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Abstract: Environment and human mobility have been considered as two important factors that drive
the outbreak and transmission of dengue fever (DF). Most studies focus on the local environment
while neglecting environment of the places, especially epidemic areas that people came from or
traveled to. Commuting is a major form of interactions between places. Therefore, this research
generates commuting flows from mobile phone tracked data. Geographically weighted Poisson
regression (GWPR) and analysis of variance (ANOVA) are used to examine the effect of commuting
flows, especially those from/to epidemic areas, on DF in 2014 at the Jiedao level in Guangzhou. The
results suggest that (1) commuting flows from/to epidemic areas affect the transmission of DF; (2) such
effects vary in space; and (3) the spatial variation of the effects can be explained by the environment
of the epidemic areas that commuters commuted from/to. These findings have important policy
implications for making effective intervention strategies, especially when resources are limited.

Keywords: dengue fever; environment; commuting flow from/to epidemic areas; geographically
weighted Poisson regression (GWPR)

1. Introduction

Dengue fever (DF) is a vector-borne infectious disease that is mainly transmitted by Aedes
aegypti and Ae. Albopictus [1]. It has been the most rapidly spreading mosquito-borne disease
globally [2]. Nearly 4 billion people worldwide are at risk of DF, and 390 million people are infected
each year [3]. The cost of treatment and management during DF outbreak has brought a serious
economic burden for public health systems [4–6]. How to enhance prevention and control is an
important issue. Environments provide habitats for mosquito growth and influence virus replication.
The link between environments and DF diffusion has been discussed for decades. Previous studies have
shown that the meteorological environment, social–economic environment, and built environment
could facilitate local infections [7–15]. Due to the limited flight range of mosquitos, which is usually
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less than 400 m [16], human mobility is considered and proven to be another important driver for DF
transmissions [16–25]. Therefore, understanding human mobility is key to controlling the spread of
infectious diseases.

Human mobility is an important component of our daily life, whether commuting to work,
traveling on business, or carrying out other routine activities such as shopping or leisure [26]. Human
daily life is in a home-centered living space called the “daily life circle” [27–31]. In that daily life circle,
commuting is considered to be the most important daily activity and largely accounts for daily mobility.
With increased home–work separation caused by urban space expansion and suburbanization, urban
residents have taken longer commute trips than before [32–34], which makes commuters may have a
higher chance to be exposed to mosquitos, thus becoming susceptible to DF. When commuters acquire
DF infections in epidemic areas, they become important carriers of the virus on the journey to work.
A previous study [25] shows that there are two ways of disease transmission. First, people who live
in epidemic areas may bring the virus with them when they go to other places; second, people who
visit epidemic areas may become infected during their stay, carrying the virus back to their home.
Therefore, commuting flows from/to epidemic areas may have a great impact on disease transmission.
However, most studies about human mobility and DF are conducted at a large-scale (national scale
or cross-city scale) [24,25,35,36]. Small-scale intra-urban commuting flows, especially those from/to
epidemic areas, have rarely been addressed in the existing literatures. Mao [37] mapped the intra-urban
transmission risk of DF in Shenzhen with cellphone data, but did not pay attention to commuting
flows from/to epidemic areas. Examining the effect of commuting flows, especially from/to epidemic
areas, on the spread of DF at a finer granularity would be helpful in identifying high-risk areas for
effective prevention and intervention.

In addition, places can interact with each other through commuters’ travel. For example, the
probabilities of different commuters carrying the virus to the same workplace may be different
depending on where they live. Those who come from high-risk areas might have a greater chance
to affect the local disease outbreak [38]. Put differently, the concentration level of a disease at
a local environment might also be related to where the commuters come from and where they
residents commute. Unfortunately, previous studies mainly focus on the local environment while
neglecting environments of the places, especially epidemic areas that people came from or traveled
to [9,11–13,39–41]. In this study, the linkages between places are measured by the commuting flows
from/to epidemic areas, and the environments of epidemic areas that commuters commuted from/to
will be further examined. Specifically, this study seeks to answer the following three questions:

Question 1: Do commuting flows from/to epidemic areas impact DF distribution?
Question 2: If the answer to the first question is a YES, does the impact vary in space?
Question 3: If the answer to the second question is a YES, can the spatial variation be explained by the
environment of epidemic areas that commuters commuted from/to?

