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Fullerene derivatives (FDs) belong to a relatively new family of nano-sized organic compounds. They are
widely applied in materials science, pharmaceutical industry, and (bio) medicine. This research focused
on the study of FDs in terms of their potential inhibitory effect on therapeutic targets associated with dia-
betic disease, as well as analysis of protein–ligand binding in order to identify the key binding character-
istics of FDs.
Therapeutic drug compounds when entering the biological system usually inevitably encounter and

interact with a vast variety of biomolecules that are responsible for many different functions in organ-
isms. Protein biomolecules are the most important functional components and used in this study as tar-
get structures. The structures of proteins [(PDB ID: 1BMQ, 1FM6, 1GPB, 1H5U, 1US0)] belonging to the
class of anti-diabetes targets were obtained from the Protein Data Bank (PDB). Protein binding activity
data (binding scores) were calculated for the dataset of 169 FDs related to these five proteins.
Subsequently, the resulting data were analyzed using various machine learning and cheminformatics
methods, including artificial neural network algorithms for variable selection and property prediction.
The Quantitative Structure-Activity Relationship (QSAR) models for prediction of binding scores activ-

ity were built up according to five Organization for Economic Co-operation and Development (OECD)
principles.
All the data obtained can provide important information for further potential use of FDs with different

functional groups as promising medical antidiabetic agents. Binding scores activity can be used for rank-
ing of FDs in terms of their inhibitory activity (pharmacological properties) and potential toxicity.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Diabetes is a chronic disease that occurs either when the pan-
creas does not produce enough insulin or when the body cannot
effectively use the insulin it produces. Insulin is a hormone that
regulates blood sugar. Hyperglycemia, or elevated blood sugar, is
a common consequence of uncontrolled diabetes and over time
causes severe damage to many body systems, especially nerves
and blood vessels [1]. In 2019, an estimated 1.5 million deaths
were directly caused by diabetes. Another 2.2 million deaths were
due to high blood glucose levels in 2012. Between 2000 and 2016,
there was a 5% increase in premature mortality due to diabetes [1].
The World Health Organization (WHO) estimated that diabetes
would be the 7th leading cause of death by 2030 [2]. Diabetes is
divided into three main types: Type I, Type II and gestational dia-
betes. Type II diabetes mellitus (T2DM) accounts for more than
90% of all diabetes cases [3]. T2DM is a heterogeneous disease
associated with both genetic and environmental causes, including
several defects in insulin secretion and action [4,5].

Insulin is a hormone that moves glucose into cells to produce
energy. When insulin secretion is inadequate, glucose levels in
the blood rise (hyperglycemia). Prolonged hyperglycemia causes
irreversible damage to the eyes, kidneys, nerves, and heart [6]. A

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2022.02.006&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.csbj.2022.02.006
http://creativecommons.org/licenses/by/4.0/
mailto:natalja.fjodorova@ki.si
https://doi.org/10.1016/j.csbj.2022.02.006
http://www.elsevier.com/locate/csbj
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review of antidiabetic drugs and their development has been pub-
lished in an article [7]. Recent successes in the discovery and devel-
opment of new targets for the treatment of T2DM were reported in
2021 [8].

The first traditional antidiabetic drugs focused on controlling
blood glucose concentration. The next generation of antidiabetic
drugs focused on delaying disease progression and treatment fail-
ure, which causes poorer glycemic regulation. Recent treatment
approaches target several novel pathophysiological defects present
in T2DM. Promising new targets in clinical development include
those that increase insulin sensitization (glucocorticoid receptor
antagonists), decrease hepatic glucose production (glucagon recep-
tor antagonists, glycogen phosphorylase and fructose-1,6-
biphosphatase inhibitors). There is limited information on the
use of FDs as antidiabetic agents. In the paper by Soldatova et al.
[9], it was presented for the first time that the pentaamino acid
derivative of fullerene C60 (potassium salt of fullerenylpenta-N-d
ihydroxytyrosine) affects three targets of T2DM. It competitively
inhibits the enzymes aldose reductase and sorbitol dehydrogenase
and also has an antiglycation effect on bovine serum albumin. The
inhibition constants for these enzymes were demonstrated. The
antidiabetic effect of FDs in vivo has been described in papers
[10,11]. The authors investigated the efficacy of magnesium-25
carrying porphyrin- fullerene nanoparticles in diabetes-induced
neuropathy.

A review on the role of antioxidants in the treatment of diabetes
mellitus (DM) and its complications was published in Rahimi et al.
[12]. The authors noted that there is growing evidence that
increased production and/or ineffective scavenging of reactive oxy-
gen species (ROS) may play a crucial role in certain pathological
conditions, especially chronic diseases. The high reactivity of ROS
leads to chemical changes in virtually all cellular components,
resulting in lipid peroxidation. This review indicates well that
oxidative stress is involved in the pathogenesis of DM and its com-
plications. The intake of antioxidants reduces oxidative stress and
alleviates diabetic complications.

Fullerene C60 and water-soluble FDs were used as antioxidants
against radical-initiated lipid peroxidation which was reported in
the study by Wang et al. [13]. FDs can possess antioxidant proper-
ties. They have found wide application in medicinal chemistry [14].
Fullerenes are commonly referred to as ‘‘radical sponges” [15] due
to their remarkable reactivity with free radicals [16-19]. The radi-
cal scavenging properties of FDs have found many applications in
biological systems. They are used to treat various biological disor-
ders caused by free radicals. These mainly include neurodegenera-
tive diseases (i.e. amyotrophic lateral sclerosis, Alzheimer’s
disease, Parkinson’s disease) and other cytotoxic processes caused
by oxidative stress. The FDs are used as cytoprotective agents
against oxidative stress [20]. The FDs can prevent apoptosis by
neutralizing reactive oxygen species (ROS).

The ability of FDs to fit inside the hydrophobic cavity of human
immunodeficiency virus (HIV) proteases makes them a potentially
good inhibitor of the enzyme’s catalytic active site. Therefore, FDs
have found their application as antiviral drugs [21-26]. It has been
found that the antiviral activity of FDs is due to their antioxidant
activity.

