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Abstract: (1) Purpose of this study: To determine whether patient weight influences the probability
of target attainment (PTA) over 72 h of initial therapy with beta-lactam (cefepime, ceftazidime,
piperacillin/tazobactam) and carbapenem (imipenem, ertapenem, meropenem) antibiotics in the
critical care setting. This is the first paper to address the question of whether patient size affects
antibiotic PTA in the ICU. (2) Methods: We performed a post hoc analysis of Monte Carlo simulations
conducted in virtual critically ill patients receiving antibiotics and continuous renal replacement
therapy. The PTA was calculated for each antibiotic on the following pharmacodynamic (PD) targets:
(a) were above the target organism’s minimum inhibitory concentration (≥%fT≥1×MIC), (b) were
above four times the MIC (≥%fT≥4×MIC), and (c) were always above the MIC (≥100%fT≥MIC) for
the first 72 h of antibiotic therapy. The PTA was analyzed in patient weight quartiles [Q1 (lightest)-Q4
(heaviest)]. Optimal doses were defined as the lowest dose achieving ≥90% PTA. (3) Results: The
PTA for fT≥1×MIC led to similarly high rates regardless of weight quartiles. Yet, patient weight
influenced the PTA for higher PD targets (100%fT≥MIC and fT≥4×MIC) with commonly used
beta-lactams and carbapenems. Reaching the optimal PTA was more difficult with a PD target
of 100%fT≥MIC compared to fT≥4×MIC. (4) Conclusions: The Monte Carlo simulations showed
patients in lower weight quartiles tended to achieve higher antibiotic pharmacodynamic target
attainment compared to heavier patients.

Keywords: renal replacement therapy; Monte Carlo simulation; antibiotics; pharmacokinetics;
pharmacodynamics

1. Introduction

Continuous renal replacement therapy (CRRT) is the preferred renal replacement
therapy (RRT) over intermittent hemodialysis in patients with acute kidney injury (AKI)
due to hemodynamic instability [1]. The multicenter study Veterans Affairs/National
Institutes of Health Acute Renal Failure Trial Network Study (ATN trial) showed that there
was no difference in clinical outcomes when patients received less-intensive or intensive
effluent rates for CRRT [2]. Since the antibiotic doses were used in both intensity arms,
some suggested that patients with intensive CRRT may have had lower overall antibiotic
exposures due to a higher drug removal rate [3,4]. Our previous study showed there
were no significant differences in the probability of target attainment (PTA) between less-
intensive (20–25 mL/kg/h) vs. intensive (35–45 mL/kg/h) effluent rate arms [5].

The combination of AKI and aggressive fluid resuscitation for sepsis leads to a consid-
erable amount of fluid weight gain, increasing the volume of distribution (Vd) in drugs [6].
Increased Vd leads to a lower plasma concentration, requiring higher doses of a drug. This
is noteworthy because altered Vd in AKI patients receiving CRRT can cause high interindi-
vidual and interoccasion variability in antibiotic serum concentrations [7]. For example,
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interindividual variability was noted with piperacillin and tazobactam trough levels by
≥123-fold and ≥192-fold, respectively, in critically ill patients [8]. Moreover, the majority
of clinical studies that derived dosing recommendations do not include larger patients
(>100 kg), and obesity is a well-known risk factor of antibiotic therapy failure [9,10].

Antimicrobial activity is impacted by multiple factors, including drug dose regimen,
potency of the drug against a specific organism, and pharmacokinetic (PK) parameters.
For beta-lactam agents, in vitro and clinical studies suggest that maintaining free serum
concentrations at least four times as high as the organism’s minimum inhibitory concentra-
tion (MIC) (fT≥4×MIC) optimizes bactericidal activity and clinical response in critically ill
patients compared to less stringent pharmacodynamic targets [11–13]. Moreover, clinical
outcomes were superior when the PD target maintained free drug concentrations above
the 1×MIC (fT≥1×MIC) level for 100% of the dosing interval in critically ill patients [14].
The objective of this post-hoc study was to determine PTA over the first 72 h of commonly
prescribed doses of beta-lactams (cefepime, ceftazidime, and piperacillin/tazobactam) and
carbapenems (imipenem, meropenem) in different patient weight quartiles using Monte
Carlo simulation (MCS) techniques.

2. Results

The PTA rates in overall (for all 10,000 virtual patients) and in different weight quartiles
[Q1 (lightest) to Q4 (heaviest)] for cefepime, ceftazidime, piperacillin, and tazobactam are
reported in Table 1. Table 2 lists the PTA for overall virtual patients and different weight
quartiles for the meropenem, imipenem, and ertapenem dosing regimens. Three different
pharmacodynamic targets were assessed, from the least stringent %fT≥1×MIC to the most
stringent target of 100%fT≥MIC.

Table 1. Probability of target attainment comparison among weight quartiles for key beta-lactams used in the ATN trial:
Cefepime, ceftazidime, piperacillin, and tazobactam.