To answer these questions, this study selected Guangzhou, a Chinese city experiencing a large
outbreak of DF in 2014, as the study area. The number of DF cases in 2014 is 37,322, which is twice as
much as the total accumulated cases in the city since the first reported case in 1978 [42]. The result of
this study will greatly enhance our understanding of the DF transmission processes and help public
health officers prioritize the limited resources for target prevention in the high-risk areas.

2. Materials and Methods

2.1. Study Area and Data Collection

2.1.1. Study Area

The data for the present research were collected from Guangzhou, a city located in southeast China.
As the capital of Guangdong province, Guangzhou is one of the largest and most developed cities
in China, with a total population of over 15 million and a total area of about 7400 square kilometers.
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Guangzhou has a marine subtropical monsoon climate, and the temperature fluctuates between 15 and
32 ◦C. The study area is located in the southwest of the city, which is a highly developed area (Figure 1).
It comprises 143 Jiedaos (the smallest government administrative unit). The average size of these Jiedaos
is 22.39 km2 with a standard deviation of 40.35 km2.
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2.1.2. DF Outbreak in the Study Area

The DF case data were obtained from the China Information System for Disease Control and
Prevention. All data are anonymous without individual identifiable information and aggregated to the
Jiedaos level. According to the law of the People’s Republic of China on the prevention and treatment
of infectious diseases, all DF cases confirmed by any medical institution or hospital must be reported
to the surveillance system in the local area within one day [42]. According to the diagnostic criteria for
DF enacted by the Chinese Ministry of Health, a patient is considered as a confirmed case if the DF
virus RNA is detected in their serum using the real-time PCR or if immunoglobulin M (IgM) against
the DF virus is present [43]. During the outbreak in 2014, the first confirmed case was observed on 20
January, the epidemic peak with 1617 DF cases was observed on 1 October, and the last confirmed case
was on 19 December.

2.1.3. Commuting Flow with Mobile Phone Data

The tracked data of mobile phone users are used to measure human daily mobility in this study.
It is offered by one of the three major telecom companies in China, which has a market share of
22.5% [44]. The data contains hourly tracking information of the routes taken by the mobile phone
users on Wednesday, 28 December 2016, which is a quite formal weekday in Guangzhou. The same
tracked data has been used to measure human mobility [45]. To protect the privacy of the mobile
phone users, the dataset was desensitized by the telecom company. It includes each mobile phone’s
identity (ID) number, and for each hour, the location of the cell tower that is the nearest tower most of
the time during that hour. The dataset contains 10.2 cell tower hours/locations for each user on average.
Fifty percent of mobile phone users had more than seven cell tower hours/locations, and 20% of mobile
phone users have more than 20 cell tower hours/locations over the course of that day. The towers are
densely distributed in Guangzhou, with the mean nearest neighbor distance of 136.4 m and a standard
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deviance of 255.8 (min: 0.0; max: 5535.1). Each tower has a coverage area which is non-overlapping
Thiessen polygon. A mobile phone user is connected to a tower when entering the tower coverage area,
and the location of a tower will be recorded. The area of the largest tower coverage is smaller than that
of Jiedao with the smallest area. Each Jiedao have multiple cell towers so that the spatial precision of
individual location is good for the analysis at the Jiedao level.

Using the mobile phone trajectories, we first identified the location of the home and work of each
mobile phone user. Local users between 18 and 60 years old were selected. The location where a mobile
phone user spent the longest time during 21:00–07:00 was identified as their home, while the location
where the mobile phone user spent the longest time during 10:00–17:00 was identified as work place.
A commuting trip from home to work was identified as a general commuting flow in the study area. A
commuting trip that started from/ended in epidemic areas was defined as a commuting flow from/to
epidemic areas. Further, all general commuting trips were aggregated to the Jiedao level and into the
two categories, FlowIn and FlowOut, as shown in Table 1. Similarly, commuting flows from/to epidemic
areas were aggregated as EpiFlowIn and EpiFlowOut (Table 1). These four commute-related variables
represent the number of different types of commuters for any Jiedao. Compared to FlowIn/FlowOut,
EpiFlowIn/EpiFlowOut measures the commuting flows directly related to the epidemic areas in the
city. The four variables will be compared later in the regression models.

Table 1. Detailed description of variables.

