastatic;

Chemo-resistant, therapeutic and prognosis factor

HOXA1, HOXA3, TFAP2C (109–111)

miR-31 Up Promote tumor development and progression,

promote invasion and migration; Chemo-resistant,

prognostic factor

RASA1, ARID1A, Pancreatic stellate cells (112–114)

miR-210 Up Promote migration; diagnosis and prognostic factor Pancreatic stellate cells (115, 116)

miR-196b Up Promote tumor progression and invasion; diagnosis

and prognostic factor

CADM1 (117–119)

miR-23a Up Promote tumor progression, promote cell

proliferation, invasion, inhibit apoptosis;

prognostic factor

ESRP1, APAF1, FOXP2 (120–122)

miR-451 Up Promote cell proliferation and metastasis CAB39 (123)

miR-34a Down Inhibit cell growth, migration, invasion, progression,

induce apoptosis; diagnosis, therapeutic and

prognostic factor

CCND1, E2F1, E2F3, BCL-2, C-MYC,

SNAIL1, CDK6, SIRT1, NOTCH1/2/4,

SMAD3

(124–128)

miR-100 Down Inhibit tumor cell proliferation; increase

drug sensitivity

FGFR3 (129)

miR-217 Down Inhibit cell growth, invasion, induce apoptosis;

diagnosis and prognostic factor

KRAS, E2F3, TPD512, SIRT1 (130–132)

miR-143 Down Inhibit tumorigenesis, inhibit tumor cell migration,

invasion, metastasis and xenograft

KRAS, RREB1, GEF1, GEF2, COX2,

TAK1

(133–136)

miR-141 Down Inhibit cell proliferation, invasion, migration and

metastasis, induce apoptosis; prognostic factor

YAP1, WIPF1, TM4SF1, MAP4K4,

NRP-1

(137–141)

miR-200 Down Inhibit metastasis; Chemo-resistant, prognostic

factor

PTEN, MT1-MMP, ZEB1, ZEB2, SOX2 (142–145)

miR-375 Down Inhibit cell growth; prognostic factor PDK1, ZFP36L2, IGFBP5, CAV1 (146–148)

miR-148a Down Inhibit cell proliferation, migration and invasion,

promote apoptosis; diagnosis, prognostic factor

CCKBR, BCL-2, PHLAD2, CDC25B,

WNT10b, ERBB3, AMPKα1, DNMT1

(149–153)

miR-let7 Down Inhibit cell growth, proliferation; Chemo-resistant,

therapeutic and prognostic factor

HMGA1, HMGA2, IGF2BP1, IGF2BP3,

KRAS, SOCS3, RRM2,

N-cadherin/ZEB1

(154–157)

miR-216 Down Inhibit cell growth, promote apoptosis;

therapeutic factor

JAK2, BECLIN-1 (158, 159)

miR-146a Down Inhibit cell invasion and metastasis EGFR, MTA-2, IRAK1 (160)

TM4SF1, transmembrane-4-L-6-family-1; MAP4K4, mitogen-activated protein kinase isoform 4; TIMP-2, tissue inhibitor of metalloproteinases-2;VHL, Von Hippel-Lindau tumor

suppressor; SOCS, suppressors of cytokine signaling; FGFR3, fibroblast growth factor receptor 3; RREB1, Ras-responsive element-binding protein; GEFs, guanine nucleotide exchange

factors; COX, cyclooxygenase; TAK1, TGF-β-activating kinase 1; TFAP2C, transcription factor activating protein 2 gamma; ARID1A, AT-rich interactive domain 1A; ESRP1, epithelial

splicing regulatory protein 1; APAF1, apoptotic protease activating factor 1; FOX, forkhead box; CAB39, calcium-binding protein 39; NRP-1, neuropilin-1; MT1-MMP, membrane type-1

matrix metalloproteinase; IRAK1, interleukin 1 receptor-associated kinase 1; CCKBR, cholecystokinin-B receptor; JAK2, Janus kinase 2;;IGF2BPs, insulin growth factor 2 binding proteins.

in six pairs of PDAC and para-cancerous tissues using a
microarray (74). Additional microarray data revealed that there
were 115 upregulated and 141 downregulated circRNAs in
PDACs (75). Another study uncovered that 453 circRNAs
were differentially expressed and were significantly different
in extracellular vesicles isolated from the plasma of 8 PDAC
patients or healthy controls (76). It has been suggested that
aberrant expression of circRNAs in PDAC are related to

proliferation and development. These aberrantly expressed
circRNAs may be involved in the regulation of PDAC and
are expected to be diagnostic markers, though this remains to
be tested.

CircRNAs Regulate PDAC Progression
CircRNAs can regulate a variety of different pathways (Table 2).
The circRNA ciRS7 is expressed in PDAC tissues compared
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to para-cancerous tissues and can negatively regulate miR-
7, a cancer suppressor. It can also affect the proliferation
and invasion of PDAC cells through epidermal growth factor
receptor (EGFR), as well as signal transducer and activator of
transcription 3 (STAT3) signaling pathways (77). In addition,
overexpression of ciRS7 promotes lymph node metastasis and
venous invasion in PDAC cases. Down-regulation of circ-
LDLRAD3 can inhibit PDAC cell proliferation and metastasis
through the up-regulation of miR-137-3p/ PTEN (80). Others
have proven that the circRHOT1 regulates the PDAC cells
proliferation, invasion and metastasis by binding to miRNAs,
including miR-26b, miR-125a, miR-330, and miR-382 (83).
There is mounting evidence underlining that circRNAs act as
miRNA sponges that regulate the progression of PDAC. Chen
et al. (79) elucidated that silencing of circRNA_100782 down-
regulates the expression levels of interleukin-6 receptor (IL6R)
and STAT3 by acting as a miR-124 sponge that inhibits BxPC3
cell proliferation. Another study has shown that circ_0030235
promotes cell proliferation by directly sponging miR-1253 and
miR-1294 in vitro (78). An additional study also revealed that
circ_0007534 functions as a sponge for miR-625 andmiR-892b to
facilitate the malignant behavior of PDAC cells (82). Studies have
identified that circZMYM2 (hsa_circ_0099999) is up-regulated in
both PDAC cells and tissues, promoting tumor progression by
influencing JMJD2C expression levels via acting as miR-355-5p
sponges (84).