ATN Less Intensive ATN Intensive

Weight
Quartile 1×MIC 4×MIC 100% fT>1×MIC Weight

Quartile 1×MIC 4×MIC 100% fT>1×MIC

Cefepime 1 g every 12 h
Overall 100% 7.8% 10.8% Overall 99.9% 2.3% 8.4%

Q1
(40–70 kg) 100% 18.2% 31% Q1

(40–70 kg) 99.8% 6.5% 24.4%

Q2
(70–82 kg) 100% 8.6% 9.6% Q2

(70–82 kg) 100% 2.2% 7.7%

Q3
(82–95 kg) 100% 3.7% 2.3% Q3

(82–96 kg) 100% 0.6% 1.3%

Q4
(95–177 kg) 100% 0.6% 0.4% Q4

(96–204 kg) 100% 0.0% 0.1%

Cefepime 1 g every 8 h
Overall 100% 57.4% 15.5% Overall 100% 33% 15.6%

Q1
(40–70 kg) 100% 79.6% 43.7% Q1

(40–70 kg) 100% 59.7% 44.9%

Q2
(70–82 kg) 100% 68.6% 14.2% Q2

(70–82 kg) 100% 39.8% 13.5%

Q3
(82–95 kg) 100% 54.5% 4% Q3

(82–96 kg) 100% 24.4% 3.8%

Q4
(95–189 kg) 100% 27.1% 0.2% Q4

(96–213 kg) 100% 8.2% 0.4%

Cefepime 2 g every 12 h
Overall 100% 86.5% 56.3% Overall 100% 77.2% 55.2%

Q1
(40–70 kg) 100% 94.04% 90.3% Q1

(40–70 kg) 100% 88.7% 88.1%

Q2
(70–82 kg) 100% 93.9% 71% Q2

(70–82 kg) 100% 86.9% 70.6%

Q3
(82–95 kg) 100% 89.04% 46.4% Q3

(82–96 kg) 100% 79.2% 44.9%

Q4
(95–180 kg) 100% 69.04% 17.3% Q4

(96–183 kg) 100% 53.9% 17.0%
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Table 1. Cont.