Categories Variables Description

Commuting Flow Daily commuting flow

FlowIn The total numbers of commuters from other Jiedaos

FlowOut The total numbers of commuters to other Jiedaos

EpiFlowIn The total numbers of commuters from epidemic Jiedaos

EpiFlowOut The total numbers of commuters to epidemic Jiedaos

Local environment Jiedao’s local environment

Local_popdens Jiedao’s population density

Local_rioldhous Jiedao’s proportion of old houses (built before the 1990s)

Local_NDVI Jiedao’s normalized difference vegetation index

Local_riowater Jiedao’s proportion of water areas

Epidemic environment The environment of the epidemic Jiedaos that interact with
this local place through commuters

Epi_env_from The environment of the epidemic Jiedaos from which
commuters came (or “come-from” epidemic Jiedaos)

Epi_popdens_from The population density of the “come-from” epidemic Jiedaos

Epi_rioldhous_from The proportion of old houses of the “come-from” epidemic
Jiedaos

Epi_NDVI_from The normalized difference vegetation index of the
“come-from” epidemic Jiedaos

Epi_riowater_from The proportion of water areas of the “come-from” epidemic
Jiedaos

Epi_env_to The environment of epidemic Jiedaos to which commuters
traveled (or “go-to” epidemic Jiedaos)

Epi_popdens_to The population density of the “go-to” epidemic Jiedaos

Epi_rioldhous_to The proportion of old houses of the “go-to” epidemic Jiedaos

Epi_NDVI_to The normalized difference vegetation index of the “go-to”
epidemic Jiedaos

Epi_riowater_to The proportion of water areas of the “go-to” epidemic Jiedaos
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2.1.4. Environment Indicators

Previous studies have shown that population density [9,46], housing quality [10], vegetation [10,13],
and water areas [47] can contribute to DF diffusion. Here, we used the proportion of the houses built
before the 1990s to represent poor housing conditions. Both population data and housing data are
from the sixth National Population Census. Vegetation is measured by the normalized difference
vegetation index (NDVI). The original 30-m image dataset of NDVI was obtained from Landsat-8
and provided by the Geospatial Data Cloud site, the Computer Network Information Center, and
the Chinese Academy of Sciences (http://www.gscloud.cn). The water body data was extracted from
OpenStreetMap. The above four environment indicators were further calculated as local environment
indicators and epidemic environment indicators. For one Jiedao, its local environment refers to its own
environment, while its epidemic environment refers to the environment of the epidemic areas that
interact with this local place through commuters. Further, we distinguished outbound commuters
who traveled to epidemic areas from inbound commuters who came from epidemic areas. Therefore,
each Jiedao has two types of epidemic environments: Epi_env_from and Epi_env_to (see Equations (1)
and (2)):

Epi_env_ f rom(i) =

∑m
k

[
EpiFlowIn(ik) ∗ local_env(k)

]
EpiFlowIn(i)

(1)

Epi_env_to(i) =

∑m
k

[
EpiFlowOut(ik) ∗ local_env(k)

]
EpiFlowOut(i)

(2)

In the above equations, Epi_env_ f rom(i) means the environment of the epidemic areas from which
commuters came (or “come-from” epidemic areas) for Jiedao i; Epi_env_to(i) means the environment of
epidemic areas to which commuters traveled (or “go-to” epidemic areas) for Jiedao i. m is the total
numbers of epidemic Jiedaos. EpiFlowinik means the numbers of commuters from epidemic Jiedao k to
the Jiedao i. EpiFlowOutik means the numbers of commuters from Jiedao i to epidemic Jiedao k. local_envk
means the local environments of epidemic Jiedao k, which were further measured by population density,
housing quality, NDVI, and water areas. All the variables used in this study are listed in Table 1.

2.2. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis with the global Moran’s I statistics is commonly used to analyze
whether an observed spatial pattern, such as a spatial clustering, is formed due to chance. The
values of Moran’s I would be approximately between +1 (positive autocorrelation) and −1 (negative
autocorrelation). Positive spatial autocorrelation means that similar values tended to occur in adjacent
areas, while negative autocorrelation implies that nearby locations tend to have dissimilar values.
Its local version—the Local Moran’s I statistic [48]—maps local clusters and outliers. Based on the
local Moran’s I, a geographic area can be classified into five categories: high-high, low-low, high-low,
low-high, and non-significant. The high-high areas in this study are defined as epidemic areas.