Many of the most effective drugs in therapeutic areas such as
oncology, psychiatry, inflammation, etc., act on multiple targets
rather than just one [27-30]. The ‘‘one drug - one target - one dis-
ease” paradigm in drug discovery has been reconsidered in the last
decade. This paradigm shift was mainly caused by the high attri-
tion rates in drug approvals due to toxicity and lack of efficacy.
Computational techniques play an important role in the prediction
and discovery of new targets for approved drugs. In this context,
machine learning approaches such as self-organizing maps and
inverse distance weighting are used for polypharmacological pro-
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filing of bioactive compounds, as shown in the following prospec-
tive studies [31-34].

The study of FDs in the context of anti-diabetes targets may
offer a new opportunity to cure this disease. The potential possibil-
ity of using FDs as antidiabetic agents was the focus of our
research. We investigated the binding score activities of 169 FDs
in relation to five anti-diabetes targets: 1BMQ, 1FM6, 1GPB,
1H5U, and 1US0. The average binding scores activity of 169 FDs
in relation to 1117 proteins was taken from previous studies
[35,36]. In this study the binding score activity of 169 FDs in rela-
tion to five diabetes-related proteins was compared to the average
binding score activity of 169 FDs in relation to 1117 proteins. The
study showed how FDs affect the individual binding score activity
of five diabetes-related proteins, considering the effects of FDs on
the overall biological system of 1117 proteins.

We then investigated the key binding characteristics of the full-
erene nanoparticles studied in terms of their contribution to the
protein–ligand binding. In particular, the contribution of the
drug-like descriptors to the binding activity was considered in this
article.

The models for the prediction of binding scores activity were
developed in accordance with five OECD principles and analyzed.
2. Materials and methods

2.1. Dataset

In the current study, a dataset of 169 FDs obtained from the lit-
erature [35] was examined. The substituent groups are attached to
the fullerene core C60. The exceptions are FD50- C70 and FD169-
C80H2. FD168 represents pristine C60 without substituent groups.

169 FDs were divided into an active training set (�25%), a pas-
sive training set (�25%), a calibration set (�25%), and a validation
set (�25%) using CORAL software (http://www.insilico.eu/coral). In
the case of Counter Propagation Artificial Neural Network
(CPANN), the active training set, passive training set, and calibra-
tion set were combined in the training set. Thus, the training set
consisted of 127 compounds, while the test set consisted of 42
compounds.

The structures of proteins [(PDB ID: 1BMQ, 1FM6, 1GPB, 1H5U,
1US0)] belonging to antidiabetic targets were taken from RCSB Pro-
tein Data Bank [37]. The properties of these five proteins are listed
in Table 1.

In order to develop models a set of several types of descriptors
was generated and applied.

First, two important descriptors with physical meaning
obtained from the study of Ahmed et al. [36] were applied in the
study. The first descriptor is polarizability given as polarizability
volume in cubic angstroms (QPpolrz)) and the second descriptor
is topological diameter (TD), characterized the size of the mole-
cules and correlated with the binding activity.

Second, the Monte Carlo descriptors or so-called optimal
descriptors (DCW) [38] were generated using the software CORAL
(http://www.insilico.eu/coral). These descriptors are the basis for
Monte Carlo models suitable for modelling various endpoints
[39,40], in particular for FDs [41,42]. In the Monte Carlo method
the Simplified Molecular Input-Line Entry System (SMILES) is used
as representation of molecular structure. The conversion of SMILES
into molecular graph for Quantitative Structure-Activity Relation-
ship (QSAR) analysis was performed using CORAL software. Opti-
mal descriptors can be a translator of eclectic information into
endpoint prediction [39,40].

Third, the pharmaceutically relevant properties of FDs were cal-
culated using DataWarrior software (Actelion Pharmaceuticals
Ltd., Allschwil, Switzerland) [43]. The following twenty-five
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Table 1
A brief description of five antidiabetic target proteins.

PDB_ID Target details/function Organism Biochemical
function/
Classification

Related diseases

1BMQ Interleukin-1 b converting enzyme (ICE)- a novel cysteine
protease responsible for the cleavage of pre-interleukin-1b
(pre-IL-1b) to the mature cytokine.

Homo
sapiens

Enzyme/
Hydrolase

Brain inflammation; Cerebral ischemia; Diabetic
retinopathy; Inflammation

1FM6 Peroxisome Proliferator Activated Receptor c (PPAR c)/The
nuclear receptor PPARgamma/RXRalpha heterodimer
regulates glucose and lipid homeostasis and is the target for
the antidiabetic drugs.

Homo
sapiens

Receptor/
Transcription

Adrenocorticotrophic Hormonesecreting Pituitary Tumors,
Atherosclerosis, Atopic Dermatitis, Autoimmune Diseases,
Bladder Cancer, Chronic Inflammatory Diseases, Crohn’s
Disease, Unspecified, Diabetes Mellitus, Inflammation,
Inflammatory Bowel Disease, Insulin Resistance, Ischemic
Heart Disease, Obesity, Pancreatic Cancer, Psoriasis. . .

1GPB Glycogen Phosphorylase B, Muscle Form- one of the
phosphorylase enzymes. Glycogen phosphorylase catalyzes
the rate-limiting step in glycogenolysis in animals by
releasing glucose-1-phosphate from the terminal alpha-1,4-
glycosidic bond.

Oryctolagus
cuniculus

Enzyme/
Glycogen
phosphorylase

Diabetes Mellitus; Noninsulindependent Diabetes Mellitus

1H5U Glycogen phosphorylase B complexed with glucose and
cp320626- a potential antidiabetic drug

Oryctolagus
cuniculus

Enzyme/
Glycogen
metabolism

Diabetes mellitus

1US0 Aldose Reductase-a potential antidiabetic drug, inhibits
glycogen phosphorylase in synergism with glucose

Homo
sapiens

Enzyme/
Oxidoreductase

Diabetic neuropathy; Diabetic retinopathy; Neuropathic
pain; Noninsulindependent diabetes mellitus; Diabetic
complications.