ATN Less Intensive ATN Intensive

Weight
Quartile 1×MIC 4×MIC 100% fT>1×MIC Weight

Quartile 1×MIC 4×MIC 100% fT>1×MIC

Cefepime 2 g every 8 h
Overall 100% 100% 57% Overall 100% 99% 56.9%

Q1
(40–70 kg) 100% 100% 92.4% Q1

(40–70 kg) 100% 99.7% 92.4%

Q2
(70–82 kg) 100% 100% 72.6% Q2

(70–82 kg) 100% 100.0% 71.4%

Q3
(82–96 kg) 100% 100% 45.6% Q3

(82–96 kg) 100% 99.8% 46.2%

Q4
(96–185 kg) 100% 98.9% 17.3% Q4

(96–217 kg) 100% 96.3% 17.5%

Ceftazidime 1 g every 12 h
Overall 100% 31.3% 31.2% Overall 100% 16.9% 24.7%

Q1
(40–70 kg) 100% 54.5% 51.8% Q1

(40–70 kg) 100% 37.6% 46.3%

Q2
(70–82 kg) 100% 37% 34.8% Q2

(70–82 kg) 100% 18.3% 29.3%

Q3
(82–95 kg) 100% 23.8% 25.7% Q3

(82–96 kg) 100% 8.8% 16.5%

Q4
(95–200 kg) 100% 9.7% 12.5% Q4

(96–204 kg) 99.9% 2.9% 6.8%

Ceftazidime 2 g every 12 h
Overall 100% 95.7% 81.1% Overall 100% 88% 78.3%

Q1
(40–70 kg) 100% 97.9% 93.2% Q1

(40–70 kg) 100% 88.1% 78.5%

Q2
(70–82 kg) 100% 97.4% 86.7% Q2

(70–82 kg) 100% 87.7% 78.4%

Q3
(82–95 kg) 100% 96.7% 81.0% Q3

(82–96 kg) 100% 88% 78.2%

Q4
(95–183 kg) 100% 90.9% 63.5% Q4

(96–193 kg) 100% 88.2% 78.3%

Piperacillin 3 g every 12 h
Overall 93.4% 30.7% 23.8% Overall 91.9% 24.4% 20.5%

Q1
(41–71 kg) 91% 38% 35.2% Q1

(40–70 kg) 90.1% 33.0% 32.6%

Q2
(71–82 kg) 93.3% 33% 27.6% Q2

(70–82 kg) 91.4% 25.8% 23.3%

Q3
(82–96 kg) 94.5% 28.9% 20.4% Q3

(82–96 kg) 92.2% 22.9% 16.2%

Q4
(96–191 kg) 94.6% 22.9% 11.9% Q4

(96–204 kg) 93.8% 16.1% 9.7%

Piperacillin 4 g every 12 h
Overall 96.3% 50% 42.8% Overall 95.4% 44.6% 38.4%

Q1
(40–70 kg) 94.7% 49% 55.7% Q1

(40–70 kg) 93.8% 53.0% 51.2%

Q2
(70–82 kg) 95.3% 48.8% 46.8% Q2

(70–82 kg) 94.8% 48.3% 43.6%

Q3
(82–95 kg) 97.3% 51.7% 40.8% Q3

(82–96 kg) 96.2% 43.0% 34.6%

Q4
(95–184 kg) 97.8% 50.4% 28% Q4

(96–213 kg) 96.6% 34.0% 24.0%

Piperacillin 3 g every 8 h
Overall 99% 61% 33.5% Overall 98.8% 56.6% 33.1%

Q1
(40–71 kg) 98.7% 66.1% 50.9% Q1

(40–70 kg) 97.4% 62.0% 50.1%

Q2
(71–82 kg) 98.8% 63.5% 37.2% Q2

(70–82 kg) 99.2% 60.2% 37.5%

Q3
(82–95 kg) 99% 59.8% 29% Q3

(82–96 kg) 99.3% 56.6% 28.6%

Q4
(95–191 kg) 99.4% 54.4% 17% Q4

(96–183 kg) 99.4% 47.3% 16.0%
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Table 1. Cont.

ATN Less Intensive ATN Intensive

Weight
Quartile 1×MIC 4×MIC 100% fT>1×MIC Weight

Quartile 1×MIC 4×MIC 100% fT>1×MIC

Piperacillin 4 g every 8 h
Overall 99.5% 77.9% 54.6% Overall 99.3% 75.1% 52.9%

Q1
(40–70 kg) 99% 81% 72% Q1

(40–70 kg) 98.5% 77.6% 69.4%

Q2
(70–82 kg) 99.5% 78.2% 59.2% Q2

(70–82 kg) 99.3% 76.9% 59.2%

Q3
(82–96 kg) 99.5% 77.2% 49.2% Q3

(82–96 kg) 99.6% 74.8% 49.0%

Q4
(96–206 kg) 99.8% 75.2% 37.9% Q4

(96–217 kg) 99.7% 71.1% 33.7%

Piperacillin 3 g every 6 h
Overall 99.9% 80% 39.2% Overall 99.8% 77.1% 37.9%

Q1
(40–70 kg) 99.8% 83.6% 60% Q1

(40–70 kg) 99.6% 80.4% 58.4%

Q2
(70–82 kg) 99.8% 81.6% 43.6% Q2

(70–82 kg) 99.9% 77.9% 42.7%

Q3
(82–96 kg) 99.9% 79.4% 32.8% Q3

(82–96 kg) 99.7% 78.4% 31.8%

Q4
(96–217 kg) 100% 75.5% 20.2% Q4

(96–217 kg) 100% 71.5% 18.6%

Piperacillin 4 g every 6 h
Overall 99.9% 89.9% 60% Overall 99.9% 88.5% 57.6%

Q1
(40–71 kg) 99.8% 89.9% 77.9% Q1

(40–70 kg) 99.8% 90.7% 76.2%

Q2
(71–82 kg) 100% 89.5% 66.2% Q2

(70–82 kg) 99.8% 89.0% 63.4%

Q3
(82–95 kg) 99.9% 90.4% 56% Q3

(82–96 kg) 99.9% 87.8% 54.5%

Q4
(95–184 kg) 100% 89.8% 39.8% Q4

(96–217 kg) 100% 86.4% 36.0%

Tazobactam 375 mg every 12 h
Overall 76.8% 10% 3.6% Overall 73% 5.4% 2.3%

Q1
(40–71 kg) 79.4% 17.5% 7.2% Q1

(40–70 kg) 76.5% 10.4% 4.6%

Q2
(71–82 kg) 78.2% 10.6% 3.6% Q2

(70–82 kg) 76.1% 5.5% 2.4%

Q3
(82–95 kg) 76.4% 7.4% 2.3% Q3

(82–96 kg) 72.9% 3.9% 1.6%

Q4
(95–199 kg) 73% 4.4% 1.2% Q4

(96–202 kg) 66.2% 1.8% 0.7%

Tazobactam 500 mg every 12 h
Overall 84.7% 21.8% 8.5% Overall 82.9% 14.8% 7%

Q1
(40–71 kg) 85.4% 30.5% 13.8% Q1

(40–70 kg) 84.5% 23.7% 13.1%

Q2
(71–82 kg) 84.2% 23.6% 9.6% Q2

(70–82 kg) 84.5% 16.5% 7.7%

Q3
(82–96 kg) 85.7% 19.6% 6.6% Q3

(82–96 kg) 81.4% 12.5% 5.0%

Q4
(96–187 kg) 83.6% 13.4% 4.1% Q4

(96–204 kg) 80.6% 6.7% 2.2%

Tazobactam 375 mg every 8 h
Overall 89.1% 27.9% 4.7% Overall 87.8% 20.9% 4.6%

Q1
(40–71 kg) 89.5% 36.1% 8.8% Q1

(40–70 kg) 88.6% 30.3% 9.2%

Q2
(71–82 kg) 89.4% 31.8% 4.9% Q2

(70–82 kg) 87.6% 25.0% 5.5%

Q3
(82–95 kg) 88.9% 25.1% 3.2% Q3

(82–96 kg) 88.1% 17.2% 2.4%

Q4
(95–222 kg) 88.5% 18.7% 1.9% Q4

(96–184 kg) 86.6% 11.2% 1.3%
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Table 1. Cont.