2.3. Geographically Weighted Poisson Regression (GWPR)

The traditional regression model (ordinary least square, OLS) is not applicable to spatial data if
spatial autocorrelation exits between independent variables. The geographically weighted regression
model (GWR) is a modeling technique that reveals the spatial heterogeneity among the independent and
dependent variables, allowing the estimation of the regression coefficient to vary with location [49–51].
It has been widely used in disease mapping [46,52–54]. GWR is originally developed assuming a
Gaussian distribution of the dependent variable, so it cannot be applied for count data such as DF
cases. Poisson regression model is a standard model for multivariate analysis with count variables [55].
Compared with the general Poisson regression model, the geographically weighted Poisson regression
(GWPR) not only quantifies the count variables with spatial location attributes, but also detects
non-stationary relationships between the variables. By examining the spatial distributions of the

http://www.gscloud.cn
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coefficients, we can gain a better understanding of the spatial heterogeneity of the spatial processes [56].
Therefore, GWPR is considered as a suitable model for this research. The following was the equation:

ln(Ai) = ln(Pi) + β0(ui, vi) +

p∑
k=1

βk(ui, vi)Xik + ε. (3)

In the equation, Ai is the amount of DF cases of Jiedao i; Pi is the population at risk of Jiedao i;
(ui, vi) is the coordinate of Jiedao i; βk is the coefficient of the Jiedao k. explanatory variable in Jiedao i,
and it is a function changed by location.

In this study, five models are constructed by GWPR in order to test whether and to what extent the
commuting flows from/to epidemic areas affect the spread of DF. Model 1 only considers four control
variables. Model 2 includes FlowIn besides the four control variables. Model 3 replaces FlowIn with
FlowOut. Models 4 and 5 include EpiFlowIn or EpiFlowOut besides the four control variables. At last,
analysis of variance (ANOVA) is used to examine whether the environment of epidemic areas could
explain the spatial variation of the commuting flows from/to epidemic areas.

3. Results

3.1. Exploratory Analysis

The distribution of DF in Guangzhou in 2014 is shown in Figure 2. The DF in Guangzhou mainly
cluster in the conjunction of Baiyun, Tianhe, Yuexiu, Liwan, and Haizhu. The value of the global
Moran’s I test for DF is 0.17 with p < 0.001, indicating that there is a significant spatial clustering of
DF in Guangzhou. Then epidemic areas (high-high clusters with p < 0.001) are detected by the local
Moran’s I and are shown in red in Figure 2b.
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Figure 2. Distribution and cluster analysis of dengue fever in Guangzhou in 2014. (a) The spatial
distribution of the dengue fever rate; (b) epidemic areas identified by local Moran’s I.

Table 2 shows the descriptive statistics of the variables used in the regression models. The number
of DF cases vary from 0 to 1445, with a mean value of 255 and standard deviance of 258. Commuting
flows vary greatly among different Jiedaos. The spatial distributions of commuting flows are mapped
in Figure 3. The darker the color, the larger the commuting flows. FlowIn (Figure 3a) and FlowOut
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(Figure 3b) have a very similar pattern. There are several high general commuting flow areas in the
north part, in the central part, and in the south part (Figure 3a,b). While compared to commuting flow,
epidemic flows are mainly concentrated in the surrounding areas of the epidemic area (Figure 3c,d).

Table 2. Descriptive statistics of variables. DF: dengue fever.

Categories Variable Min Max Mean Std

Dependent variable DF cases 0 1445 255 258

Independent variables

FlowIn 408 87,067 13,391 13,535
FlowOut 197 89,266 13,391 14,293

EpiFlowIn 45 78,970 3038 8198
EpiFlowOut 29 79,653 2867 8398

Control variables

local_popdens (10,000 people/km2) 0.01 8.43 1.96 2.09
local_rioldhous (%) 0.71 80.19 29.20 21.48

local_NDVI 0.036 0.284 0.123 0.556
local_riowater (%) 0.00 46.25 6.79 8.83
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3.2. GWPR Results

Before GWPR, four control variables and the commuting flow are put into Poisson regression. The
result of Poisson regression shows that all the variables are significant with p < 0.05 and the Moran’s I
test of residuals is nearly 0.2 with p < 0.001, indicating that there is a significant spatial clustering and
GWPR is suitable. AIC (Akaike Information Criterion) and percent deviance explained are considered
as two important indicators for GWPR model fitness. A model with a lower AIC and a higher percent
deviance explained is considered to be better. Table 3 compares the model fitness of the five models.

Table 3. Geographically weighted Poisson regression (GWPR) model results.

Models Variables Percent Deviance Explained AIC

Model 1 Four control variables 0.6702 7781.21
Model 2 Four control variables, FlowIn 0.7028 7029.15
Model 3 Four control variables, FlowOut 0.7091 6881.03
Model 4 Four control variables, EpiFlowIn 0.7437 6066.15
Model 5 Four control variables, EpiFlowOut 0.7523 5864.58

Notes: Four control variables include: local_popdens, local_rioldhous, local_NDVI, local_riowater.