Fig. 1. The architecture of CPANN.
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descriptors were used for modelling: H-acceptors, H-donors, total
surface area, relative polar surface area (RPSA), polar surface area
(PSA), drug-likeness, molecular weight, cLogP, cLogS, electronega-
tive atoms, stereo-centers, rotatable bonds, ring closures, small
rings, aromatic rings, aromatic atoms, sp3- atoms, symmetric
atoms, amides, amines, aromatic nitrogen, basic nitrogen, acidic
oxygens, non-H atoms, non-C/H atoms.

The analysis of drug-like properties of FDs was carried out in
our study to determine the relationship between them and binding
activity as well. The concept of drug-likeness provides useful
guidelines for early-stage drug discovery [44,45]. It involves the
analysis of the observed distribution of some key physicochemical
properties of approved drugs, including molecular weight,
hydrophobicity and polarity, which are related to known drugs
[46].

Calculated descriptors used in this study are explicable to
researchers involved in drug design, and for the future study of
FDs that are promising for application in drug design.

The assessment of drug-likeness is known as Lipinski’s Rule of
Five (Ro5), which uses simple counting criteria (such as thresholds
for molecular weight, log P, or the number of hydrogen bond
donors or acceptors) and others [47]. The ‘‘drug-like” properties
include structural features and physicochemical properties. These
properties can be used to characterize the pharmacophore: a sub-
stituent in FDs or a part of a molecular structure responsible for a
particular biological or pharmacological interaction [48]. The pres-
ence of various pharmacophore features affects the behavior of the
molecule in a living organism, including bioavailability, transport
properties, affinity for proteins, reactivity, toxicity, metabolic sta-
bility, and many others.
2.2. The Counter Propagation Artificial Neural network algorithm and
self-organizing Kohonen maps

The architecture of Counter Propagation Artificial Neural Net-
work (CPANN) used in this study is shown schematically in Fig. 1.

CPANNs are one of the self-organizing mapping techniques
commonly used to analyse multidimensional data. The basis of this
technique is a nonlinear projection from multidimensional space
onto a two-dimensional map. The topology-preserving projection
is achieved during training by a nonlinear algorithm. During the
training of the network, similar objects are placed close to each
915
other. Therefore, it is expected that chemicals with similar struc-
tures or similar properties form clusters on the two-dimensional
map [49].

The architecture of CPANN shown in Fig. 1 consists of two lay-
ers: the input layer (Kohonen layer) of neurons contains encoded
information from molecular structures described with molecular
descriptor values, and the output layer is related to binding score
activity. Both layers of neurons are exactly superimposed and the
output layer has exactly the same arrangement of neurons as the
input layer [49-52]. In Fig. 1, the inputs x1- xn are vector compo-
nents corresponding to n descriptors computed for all FDs in the
set used for training. The training was performed using the in-
house developed TRACEANN toolbox for Matlab [53], which is
available online (https://www.ki.si/en/departments/d01-theory-
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Fig. 2. Average binding scores and binding scores related to proteins relevant to
diabetic disease (1US0, 1H5U, 1GPB, 1FM6, 1BMQ) for 169 FDs.
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department/laboratory-for-cheminformatics/software/). The tool-
box performs classification of multivariate data using the Kohonen
mapping method and predictive modelling using CPANN, which
includes visualization (contour plots, 3D visualization, and
coloured neurons) of the Kohonen levels. The self-organizing Koho-
nen maps are used as a data visualization technique [54] to visual-
ize structurally similar molecules that tend to have similar
activities.

2.3. Regression analysis

Regression analysis was used to estimate the relationships
between a dependent variable (response = binding score activity)
and independent variables (descriptors including drug-like
descriptors). Statistical models explain the biological activity of
ligands (FDs). Regression analysis was performed using Minitab
statistical software. The plots of actual vs. predicted binding score
activity were obtained.

2.4. Domain of applicability

In order to verify the applicability domain (AD) of our QSAR
models, we applied the leverage approach [55]. Leverages are mea-
sures of the distance between the x-values for one observation and
the mean of the x-values for all observations. In terms of the vari-
ables used in our study, this approach provides a measure of the
distance between the descriptor values for one chemical and the
mean of the descriptor values for all chemicals. A large leverage
value indicates that the x-values for one observation are far from
the center of the x-values for all observations. The leverage h of a
compound measures its influence on the model. The warning
leverage (h*) is generally set to 3(p + 1)/n, where n is the number
of training chemicals and p is the number of model variables (de-
scriptors) plus one.
Table 2
Input variables (containing descriptors) and output variables (containing binding
scores activities) of CPANN models.

Input
variables

Two descriptors: polarizability volume in cubic angstroms
(QPpolrz) (1) and topological diameter (TD) characterized the
size of molecules (2);
Monte Carlo descriptors or so-called optimal descriptor (DCW)
(1);
Twenty five drug like descriptors: H-acceptors (1), H-donors
(2), total surface area (3), relative PSA (4), polar surface area
(5), drug-likeness (6), Mol. Weight (7), cLogP (8), cLogS (9),
electronegative atoms (10), stereo centers (11), rotatable
bonds (12), rings closures (13), small rings (14), aromatic rings
(15), aromatic atoms (16), sp3-atoms (17), symmetric atoms
(18), amides (19), amines (20), aromatic nitrogen (21), basic
nitrogen (22), acidic oxygens (23), non-H atoms (24), non-C/H
atoms (25).