ATN Less Intensive ATN Intensive

Weight
Quartile 1×MIC 4×MIC 100% fT>1×MIC Weight

Quartile 1×MIC 4×MIC 100% fT>1×MIC

Tazobactam 375 mg every 6 h
Overall 93.4% 44.8% 6.6% Overall 93.6% 38.8% 6.2%

Q1
(40–70 kg) 93.8% 53.8% 11.5% Q1

(40–70 kg) 94.2% 50.5% 12.0%

Q2
(70–82 kg) 92.8% 47.5% 6.7% Q2

(70–82 kg) 93.6% 42.1% 6.8%

Q3
(82–95 kg) 94% 43% 5.2% Q3

(82–96 kg) 94.1% 37.1% 4.0%

Q4
(95–225 kg) 93% 35.1% 2.9% Q4

(96–185 kg) 92.4% 25.3% 1.9%

Tazobactam 500 mg every 8 h
Overall 93.2% 45.5% 11.7% Overall 92.3% 38% 10.3%

Q1
(40–70 kg) 93% 56.2% 19.3% Q1

(40–70 kg) 92.5% 48.5% 17.8%

Q2
(70–82 kg) 93.7% 48.6% 13.6% Q2

(70–82 kg) 92.9% 42.6% 10.5%

Q3
(82–96 kg) 92.3% 43.2% 8.8% Q3

(82–96 kg) 92.1% 35.5% 8.4%

Q4
(96–181 kg) 93.4% 34.2% 5% Q4

(96–181 kg) 91.6% 25.5% 4.6%

Tazobactam 500 mg every 6 h
Overall 96.1% 61.3% 13.3% Overall 95.8% 55.3% 12.3%

Q1
(40–71 kg) 96% 68.9% 22.6% Q1

(40–70 kg) 95.8% 64.8% 20.1%

Q2
(71–82 kg) 96% 63.8% 14.8% Q2

(70–82 kg) 96.2% 60.5% 13.5%

Q3
(82–96 kg) 96.2% 59.4% 9.6% Q3

(82–96 kg) 96.0% 53.3% 10.1%

Q4
(96–182 kg) 96.4% 53% 6.4% Q4

(96–209 kg) 94.9% 42.6% 5.6%

Shaded to represent probability of target attainment ≥90% (green), 60 < 90% (orange), and <60% (red).

Table 2. Probability of target attainment comparison among weight quartiles for key carbapenems used in the ATN trial:
ertapenem, imipenem, and meropenem.

ATN Less Intensive ATN Intensive

Wt. Quartile 1×MIC 4×MIC 100% fT≥1×MIC Wt. Quartile 1×MIC 4×MIC 100% fT≥1×MIC

Ertapenem 1 g every 24 h (MIC 1)
Overall 100% 100% 99.72% Overall 100% 99.98% 99.17%

Q1 (40–70 kg) 100% 100% 99% Q1 (40–70 kg) 100% 100% 97.5%
Q2 (70–82 kg) 100% 100% 99.9% Q2 (70–82 kg) 100% 100% 99.6%
Q3 (82–96 kg) 100% 100% 100% Q3 (82–96 kg) 100% 100% 99.7%

Q4 (96–204 kg) 99.9% 99.9% 100% Q4 (96–212 kg) 99.9% 99.8% 99.8%
Ertapenem 1 g every 24 h (MIC 2)

Overall 100% 98.2% 93.7% Overall 98.2% 87.32% 87.73%
Q1 (40–70 kg) 100% 99.7% 91.2% Q1 (40–70 kg) 100% 98.6% 82%
Q2 (70–82 kg) 100% 99.6% 97.6% Q2 (70–82 kg) 100% 96% 91.8%
Q3 (82–96 kg) 100% 98.8% 97.8% Q3 (82–96 kg) 100% 89.8% 93.4%

Q4 (96–213 kg) 99.9% 94.6% 87.2% Q4 (96–212 kg) 99.9% 64.7% 83.7%
Imipenem 500 mg every 12 h

Overall 98% 3.3% 5.8% Overall 97.3% 1.8% 3.6%
Q1 (40–70 kg) 95% 3.8% 3.2% Q1 (40–70 kg) 92.2% 2.7% 2.2%
Q2 (70–82 kg) 98% 3.8% 5.5% Q2 (70–82 kg) 98.1% 2.0% 3.9%
Q3 (82–95 kg) 99.2% 3.5% 7.9% Q3 (82–96 kg) 99.2% 1.4% 3.9%