First, the null model (Model 1) that only contains the control variables is applied to examine to
what extent DF can be explained only by the local environments. Then, the commuting flows are
considered into Model 2 and Model 3 in addition to the control variables. The result shows that the
percent deviance explained increases by 3% from 0.67 to 0.7, and the AIC declines by 752/900 from
7781 to 7029/6881. After the commuting flows from/to the epidemic areas were included into Model 4
and Model 5, the percent deviance explained increases by 4% or 5% from 0.7 to 0.74/0.75, and the AIC
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reduced more (from 7029/6881 to 6066/5864). The results of Model 4 and Model 5 demonstrate a better
model fitness, indicating that the commuting flows from/to epidemic areas has a better explanatory
power in DF transmission than general commuting flows. The results of the five models answer
Question 1.

The impacts of the commuting flows from/to epidemic areas on DF are summarized in Table 4
and mapped in Figure 4. Table 4 shows that the mean value of standardized coefficient for Epiflowin
is 0.647 and the median value is 0.727, which is greater than the other coefficients (local_popdens,
local_rioldhous, local_NDVI, local_riowater). Similarly, the mean value of the standardized coefficient
for EpiFlowout is 0.977, and the median value is 0.842, which is far greater than the other coefficients.
This again demonstrates that the commuting flows from/to epidemic Jiedao play an extremely important
role in explaining DF outbreak (Question 1). Figure 4 shows that the impacts of commuting epidemic
flows on DF are not homogeneous; they vary in space. However, the effects are stronger in the south
and weaker in the north. This finding answers Question 2.

Table 4. The coefficients of Model 4 and Model 5.

Models Variable Mean Median Min Max Std

Model 4

Pop_density 0.0695 0.0336 −0.7449 1.1678 0.3648
Rio_oldhouse 0.0727 0.1905 −1.4327 0.5583 0.3500

NDVI −0.0807 −0.1155 −0.6141 0.5604 0.1978
Rio_water 0.0925 0.0724 −0.2849 1.4412 0.2249
EpiFlowin 0.6479 0.7273 −0.3482 2.3390 0.5005

Model 5

Pop_density 0.0564 0.0361 −0.7548 1.1754 0.3696
Rio_oldhouse 0.1027 0.2267 −1.4238 0.5921 0.3540

NDVI −0.0838 −0.0944 −0.6153 0.5648 0.2001
Rio_water 0.0828 0.0553 −0.2789 1.4033 0.2218

EpiFlowout 0.9775 0.8430 −0.0385 5.1149 0.8904
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Why does the effect vary in space? Since the local environmental factors have been controlled,
the main reason for the strong or weak effect may be related to two types of epidemic environments
(Epi_env_from and Epi_env_to). To test this assumption, the coefficients of EpiFlowIn and EpiFlowOut
are classified into four groups by geometrical interval in ArcGIS 10.3 (Esri, RedLands, CA, USA )
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(Figure 4) and ANOVA is applied to find the difference of two types of epidemic environments among
four groups. The analysis result is provided in the following section.

3.3. ANOVA Results

The mean Epi_env_from value of each group is shown in Table 5. Group 3 of EpiFlowIn has the
strongest significant effect (1.219), while Group 1 has the weakest significant effect (0.144). Among
the four groups, Group 3 ranks first in Epi_liv_popdens, Epi_liv_rioldhous, and Epi_liv_riowater,
while it ranks last in Epi_liv_NDVI, indicating the inbound commuters of Group 3 who live in highly
populated epidemic areas with poor housing conditions and more water surfaces and less vegetation.
Obviously, the inbound commuters of Group 3 are more likely to be infected at home; thus, it is easy
for them to bring the virus out when they go to work.

Table 5. The mean value of “Epi_env_ f rom” of each group.

Group β-EpiFlowIn Epi_popdens_from Epi_rioldhous_from Epi_NDVI_from Epi_riowater_from

0 No significance 1.6965 * 18.1868 * 0.0993 * 7.8068 *
1 0.144 1.6510 * 18.9830 * 0.1053 * 4.8462 *
2 0.7083 1.8057 * 23.1628 * 0.0975 * 8.7734 *
3 1.2198 2.3743 32.655 0.0885 10.728

* The mean difference of each group compared with Group 3 is significant at the 0.05 level.