Output
variables

Average Binding Scores (1)
Binding Scores for five proteins related to diabetic
disease:1BMQ (1)- Enzyme/Hydrolase;1FM6 (2)- Receptor/
Transcription;1GPB (3)- Enzyme/Glycogen
phosphorylase;1H5U (4)- Enzyme/Glycogen metabolism;1US0
(5)- Enzyme/ Oxidoreductase.
3. Results and discussions

3.1. The characteristics of binding activity

Binding activity was expressed as a binding score (Bscore). This
variable accounts for several types of intermolecular interactions
and evaluates the strength of interaction between protein and
ligand (FD). Binding scores were obtained and described in detail
in the study of Ahmed et al. [36], where used protein–ligand dock-
ing. Proteins were prepared for docking followed by ligand removal
from the original (downloaded from PDB) structures. Two types of
docking approaches: PatchDock [56] and AutoDock Vina [57] were
utilized. The docking [36] was performed by inverse docking com-
putation. Within a set of ligands for a set of targets, inverse docking
is a very useful approach to find putative ligands for a specific pro-
tein. In this context, the PatchDock was applied for inverse docking
strategy. All initial docking models were obtained by employing
PatchDock which is based on the local shape feature matching with
less steric clashes. Another docking tool, AutoDock Vina, [57] was
employed in the study [36] to analyze final docked models and
evaluate the H-bond interactions in the binding sites.

In the current study, first, the average value of binding scores
for 1117 proteins (referred to as Average Bscores) calculated for
each of the 169 FDs was taken from previous work [35]. Second,
the binding scores for five anti-diabetes protein targets (1BMQ,
1FM6, 1GPB, 1H5U, 1US0) were calculated using methods
described in the article [36].

Fig. 2 shows the average binding scores and the binding scores
with respect to proteins relevant to diabetic diseases (1US0, 1H5U,
1GPB, 1FM6, 1BMQ) for 169 FDs.
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It should be emphasized that authors [58] compared the exper-
imental binding affinities (binding energy (BE)) for 20 FDs with cal-
culated one using docking calculations on AutoDock Vina [57] and
Schrodinger Suite (Glide sub-program) [59]. They demonstrated a
high correlation between the calculated and experimental data
(best predictive ability (R2training = 0.882 and R2test = 0.738)).
The whole dataset used for external validation was composed of
49 FDs. The experimental data were correlated with calculated
one using docking calculations.

The binding score activity in the present study can be used to
rank FDs by their binding score activity in relation to proteins rel-
evant to diabetic disease.
3.2. The CPANN model for evaluating the relationships between
average binding scores activity, binding scores activity for five proteins
associated with diabetes and descriptor values

The CPANN consists of a Kohonen layer (influenced by the input
(descriptors)) and an output layer (influenced by the target (bind-
ing activity—Binding Scores)). Table 2 shows the input and output
variables considered in the study.

In the first part of the study, we applied the optimal CPANN
model with 20x20 neurons trained for 600 epochs. After training
CPANN, we obtained a self-organizing Kohonen map in which the

https://www.ki.si/en/departments/d01-theory-department/laboratory-for-cheminformatics/software/


Fig. 4. The Binding Scores activity of five proteins associated with diabetes (1BMQ,
1FM6, 1GPB, 1H5U, 1US0) vs. Average Binding Scores activity.
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position of objects was organized in such a way that the nearest
neighbors in the plane were the most similar objects in the dataset.
We considered the distribution of FDs on the top-map, distribution
of descriptors values in weight maps for each descriptor, and distri-
bution of values of binding scores activities (responses) for each of
the output variables. Therefore, the CPANN model was used as a
lookup table in this part of the study.

In this part, we focused on relationships (correlations) and/or
similarities between output variables related to binding score
activity. As an output (target), the following binding score activity
characteristics were considered: Average Binding Scores (1), Bind-
ing Scores for five proteins relevant to diabetes: 1BMQ (2); 1FM6
(3); 1GPB (4); 1H5U (5); and 1US0 (6). The statistical performance
of the CPANN model is shown in Table S1 in the Supplementary
Materials. The squared correlation coefficients R2 for the output
variables were obtained in the range from 0.988 and 0.957, and
the root-mean-squared error (RMSE) ranged from 0.110 and
0.206. Weight maps for average binding scores for all proteins in
the dataset and binding scores for five proteins relevant to diabetes
(1BMQ, 1FM6, 1GPB, 1H5U, and 1US0) are shown in Fig. 3.

The dark red color corresponds to the highest values of binding
scores, while the dark blue color corresponds to the lowest values.
The similarity of the color distribution between the weight maps in
Fig. 3 shows a high correlation between all the selected variables in
terms of binding score activity.

The high correlation between average binding scores and bind-
ing scores for five proteins relevant to diabetes [(PDB ID: 1BMQ,
1FM6, 1GPB, 1H5U, 1US0)] was confirmed by calculating Pearson
correlation coefficients, which ranged from 0.921 to 0.958.

The relationships between binding scores activity of five pro-
teins associated with diabetes (1BMQ, 1FM6, 1GPB, 1H5U, and
1US0) vs. average binding scores activity is illustrated in Fig. 4.
The graph shows the correlation between the binding score activity
of the proteins associated with diabetic disease and average bind-
ing scores activity.

In the second part of the study, we focused on the relationships
(correlations) between the descriptors (input variables in the
Fig. 3. Weight maps for average binding scores (a) and binding scores for five prote
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CPANN model) and binding score activities (output (target) vari-
ables of the model) listed in Table 2. In other words, it was shown
the influence of the most significant descriptors on protein–ligand
binding activity which contributes to a mechanistic interpretation
of our models.

The Pearson correlation coefficients between all considered
descriptors and binding scores activities were calculated using
Minitab statistical program. The summary results for the most cor-
related descriptors (input variables) and binding score activities
(output variables) were transformed into summary correlation
matrix shown in Table 3. The appropriate range of correlation coef-
ficients related to relationships between binding score activity of
five related to diabetic proteins, average binding scores and
descriptors is shown in this table.

The correlation coefficients between the binding score activity
of five proteins associated with diabetes and average binding
scores were in the range of 0.921–0.958, as shown in Table 3.
The correlation between the binding score activity of five proteins
(1BMQ, 1FM6, 1GPB, 1H5U, and 1US0) appeared to be in the range
ins relevant to diabetes: 1US0 (b), 1H5U (c), 1GPB (d), 1FM6 (e), and 1BMQ (f).