Q4 (95–199 kg) 99.9% 2.1% 6.4% Q4 (96–201 kg) 99.6% 1.1% 4.4%
Imipenem 500 mg every 8 h

Overall 100% 40% 39.9% Overall 100% 32.8% 33.4%
Q1 (40–71 kg) 100% 44% 36.2% Q1 (40–70 kg) 100% 36.2% 29.2%
Q2 (71–82 kg) 100% 43.7% 46.8% Q2 (70–82 kg) 100% 36.2% 38.2%
Q3 (82–95 kg) 100% 39.2% 46.2% Q3 (82–96 kg) 100% 33.9% 38.9%

Q4 (95–196 kg) 100% 33.2% 30.4% Q4 (96–212 kg) 100% 24.6% 27.2%
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Table 2. Cont.

ATN Less Intensive ATN Intensive

Wt. Quartile 1×MIC 4×MIC 100% fT≥1×MIC Wt. Quartile 1×MIC 4×MIC 100% fT≥1×MIC

Imipenem 500 mg every 6 h
Overall 100% 78.3% 61.6% Overall 97.3% 74.6% 60%

Q1 (40–71 kg) 100% 80.5% 71.3% Q1 (40–70 kg) 100% 77.5% 68.1%
Q2 (71–82 kg) 100% 80% 71.7% Q2 (70–82 kg) 100% 77.4% 70.6%
Q3 (82–95 kg) 100% 78% 61.8% Q3 (82–96 kg) 100% 75% 60.7%

Q4 (95–191 kg) 100% 74.8% 41.8% Q4 (96–187 kg) 100% 68.5% 40.9%
Imipenem 1 g every 8 h

Overall 100% 98% 87% Overall 100% 97.3% 82.3%
Q1 (40–71 kg) 100% 96.8% 71.4% Q1 (40–70 kg) 100% 96.6% 65.6%
Q2 (71–82 kg) 100% 98.4% 87% Q2 (70–82 kg) 100% 96.8% 81.0%
Q3 (82–96 kg) 100% 98.8% 93.5% Q3 (82–96 kg) 100% 98.1% 88.9%

Q4 (96–193 kg) 100% 98.2% 96% Q4 (96–202 kg) 100% 97.8% 93.8%
Meropenem 500 mg every 12 h

Overall 97.6% 63.3% 45.7% Overall 97.4% 58.1% 45.7%
Q1 (40–71 kg) 96.1% 66.4% 58.4% Q1 (40–70 kg) 95.8% 65.1% 54.6%
Q2 (71–82 kg) 97.6% 65.8% 52.4% Q2 (70–82 kg) 96.8% 60.0% 47.9%
Q3 (82–96 kg) 97.9% 63.8% 43.4% Q3 (82–96 kg) 98.1% 57.8% 40.9%

Q4 (96–173 kg) 98.8% 57.2% 28.6% Q4 (96–217 kg) 98.9% 49.6% 24.5%
Meropenem 500 mg every 8 h

Overall 99.8% 84.8% 57.9% Overall 99.7% 82.6% 55.8%
Q1 (40–71 kg) 99.5% 87.2% 77.6% Q1 (40–70 kg) 99.2% 85.6% 74.1%
Q2 (71–82 kg) 99.8% 85.08% 64.9% Q2 (70–82 kg) 99.8% 83.6% 63.8%
Q3 (82–96 kg) 100% 84.9% 55.1% Q3 (82–96 kg) 99.7% 82.2% 52.8%

Q4 (96–189 kg) 99.8% 81.8% 33.9% Q4 (96–206 kg) 99.9% 78.8% 32.5%
Meropenem 1 g every 12 h

Overall 99.4% 90.6% 82% Overall 99.2% 89.8% 79.5%
Q1 (40–70 kg) 98.6% 88.6% 77.6% Q1 (40–70 kg) 98% 87.5% 74.2%
Q2 (70–82 kg) 99.3% 90.7% 84.4% Q2 (70–82 kg) 99% 90% 81%
Q3 (82–95 kg) 99.8% 91.8% 85.8% Q3 (82–96 kg) 100% 90.6% 82.8%

Q4 (95–183 kg) 99.9% 91.1% 80% Q4 (96–206 kg) 100% 90.8% 79.8%
Meropenem 1 g every 8 h

Overall 100% 98.1% 92.2% Overall 99.9% 97.6% 90.8%
Q1 (40–70 kg) 99.9% 97.3% 91.5% Q1 (40–70 kg) 99.8% 97% 90.3%
Q2 (70–82 kg) 100% 98% 94.2% Q2 (70–82 kg) 100% 100% 93.8%
Q3 (82–95 kg) 100% 98.9% 94.8% Q3 (82–96 kg) 100% 97.9% 93%

Q4 (95–195 kg) 100% 98.2% 88.3% Q4 (96–202 kg) 100% 97.9% 86.2%
Meropenem 2 g every 12 h

Overall 99.8% 98.1% 91.4% Overall 99.7% 97.4% 89.5%
Q1 (40–71 kg) 99.6% 97.1% 86.5% Q1 (40–70 kg) 99.4% 95.8% 83.2%
Q2 (71–82 kg) 99.8% 97.9% 89.7% Q2 (70–82 kg) 99.6% 97.5% 89.4%
Q3 (82–95 kg) 99.8% 98.3% 93.3% Q3 (82–96 kg) 99.8% 97.8% 91.6%

Q4 (95–199 kg) 100% 99% 96% Q4 (96–206 kg) 100% 98.6% 93.7%

Shaded to represent probability of target attainment: ≥90% (green), 60 ≤ 89% (orange), and <60% (red).