CircRNAs as Diagnostic, Prognostic and
Therapeutic Biomarkers for PDAC
CircRNAs have the ability to be strong biomarkers for PDAC
since they exhibit stable expression and have high serum
concentrations. Yang et al. (81) investigated that circ-LDLRAD3
up-regulation in PDAC tissues, plasmas and PDAC cell lines,
and identified its association with venous and lymphatic
invasion and metastasis. Furthermore, this study confirmed
that circ-LDLRAD3 holds potential to be a new diagnosis
biomarker, as it has higher sensitivity and specificity when
combined with CA19-9 than using CA19-9 alone (81). Clinical
studies have shown that the overexpression of circ_0030235,
circ_0007534 in PDAC are associated with tumor stage,
lymph node invasion and poor overall survival (78, 82).
Exosomes play an important role in the development and
prognosis of tumors. Owing to their stability, they can be
detected in blood plasma and equipped higher level than
existing checks. Studies have identified that exosomal circ-
PDE8A promotes the progression of PDAC by binding to
miR-338 to activate the MACC/MET/ERK pathway (85).
The same group also found that high expression levels
of circ-IARS in plasma exosomes positively correlated with
tumor metastasis including vessel invasion, liver metastasis
and tumor-node-metastasis (TNM) stage. circ-IARS is also
negatively associated with survival of PDAC patients (86).
Shao et al. (88) developed Gemcitabine resistant cell lines
(PANC-1-GR) and verified that the expression levels of
two circRNAs (chr14:101402109-101464448+, chr4:52729603-
52780244+) were significantly correlated to drug resistance

observed in PANC-1-GR, as well as the plasma of gemcitabine
non-responsive PDAC patients. CircRNAs can be used not
only as biomarkers, but also to provide information about
tumor stage and classification. Conversely, expression levels of
has_circ_0001649 were decreased in PDAC tissues and cells when
compared to normal control, and were associated with tumor
stage and differentiation grade (89). Has_circ_0001649 may be
regarded as a novel prognostic biomarker for PDAC patients who
had undergone surgery.

Currently, the roles of circRNAs in tumor progression and
clinical application have gained attention. However, the studies
of circRNAs in PDAC are still at infancy stage. Further studies on
circRNAs in PDAC should not only be based on the databases
established, but also require a great deal of work to fully
understand their functions.

MiRNAs
MicroRNAs (miRNAs) are small non-coding RNAs ∼19–
25 nucleotides in length, that regulate gene expression at
the post transcriptional level through RNA interference (90).
MiRNAs play a significant role in the initiation and progression
of a tumor by regulating tumor growth, anti-apoptotic,
metastasis and invasion (91, 92). These have potential as cancer
diagnosis markers, prognosis predictors, and for the monitoring
of therapy.

MiRNAs as Diagnosis and Prognostic
Biomarkers for PDAC
MiRNAs are conservative, generalized, testable and keep stable
when existing outside cells. Ongoing research has revealed
that miRNAs exhibit fair sensitivity and specificity as diagnosis
biomarkers. The potential for miRNAs as diagnostic and
therapeutic markers leads to the analyses of deregulated miRNAs
in PDAC cases (93). Abnormal expression levels of miRNAs in
PDAC tissues, blood and saliva have shown to be closely related
to the initiation and development of PDAC (94, 95). Studies
have found that plasma miRNAs (miR-16, miR-196a) combined
with serum CA19-9 can increase the sensitivity and specificity for
diagnosis in comparison with using CA19-9 alone (96). MiRNAs
can also be identified in the saliva and act as diagnosis biomarkers
for unresectable pancreatic tumors (95). This can lead to the
creation of specific miRNA profiles for diagnosis and treatment.
In addition, published studies have demonstrated that miRNAs
can interact with lncRNAs and circRNAs (Figure 1). They can
also regulate key signaling molecules and pathways in disease
development and progression (Tables 2, 3). At the same time, it is
challenging to fully understand the interaction network between
different miRNAs and other ncRNAs. Further differentiation of
the roles that miRNAs play in the development and progression
of PDAC are necessary to explore their specificity and sensitivity
as biomarkers for PDAC.

CONCLUSION

With the rocket development of next-generation sequencing
and bioinformatic analyses, ncRNAs and their prominent roles
in oncogenesis, specifically the progression of PDAC reveal

Frontiers in Oncology | www.frontiersin.org 7 March 2020 | Volume 10 | Article 309

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Gong and Jiang Non-coding RNAs in PDAC

enormous potential for ncRNAs in the diagnosis and treatment
of cancers. Although ncRNAs have gradually become a research
hotspot, the limitations in detection approaches and inclusion
in larger databases make their roles in PDAC difficult to
fully understand. Understanding the relationship between the
function and mechanism of ncRNAs in PDAC will help classify
ncRNAs and their roles in the clinic. A great deal of work remains
to be completed to uncover the complex mechanisms of ncRNAs,

which lead to tumorigenesis and progression, to ultimately select

the most effective diagnostic and therapeutic targets.
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