Table 3
Summary matrix with the ranges of correlation coefficients which describe relation-
ships between binding score activities of five diabetic related proteins, average
binding scores and descriptors.

Descriptors and responses Binding scores for five proteins
related to diabetic disease [(PDB ID:
1BMQ, 1FM6, 1GPB, 1H5U, 1US0)]

Average Binding Scores 0.921–0.958
Binding scores for five proteins

related to diabetic disease [(PDB
ID: 1BMQ, 1FM6, 1GPB, 1H5U,
1US0)]

0.880–0.918

Non H-atoms 0.700–0.798
Rotatable Bonds 0.684–0.747
Molecular weight 0.657–0.767
Total Surface Area 0.763–0.859
Topological Diameter (TD) 0.851–0.883
QPpolrz 0.863–0.906
DCW 0.858–0.920
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of 0.880–0.918. The correlation between the binding score activity
of five proteins associated with diabetes and the descriptors (Non
H-atoms, Rotatable Bonds, Molecular Weight, Total Surface Area,
Topological Diameter, QPpolrz and DCW) was in the range of
0.657–0.920. This high correlation was illustrated using weight
maps for average binding scores and the following descriptors:
Non H-Atoms, Rotatable Bonds, Molecular weight, Total Surface
Area, optimal descriptor (DCW), polarizability volume in cubic
Angstroms (QPpolrz) and topological diameter (TD) (see Fig. 5).
The similarity of the weight maps confirms the high correlation
between the variables.

Concerning the mechanistic interpretation of the obtained
model, we can conclude that the most significant contribution to
the protein–ligand binding belongs to the following descriptors:
Non H-Atoms, Rotatable Bonds, Molecular weight, Total Surface
Area, optimal descriptor (DCW), polarizability volume in cubic
Angstroms (QPpolrz) and topological diameter (TD).

In the Supplementary Materials section in Figure S3 we illus-
trated the distribution of FDs in the top map 20x20 of the CPANN
model overlapped with the output layer with binding activity with
an indication of the most and least active FDs.
Fig. 5. Weight maps of average binding scores (a) and the following descriptors: Non H-A
descriptors (DCW) (f), polarizability volume in cubic angstroms (QPpolrz) (g), and topol
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Figure S4 demonstrated the contribution of descriptors: Basic
Nitrogens, sp3 atoms, Amines, Non H-atoms, Rotatable bonds, Mol-
weight, Total Surface Area, QPpolrz, DCW to the active group of FDs
(GROUP A) connected to C60 core with cyclopropane ring contain-
ing ammonium groups NH3

+ . The weight maps of mentioned above
descriptors show the highest values of these descriptors in this
area related to this GROUP A.

Figure S5 demonstrated the contribution of descriptors: Non-C/
H Atoms, Acidic oxygens, Electronegative Atoms, Polar Surface
Area, H-Acceptors, and Topological Diameter to the active group
of FDs (GROUP B) connected to C60 core with a benzene ring and
containing nitrogroups-NO2. The weight maps of mentioned above
descriptors show the highest values of these descriptors in this
area related to this GROUP B.

Figure S6 demonstrated the contribution of descriptors: cLogP,
Topological Diameter to the active group of FDs (GROUP C)
attached to the C60 core with cyclopropane 3-membered ring
and containing two benzene rings. The weight maps of mentioned
above descriptors show the highest values of these descriptors in
this area related to this GROUP C. These two benzene rings are
related to endocrine disruptor structural alert.

Figure S7 demonstrated the contribution of descriptors: Basic
Nitrogens, Aromatic Nitrogens, Topological Diameter to the active
group of FDs (GROUP D) connected to C60 core with pyrrolidine
5-membered ring and containing nitroaromatic substituent. The
weight maps of mentioned above descriptors show the highest val-
ues of these descriptors in this area related to this GROUP D.
3.3. Essential descriptors affecting the binding of FDs to diabetes-
associated proteins

Regression analysis was performed to determine essential
descriptors affecting the binding scores activity of FDs related to
five diabetic disease proteins as well as affecting the average bind-
ing scores activity. What descriptor’s characteristics are the most
significant in protein–ligand binding?

The summary of the regression analysis using all descriptors,
including drug-like descriptors, can be found in Table S2 in the
Supplementary Materials. Table S2 contains the regression equa-
toms (b), Rotatable Bonds (c), Molecular weight (d), Total Surface Area (e), optimal
ogical diameter (TD) (h).
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tions for the responses: average binding scores and binding scores
for the five proteins (1BMQ, 1FM6, 1GPB, 1H5U, and 1US0).

The significant contribution to the average binding score activ-
ity belongs to the following descriptors: DCW, QPpolrz, topological
diameter (TD), H-Acceptors, Total Surface Area, Relative PSA, Mol-
weight, cLogP, Electronegative Atoms, Stereo Centers, Rings Clo-
sures, Small Rings, Aromatic Rings, Aromatic Atoms, sp3-Atoms,
and Non-H Atoms.

In the case of protein 1BMQ (Enzyme/Hydrolase), QPpolrz,
topological diameter (TD), Aromatic Nitrogens, and Acidic Oxygens
contribute significantly to the binding activity.

The largest contribution in the case of protein 1FM6 (Receptor/
Transcription) belongs to the descriptors: QPpolrz, topological
diameter (TD), cLogP, Aromatic Rings, Aromatic Atoms, and Aro-
matic Nitrogens.

For protein 1GPB (Enzyme/Glycogen phosphorylase), the largest
contribution to binding activity belongs to the following descrip-
tors: QPpolrz, topological diameter (TD), H-Acceptors, Relative
PSA, Molweight, cLogP, cLogS, Electronegative Atoms, Rotatable
Bonds, sp3-Atoms, and Non-H Atoms.

In the case of protein 1H5U (Enzyme/metabolism), the main
contribution belongs to the following descriptors: topological
diameter (TD), H-Acceptors, Electronegative Atoms, Stereo Centers,
and sp3-Atoms.