As reported in Table 1 (cefepime, ceftazidime, piperacillin/tazobactam), the PTA
against P. aeruginosa consistently decreases as the weight quartile increases. The PTA in
less-intensive CRRT effluent rate arms was higher than the PTA in intensive CRRT effluent
rate arms for all drugs. Nevertheless, these differences were usually small within any
weight quartile for any drug. Table 2 illustrates similar findings for carbapenem antibiotics.
With a few exceptions, the carbapenem PTA decreased as the weight quartiles increased.
The intensity of the CRRT effluent rate also influenced the PTA such that lower PTA rates
were observed in the intensive CRRT than in the analogous lower CRRT intensity groups.
Again, the differences observed with CRRT intensity were not large. Two drug dosing
regimens (imipenem 1 g every 8 h and meropenem 2 g every 12 h) showed a different trend,
namely that their PTAs increased as the weight quartile increased.

3. Discussion

This is the first MCS to examine the influence of subject weights on antibiotic PTA in
patients receiving CRRT. Our hypothesis for the present study was that antibiotic exposures
will be significantly lower (resulting in a lower PTA) in heavier virtual critically ill patients
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(obesity and/or fluid overloaded) receiving CRRT when the same daily antibiotic dose
is used. Our results showed virtual patients who were in Q1 (the lightest quartile) had a
higher PTA for its PD target; the PTA gradually decreased as the weight quartile increased
[the heaviest (Q4) had the lowest PTA] for all drugs in this study (cefepime, ceftazidime,
piperacillin, tazobactam, ertapenem, imipenem, and meropenem) with few exceptions.

The lowest modeled cefepime dosing regimen (1 g every 12 h) met acceptable PTA
rates at the least stringent (%fT≥1×MIC) target but poor PTA achievement in both the
less-intensive and intensive CRRT groups for the more stringent PD targets (fT≥4×MIC
and 100%fT≥MIC). For cefepime, the PTA significantly decreased as the weight quartiles
(heavier patients) increased. For example, the overall PTA for 100%fT≥MIC with cefepime
2 g every 12 h in the less-intensive group was 56.3%. Yet, in the first quartile (weight:
40–70 kg) and the last quartile (weight: 95–180 kg) in the less-intensive group achieved
PTA values of 90.3% and 17.3%, respectively. Ceftazidime followed a similarly lower PTA
with a higher weight trend. Ceftazidime 2 g every 12 h, in the less-intensive group for the
PD target of 100%fT≥1×MIC, yielded an overall PTA of 81.1%. However, it exhibited large
differences between weight quartiles: 93.2% (in Q1: 40–70 kg) and 63.5% (in Q4: 95–187 kg).
Weights influenced piperacillin/tazobactam, as the PTA decreased as the weight quartile
increased. For instance, the overall PTA was 60%, but Q1 (40–71 kg) and Q4 (95–184 kg)
were 77.9% and 39.8%, respectively, for the PD target of 100%fT≥MIC with piperacillin
4 g every 6 h.

In our study, a few carbapenem dosing regimens demonstrated interesting results,
for example, ertapenem 1 g every 24 h with the PD target of 100%fT≥MIC. Subjects
in the intensive CRRT arm in Q1 (the lightest) exhibited the lowest PTA compared to
larger virtual patients. The PTAs were: Q1 82%, Q2 91.8%, Q3 93.4%, and Q4 83.7%. One
potential explanation is that Q1 subjects had the smallest Vd, which may have led to a
higher relative drug clearance by intensive CRRT. Imipenem also showed unusual results
within the 1 g every 8 h dosing regimen model. The PTA increased as the weight quartiles
increased for the PD target of 100%fT≥MIC: PTA Q1 66%; Q2 81%; Q3 89%, and Q4 94%
in the intensive CRRT group. With further PK analysis with this cohort, the mean Vd
for Q1 was 0.33 L/kg (20.39 L) and in Q4 was 0.37 L/kg (40.36 L). Moreover, the mean
nonrenal clearance (CLNR) for Q1 subjects was 98.5 mL/min when CLNR for Q4 subjects
was 97.9 mL/min. This phenomenon (increased PTA with higher weight) may be explained
by a combination of smaller Vd leading to more drug removal by CRRT and higher CLNR in
the Q1 cohort. The other standard dosing regimens for carbapenem results were consistent
with our hypothesis (lower PTA with higher weight quartiles).

This study is consistent with Hites et al. [15], who evaluated beta-lactam standard
dosing regimens in critically ill patients (both obese and nonobese patients). They found
the standard dosing regimens resulted in subtherapeutic plasma concentrations in 32% of
their patients and supratherapeutic plasma concentrations in 25% overall. It was evident
for meropenem that more obese patients had subtherapeutic antibiotic concentrations com-
pared to nonobese patients (35% vs. 0%, p = 0.02) [15]. The authors did not find statistical
differences between obese and nonobese patients for cefepime and piperacillin/tazobactam.
Lastly, patients receiving CRRT were more likely to result in supratherapeutic levels than
patients who were not receiving CRRT (44.1% vs. 8.8%; p = 0.002) in this study. Moreover,
obese patients receiving CRRT were more likely to have supratherapeutic levels compared
to nonobese patients receiving CRRT.

Taccone et al. [16] shared a case report that illustrated that obese patients require a
much higher antibiotic dosing regimen compared to nonobese patients. This case report
was regarding a patient who had a body mass index (BMI) of 35 who presented with septic
shock due to extensively drug-resistant P. aeruginosa. The PD target was 40%T≥4×MIC,
and the standard meropenem dosing regimen did not reach the PD target. The patient
required meropenem of 12 g/d (3 g every 6 h with 3 h extended infusion), which resulted in
meropenem resolution without any adverse events and no abnormal electroencephalogram.
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Cheatham et al. [17] evaluated pharmacokinetics and pharmacodynamics with
meropenem use in morbidly obese patients. Nine patients were included with a total body
weight of 152.3± 31.0 kg (ideal body weight: 60.3± 10.6 kg) and a BMI of 54.7 ± 8.6 kg/m2.
The authors found appropriate meropenem dosing regimens for morbidly obese patients
were 1 g every 8 h, 2 g every 8 h, 500 mg every 6 h, and 1 g every 6 h when the PD target
was 40%fT≥1×MIC (2 mg/mL). For a more stringent PD target (40%fT≥4×MIC), 2 g every
8 h and 1 g every 6 h were necessary for this special population. Even though this study did
not include critically ill patients receiving CRRT, it highlights that morbidly obese patients
require a higher meropenem dose.

This study has several limitations, including not having BMI information since the
study was based on MCS (virtual patients). The PK parameters were derived in different
patient populations other than the American patients (ATN trial). However, our objective
was not to determine the PTA for patients with obesity but rather determine if there were
any differences among weight quartiles. Moreover, our data may not be applicable in non-
ICU patients who are underweight (weight: <40 kg) because our minimum weight was set
as 40 kg, and pharmacokinetic data were derived from critically ill patients. Lastly, we have
not further analyzed any toxicity profiles nor outcome data. These PTA tables will provide
better guidance to clinicians who have different antimicrobial PD benchmarks (fT≥1×MIC
vs. 100%fT≥1×MIC vs. fT≥4×MIC) for their critically ill patients undergoing CRRT.

4. Materials and Methods

This study was a post-hoc analysis of a previously published paper determining
the influence of CRRT’s intensity (less intensive vs. intensive) on antibiotic exposure
profiles [5]. Institutional review board approval was not required since pharmacokinetic
and demographic data were applied to computer-generated “virtual” patients.

4.1. Pharmacokinetic Model and Simulations

The initial study [5] utilized one-compartment, first-order, and multiple-dose phar-
macokinetic models to simulate antibiotic plasma concentration–time profiles based on
demographic and CRRT dose information from the ATN trials [2,18]. Pertinent pharmacoki-
netic data in critically ill patients (Vd, unbound fraction, and nonrenal clearance (CLNR))
were collected from primary literature sources and incorporated in the MCS (Table 3). Beta-
lactams (cefepime, ceftazidime, and piperacillin/tazobactam) and carbapenems (imipenem,
ertapenem, and meropenem) were chosen for analysis because they were commonly used
during the time of the ATN trial. The commonly recommended antibiotic dosing regi-
mens for CRRT were simulated for 72 h in MCS. Drug concentration–time profiles were
generated in a log-Gaussian distribution with preset limits using the mean and SD of
the pharmacokinetic parameters outlined in Table 3 by the MCS (Crystal Ball, Oracle©,
Santa Clara, CA, USA). The mean and SD of subject weight and delivered effluent rates
from each study were used for that study’s MCS. Detailed descriptions of the PK model
and MCS are included in the previous report [5].