While, in the case of protein 1US0 (Enzyme/oxidoreductase),
the major contribution to binding activity belongs to the following
descriptors: topological diameter (TD), H-acceptors, H-donors, rel-
ative PSA, polar surface area, molecular weight, stereo centers,
rotatable bonds, aromatic atoms, sp3-Atoms, acidic oxygen atoms,
and Non-H atoms.

The largest contributor in all cases is the topological diameter
(TD). The size of FDs is significant for all responses: average Bscores
and binding scores for five proteins associated with diabetes. This
is followed by QPpolrz, which was excluded in the case of the
1H5U and 1US0 proteins.

The coefficients of determination R2 in the regressions consid-
ered were 0.968 in the case of average binding scores and from
0.857 to 0.895 for the binding scores of five proteins: 1BMQ,
1FM6, 1GPB, 1H5U, and 1US0.

Next, we built regression models for the prediction of binding
scores activity based on the two descriptors QPpolrz and TD
(Model 1) and the optimal Monte Carlo descriptor DCW (Model 2).

3.4. Regression models for predicting binding scores using descriptors
QPpolrz and TD (Model 1a) and the optimal descriptors DCW (Model
2a)

The following prediction models were built in the study:
(1) Model 1a for predicting binding activities based on descrip-

tors QPpolrz and TD;
(2) Model 2a is based on the optimal Monte Carlo descriptors

DCW generated by the program CORAL.
The regression equations and statistical performance of Model

1a are presented in Table S3 in the Supplementary Materials. The
coefficient of determination R2 was 0.93 for average binding scores
and in the range of 0.81–0.87 for the binding scores activity of the
five proteins associated with diabetic disease. The regression anal-
ysis (regression equations) and statistical performance of Model 2a
are presented in Table S4 in the Supplementary Materials section.
The coefficient of determination R2 was 0.93 in the case of average
binding scores and ranged from 0.74 to 0.85 for the binding activity
of five proteins associated with diabetic disease. The plots of actual
response vs. predicted were generated for Model 1a (see Fig. 1S) in
the Supplementary Materials section and for Model 2a (see Fig. 2S).
The plots of actual response vs. predicted show how well our
model fits and predicts each observation. The points in all plots
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show a linear pattern, indicating that the model fits the data well
and predicts the response accurately.

In the next part of the study, we decided to build CPANNmodels
for predicting the binding scores activities. The prediction capabil-
ities of the two algorithms were compared to select the best one.

3.5. CPANN models for prediction of binding scores activity using the
descriptors QPpolrz and TD (Model 1b) and the optimal descriptors
DCW (Model 2b)

The CPANN algorithm was used to develop high-quality predic-
tive QSAR models for predicting the binding activity of FDs using
two molecular descriptors QPpolrz and Topological Diameter
(TD) (Model 1b = M1b) and optimal Monte Carlo descriptors
(Model 2b = M2b). The input data for 169 FDs were normalized.
The training set consisted of 127 FDs, while the test set consisted
of 42 FDs. Internal validation of the CPANN models was performed
using the LOO-CV procedure to evaluate the quality and goodness
of fit of the model [55,60].

The optimal CPANN Model 1b with 14x14 neurons was built
using two descriptors, QPpolrz and TD, and trained for 400 learning
epochs. The optimal CPANN Model 2b was also built with 14x14
neurons using optimal descriptors DCW and trained for 500 learn-
ing epochs. The performances of the models are shown in Tables 4-
6 for Average Binding Scores (1) and binding scores for 1BMQ (2),
1FM6 (3), 1GPB (4), 1H5U (5), and 1US0 (6). The best CPANNmodel
built using QPpolrz and TD descriptors (Model 1b) is characterized
by a squared regression coefficient for the training set (n = 127)
R2 = 0.98392 (RMSE = 0.12637), for the test set (n = 42)
Q2 = 0.99960 (RMSE = 0.01944), leave-one-out cross-validation
(LOO-CV) regression coefficient Q2cv = 0.97814 (RMSE = 0.14745)
related to the average binding scores.

The best CPANN model using the optimal descriptors DCW
(Model 2b) was characterized by a squared regression coefficient
for the training set (n = 127) R2 = 0.97968 (RMSE = 0.14205), for
the test set (n = 42) Q2 = 0.99895 (RMSE = 0.00364), leave-one-
out cross-validation (LOO-CV) regression coefficient
Q2cv = 0.97047 (RMSEcv = 0.17134) related to the average binding
scores.

High statistical performance was also obtained for the binding
scores activities of five proteins associated with the diabetic dis-
ease. For the results, see Tables 4-6.

The model with QPpolrz and TD descriptors (M1b) has only
slightly higher performance than the model M2b based on the
optimal descriptors DCW.

3.6. Domain of applicability of QSAR models

To visualize the applicability domain (AD) of QSAR models, Wil-
liams plots were used where the leverage values (or hat values) are
plotted against the standardized residuals for each compound [54].
The Williams plots in Figs. 6 and 7 show the relationship between
the leverage values (expressing the similarity of a given compound
to the training set) and the standardized residuals (prediction
errors observed for specific compounds) for Model 1a and Model
2a, respectively. The plots are shown for average binding scores
(Average BScores) and binding scores for proteins: 1BMQ, 1FM6,
1GPB, 1H5U, and 1USO.

The warning leverage (h*) is generally set to 3(p + 1)/n, where n
is the number of training chemicals and p is the number of model
variables (descriptors) plus one.

In the case of Model 1a, the h* value was set to 0.7, while in
Model 2a, the h* value was set to 0.47.

In the Williams plot, the chemicals that are influential
in the structural domain of the model are characterized by
leverage (hat) value that exceeds the threshold for the warning



Table 4
The statistical performance of models M1b and M2b related to training set.