4.2. Pharmacodynamic Targets

We used the Clinical and Laboratory Standards Institute (CLSI) susceptibility break-
points against P. aeruginosa which are: 2 mg/L for meropenem and imipenem, 8 mg/L for
cefepime and ceftazidime, and 16 mg/L for piperacillin (4 mg/L for tazobactam threshold).
The susceptibility breakpoint for ertapenem against S. pneumoniae is 1 mg/L [35]. The PD
targets were: ≥40%fT≥1×MIC of 2 mg/L for meropenem and imipenem (4×MIC = 8 mg/L),
≥40%fT≥1×MIC of 1 mg/L for ertapenem (4×MIC = 4 mg/L), ≥50%fT≥1×MIC of
16 mg/L for piperacillin (4×MIC = 64 mg/L), ≥50% fT>4 mg/L for tazobactam, and
≥60% fT≥1×MIC of 8 mg/L for cefepime and ceftazidime (4×MIC = 32 mg/L) over the
first 72 h of antibiotic therapy [36,37]. Delattre and colleagues have recommended the use
of %fT≥4×MIC as the benchmark for beta-lactams [36]. In order to implement in vitro,
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animal, and clinical data regarding optimal beta-lactam PD targets, we tested %fT≥MIC
targets (1×MIC and 4×MIC) and 100%fT≥MIC in the present analysis.

Table 3. Adapted pharmacokinetic parameters used in Monte Carlo simulations [5].

Drug [Ref] Cefepime
[18–23]

Ceftazidime
[24–29]

Ertapenem
[5,30]

Imipenem
[5,30]

Meropenem
[5,30]

Piperacillin
[23,31–34]

Tazobactam
[23,33]

Vd (L/kg) 0.48 ± 0.24
(0.16–1.11)

0.34 ± 0.20
(0.13–1.1)

0.19 ± 0.07
(0.13–0.34)

0.34 ± 0.1
(0.21−0.63)

0.41 ± 0.18
(0.08−1.07)

0.40 ± 0.21
(0–1.11)

0.50 ± 0.37
(0–2.13)

Free Fraction 0.79 ± 0.09
(0.72–0.85)

0.86 ± 0.05
(0.75–0.94)

0.25 ± 0.45
(0−1)

0.8 ± 0.16
(0−1)

0.79 ± 0.09
(0−1)

0.76 ± 0.2
(0–1)

0.74 ± 0.27
(0–1)

NR CL (mL/min) 24.33 ± 11.25
(13–44)

15.9 ± 9.9
(8–37.7)

11 ± 3
(10−19)

100.5 ± 28
(53−160)

54.9 ± 49
(0−251)

48.5 ± 37
(0–187)

40.4 ± 70
(0–381)

Sieving coefficient 0.67 ± 0.13
(0–1)

0.85 ± 0.05
(0–1)

0.2 ± 0.06
(0−1)

0.57 ± 0.1
(0−1)

0.63 ± 0.13
(0−1)

0.6 ± 0.28
(0–1)

0.8 ± 0.36
(0–1)

r2 weight and Vd 0.4197 0.0237 0.3318 0.17 0.1435 0.0567 0.0049
r2 weight and NR CL 0.038 0.1254 0.1156 0.013 0.0072 0.036 0.0098

Weight ± SD (kg) Less intensive: 84.1 ± 18.9; Intensive: 84.1 ± 19.6
CRRT % delivered Less intensive: 0.95 ± 0.35 (0–1); Intensive: 0.89 ± 0.39 (0–1)

Qeff (mL/kg/h) Less intensive: 22 ± 6.1 (0–47.5) vs. Intensive: 35.8 ± 6.4 (0–47.5)
Qrep (L/h) Less intensive: 0.83 ± 0.25 (0.33–1.33); Intensive: 0.89 ± 0.39 (0–1)

All values are mean ± standard deviation (minimum–maximum limits). Abbreviations: CL = clearance; NR = nonrenal; r2 = correlation;
Vd = volume of distribution; Qeff = effluent flow rate; Qrep = replacement fluid rate.

4.3. Optimal Dosing Regimen

Drug dosing regimen was considered optimal if it reached a PTA of 90%, which is a
standard threshold in simulation studies [5,23,30,38]. This means the virtual patients will
achieve 90% of predetermined pharmacodynamic targets with simulated dosing regimens.
Antibiotic toxicity profiles were not analyzed in this experiment, as the threshold for
toxicity is poorly characterized [37,38].

4.4. Weight Quartile Analysis

The weight for 10,000 virtual subjects was limited to a minimum of 40 kg with no
maximum limit set. The 10,000 virtual patients were organized by body weight, and
their PTA analyses were divided into four quartiles. The lightest group was “Q1” (the
2500 virtual patients with the lowest weight) through the heaviest group called “Q4” (the
2500 virtual patients with the highest weight). Since there were 10,000 virtual subjects for
each drug and dosing regimen and each was modeled separately, the weights within each
quartile differ slightly between regimens.

5. Conclusions

Our post-hoc analysis shows that the patient’s weight influences antibiotic drugs’
pharmacodynamic target attainment related to antimicrobial efficacy. One-size-fits-all
dosing should not be applied to large critically ill patients who might be obese, fluid
overloaded, or both. This analysis does not include toxicity analysis but rather includes the
PTA for 10,000 virtual patients to achieve different pharmacodynamic targets. Thus, we
are not recommending any specific drug dosing regimen.
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