Output variables R2_M1b_ Training RMSE_M1b_ Training R2_M2b_ Training RMSE_M2b_ Training

Average Binding Scores (1) 0.98392 0.12637 0.97968 0.14205
Binding Scores for 1BMQ (2) 0.96423 0.18857 0.95680 0.20709
Binding Scores for 1FM6 (3) 0.96914 0.17518 0.93628 0.25164
Binding Scores for 1GPB (4) 0.95089 0.22095 0.92448 0.27386
Binding Scores for 1H5U (5) 0.94699 0.22948 0.94189 0.24019
Binding Scores for 1US0 (6) 0.97063 0.17078 0.96301 0.19164

Table 5
The statistical performance of models M1b and M2b related to test set.

Output variables Q2_ M1b_test RMSE_M1b_test Q2_M2b_test RMSE_M2b_test

Average Binding Scores (1) 0.99960 0.01944 0.99895 0.00364
Binding Scores for 1BMQ (2) 0.99511 0.07123 0.99130 0.01220
Binding Scores for 1FM6 (3) 0.98730 0.11072 0.99926 0.00225
Binding Scores for 1GPB (4) 0.99375 0.06871 0.99946 0.00193
Binding Scores for 1H5U (5) 0.99439 0.07745 0.99872 0.00389
Binding Scores for 1US0 (6) 0.99151 0.10027 0.99885 0.00520

Table 6
The statistical performance of models M1b and M2b related to validation leave one out (LOO) procedure.

Output variables Correlation coefficient Q2cv_M1b_LOO RMSE_M1b_ LOO Correlation coefficient Q2cv _M2b_LOO RMSE_M2b_ LOO

Average Binding Scores (1) 0.97814 0.14745 0.97047 0.17134
Binding Scores for 1BMQ (2) 0.95209 0.21829 0.94056 0.24311
Binding Scores for 1FM6 (3) 0.93697 0.25049 0.90163 0.31278
Binding Scores for 1GPB (4) 0.93066 0.26267 0.90951 0.29999
Binding Scores for 1H5U (5) 0.93188 0.26032 0.93508 0.25406
Binding Scores for 1US0 (6) 0.95677 0.20738 0.92162 0.27916
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leverage, and they should be carefully examined. The prediction
errors for all compounds from the training and test sets can be
illustrated with the chemicals that fall outside ± 3 standard
deviation units (±3r). Therefore, we considered chemicals out-
side the limits.

In Model 1a, FD6, FD162, and FD163 are the most influential on
the structural domain of the model because they are characterized
by leverage (hat) value that exceeds the warning leverage thresh-
old. FD6 (BScores = 6922.5) has the longest alkyl chain, while
FD162 (BScores = 7417.0) and FD163 (BScores = 7885.2) contain
6 and 8 ammonium NH4+, respectively. These chemicals are
among the highly active ones. Among the chemicals
outside ± 3r, the least active unsubstituted fullerenes were found:
FD50 (BScores = 4224.3) (C70), FD168 (BScores = 3938.3) (C60) and
FD169 (BScores = 4398.5) (C80H2).

FD36 (BScores = 6922.5) with 2 benzene rings, 2 pyridine rings,
2 NH2–, 4 CH3–, and 4 ester groups linked to the C60 core was
outside ± 3r in the models for prediction Average BScores and
binding scores for 1GPB and 1H5U.

FD116 (BScores = 5564.4) with 6 –NO2 and –C = C– was found
on the ± 3r border for the model predicting binding scores for
1FM6.

FD165 (BScores = 5975) which contains 2 phosphonate groups
and 12 OH– was found outside ± 3r for model predicting Average
BScores and binding scores for 1BMQ.

FD116 (BScores = 5564.4) with 6 –NO2 and –C = C– was found
outside the ± 3r limit for the model predicting the binding scores
for 1FM6. FD165 (BScores = 5975) containing 2 phosphonate
groups and 12 –OH was found outside the ± 3r limit for the model
predicting Average BScores and binding scores for 1BMQ.

See Table S5 in the Supplementary Materials section for the
structure of the chemicals (FDs) outside the limits for Model 1a:
warning leverage threshold (h*) and outside the limit of ± 3 stan-
dard deviation units (r).
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In Model 2a, FD4, FD162, FD163, and FD124 are influential on
the structural domain of the model because they are characterized
by a leverage (hat) value that exceeds the threshold for warning
leverage. FD4 had the long alkyl chain. FD4 (Bscores = 7257.4) con-
tains 8 –CH2–, 2 carboxyl –COOH, 2 amide groups. FD162
(BScores = 7417.0) and FD163 (BScores = 7885.2) contain 6 and 8
ammonium NH4+, respectively. FD124 (BScores = 6650.69) con-
sists of 2 symmetric groups with 12 –NO2 and 4 ketone groups.

Among the chemicals outside ± 3r, FD6 was found to have the
longest alkyl chain. This was determined for the models predicting
the Average BScores, binding scores for 1BMQ, 1GPB and 1USO.
FD152 (BScores = 5909.0) was found on the border of ± 3r in the
model predicting the binding scores for 1FM6. FD152 has 2 groups
containing 4-COOH, 8–OH, 2 –C = C–. See Table S6 in the Supple-
mentary Materials section for the structures of the chemicals
(FDs) outside the limits for Model 2a: warning leverage threshold
(h*) and outside ± 3 standard deviation units (r).

3.7. Explanation of FDs interactions with proteins dependent on the
structure and chemical composition of FDs and targets

A comprehensive cheminformatics analysis of structural fea-
tures affecting the binding activity of fullerene derivatives is repre-
sented in our previous article [35]. The overall characteristics
demonstrated that the most active FDs have the longest chain of
substituents. Benzene, pyridine, and others aromatic rings also
contributed to the highest binding activity, as well as the presence
of cyclic groups. The lowest value of binding activity corresponds
to pristine fullerene FD168 (C60). Thus, the fullerene C60 possesses
the lowest values of total surface area, molecular weight, rotatable
bonds, electronegative atoms, sp3 atoms, polarizability, and topo-
logical diameter [35].

In the paper [36] it was described how hydrophobicity of fuller-
ene core along with hydrophilic interaction of side chains plays a



Fig. 6. Williams plots: standardized residuals versus leverage for Model 1a based on QPpolrzb and topological diameter (TD) for the following responses: Average BScores (a)
and binding scores for proteins: 1BMQ (b), 1FM6 (c), 1GPB (d), 1H5U, and 1USO (f).
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key role in binding with the studied proteins. The authors [36]
studied the contribution of a degree of hydrogen bonds, hydropho-
bic interactions, salt bridges, and pi interactions. The analysis of
several top protein–ligand complexes revealed that a higher bind-
ing score is due to higher hydrophobic contributions from both FDs
and protein, while hydrogen bond contribution from functional
groups decreases the binding.

Moreover, it was reported [36] that some ligands are positioned
at the outer surface of the protein. For instance, FD6 is located on
the surface of the protein (blood clotting enzyme thrombin (PDB
ID 1A4W)) having high binding scores. Indeed, some proteins do
not have sufficient cavity space to accommodate large FDs and
show the very low scores. Some FDs can be docked inside the bind-
ing pocket.

Additional docking can be done to determine the nature of
interaction between selected FDs and targets in future studies.
3.8. Prospects for further use of obtained data

It is known that selective ligands (FDs) have a tendency to bind
very limited kinds of receptors (proteins), whereas non-selective
ligands bind to several types of receptors. In the paper [36] it
was proposed the list of toxic FDs that are very active and bind
to a large number of proteins with a high binding scores activity.
The authors [36] were looking for selective FDs by visual inspec-
tion of heat map. Those FDs that had red line for majority of pro-
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teins were attributed to toxic one. (Red line in heat map
corresponds to the highest values of binding scores).

In the development of drugs it is very important to take into
consideration the side effects of drug candidates. In this context
in the Supplementary Material 2 Excel Table we represented the
heat maps. These heat maps illustrated the binding activity of all
169 FDs with 1117 proteins in the list1 and binding activity of five
related to diabetic disease proteins with average binding scores of
1117 proteins in the list 2 with the indication of toxic FDs with let-
ter T. The list of toxic FDs was taken from the study published in
the article [36].

Selection of drug candidates suitable for future additional dock-
ing or/and in vitro study presents extensive research. Such studies
need more detailed and time consuming analysis which is not in
the scope of our study. But the data represented in Supplementary
Material 2 Excel Table may be starting point for such research
work.

The Supplementary Materials 2 (Excel Table with heat map) can
be used for future search of the most promising fullerene deriva-
tives related to anti-diabetes targets which will be useful for
in vitro and in vivo investigation of FDs.
4. Conclusions

This article focuses on the effect of FDs on therapeutically
important targets related to diabetes using chemoinformatics
approaches. Prioritizing new compounds by conducting in silico



Fig. 7. Williams plots: standardized residuals versus leverage for Model 2a based on the optimal Monte Carlo descriptors for the following responses: Average BScores (a) and
binding scores for proteins: 1BMQ (b), 1FM6 (c), 1GPB (d), 1H5U (e), and 1USO (f).
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studies limits animal testing and reduces global pharmacokinetic
failures in the later stages of drug development [61].

The following results were presented in the article. A high cor-
relation was found between binding activities related to average
binding scores and binding scores for five proteins relevant to dia-
betes (1BMQ, 1FM6, 1GPB, 1H5U, and 1US0) ranging from 0.921 to
0.958. The correlation between the binding score activity of these
five proteins (1BMQ, 1FM6, 1GPB, 1H5U, and 1US0) appeared to
be in the range of 0.880–0.918.

The contribution of the most significant descriptors to protein–
ligand binding activity was presented as a correlation between the
descriptors and binding scores activity. Thus, the correlation
between the binding activity of the five proteins associated with
diabetes and the descriptors (Non-H- atoms, Rotatable Bonds,
Molecular Weight, Total Surface Area, Topological Diameter,
QPpolrz, and DCW) ranged from 0.657 to 0.920.

The largest contribution of protein–ligand binding (determined
in the regression models) belongs to the topological diameter (TD).
The size of FDs is significant for all responses: average Bscores and
binding scores for five proteins associated with diabetes. This is fol-
lowedbyQPpolrz,whichwas excluded in the case of 1H5Uand1US0
proteins.

The best CPANNmodel 1b for prediction of binding scores activ-
ity using QPpolrz and TD descriptors is characterized by a squared
regression coefficient for the training set (n = 127) R2 = 0.98392
(RMSE = 0.12637), for the test set (n = 42) Q2 = 0.99960
(RMSE = 0.01944), leave-one-out cross-validation (LOO-CV)
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regression coefficient, Q2cv = 0.97814 (RMSE = 0.14745) related to
the average binding scores.

The best CPANNmodel 2b for prediction of binding scores activ-
ity using the optimal descriptors DCW was characterized by a
squared regression coefficient for the training set (n = 127)
R2 = 0.97968 (RMSE = 0.14205), for the test set (n = 42)
Q2 = 0.99895 (RMSE = 0.00364), Leave-One-Out Cross-Validation
(LOO-CV) regression coefficient, Q2cv = 0.97047, (RMSE = 0.17134)
related to the average binding scores.

High correlations were also obtained for the binding scores
activities of five proteins associated with diabetic diseases: R2 for
training set ranged from 0.95 to 0.97 in Model 1b and from 0.92
to 0.96 in Model 2b; Q2 for test set was 0.99 in both models 1b
and 2b; and LOO-CV Q2cv ranged from 0.93 to 0.96 in Model 1b
and from 0.90 to 0.94 in Model 2b.

The models were developed in accordance with the five OECD
principles.

The applicability domain was analyzed. The mechanistic inter-
pretation contains information on the contribution of the descrip-
tors in ligand–protein binding.

Models for prediction binding scores allow avoiding additional
time-consuming calculations. The intended use of binding
scores in virtual screening can be used to rank FDs to select top
compounds suitable for selected disease-related proteins of
interest.

It is recommended to use Supplementary Material 2 (Excel
Table with heat map) for future search of the most promising
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fullerene derivatives related to anti-diabetes targets which will be
useful for in vitro and in vivo investigation of FDs.
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