The mean Epi_env_to value of each group is shown in Table 6. A very similar pattern is observed
when compared to Table 5. Among four groups, Group 3 have the strongest effect (1.829), while Group
1 has the weakest significant effect (0.0606). The local commuters of Group 3 who work in highly
populated epidemic areas with poor housing conditions and more water surfaces and less vegetation
are more likely to be infected at the work place and bring the virus back home. The result of Tables 5
and 6 answer Question 3.

Table 6. The mean value of “Epi_env_to” for each group.

Group β-EpiFlowout Epi_popdens_to Epi_rioldhous_to Epi_NDVI_to Epi_riowater_to

0 Nosignificance 1.9231 * 7.7114 * 0.0973 * 7.8192
1 0.0606 1.6194 * 22.3415 * 0.1037 * 3.6239 *
2 0.7232 2.1908 * 27.0545 * 0.0947 * 8.4258
3 1.8289 2.7388 39.1045 0.0866 10.3737

* The mean difference of each group compared with Group 3 is significant at the 0.05 level.

4. Discussion

Human mobility and environment have been considered as two important factors that drive
the outbreak and transmission of DF. Since commuting is considered to be the main travel for urban
residents, commuters provide many opportunities for the spread of infectious diseases via mosquitos’
contact. This study examines the effect of the environment and commuting flows from/to epidemic
areas on the spread of DF in 2014 at the Jiedao level in Guangzhou by using GWPR and ANOVA.

The analytical results suggest that intra-urban commuting flows from/to epidemic Jiedaos have a
significant impact on DF diffusion and have a better explanatory power than general commuting flows
in DF diffusion. An unexpected finding is that the effect of commuting flows from/to epidemic areas
was much greater than the local environmental indicators such as population density, old housing
conditions, NDVI, and water areas (Table 4). This finding suggests that intra-urban commuting
flows from/to epidemic Jiedaos would be the main source of DF diffusion. Similar findings were also
found in a few previous studies. One is Wen’s study [18], where the author compared commuting
and non-commuting DF cases in Tainan City of Taiwan and found that commuting was identified
as a significant risk factor contributing to epidemic diffusion. Another recent study conducted by
Huang [57] used weekday commuting network to construct an algorithm to analyze the diffusion of
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two infectious diseases in Taiwan, and the result suggested the availability of the commuting network
in predicting epidemic diseases. Besides, Rajarethinam [17] conducted a study about Zika epidemic
in Singapore using mobile phone data and found that there were higher odds of Zika cases being
reported in the areas that were visited by people from epidemic clusters.

Besides the effects of commuting flows from/to epidemic areas, this study demonstrates that the
effects vary in space and comes up with the reasons for spatial heterogeneity by using ANOVA. The
results suggest that the environments of the related epidemic areas contribute to infection diffusion
through the move of the commuters. The results show that the Jiedaos whose commuters commuted
to/from the epidemic areas that have higher population densities, older buildings, more water surfaces,
and less vegetation coverage tend to be more influenced by the commuting flows than the Jiedaos whose
commuters commuted to/from the epidemic areas with better conditions. Commuters in environments
where mosquitos easily breed are more likely to be infected and bring the virus out when they commute
to work or back home. Commuting flow is similar to a “bridge” linking other places to a local place
and facilitating the interaction between places. The results suggest that the environment of other places
in the “bridge”, especially epidemic Jiedaos, could be an important cause of local infection. In contrast,
previous studies mainly focused on the local environment [11–13,39–41] but neglected environments
of the places, especially epidemic areas that commuters commuted from/to. This study bridges the
gap and suggests that the living and working environment of commuters contribute to the source
of infection diffusion. One recent study also demonstrates that an individual may often be infected
at their home or other places where they spend significant amounts of time, such as their place of
work, and homes and work places were suggested as possible transmission sources [58]. This finding
suggests that the health management officers should pay attention to commute-related environments
when combating a DF outbreak in a local place.

In a word, the findings from this study show us more insights into DF spread and help us better
understand the transmission pattern of the disease, which provides useful guidance for targeted
control strategies. In the past, DF control mainly relied on mosquito elimination and environmental
management. Once an outbreak occurs, large-scale larval habitat elimination or campaigns using
administrative boundaries as spatial units were carried out. This approach is time-consuming and less
effective. Our results provide targeted strategies of interventions. For example, we would suggest that
the spatial targeting should focus on the living and working environments of commuters. This helps
us narrow the scope of the control and improve the effective control under limited resources for future
outbreaks both in China and elsewhere.

However, this study has some limitations. First, meteorological indicators such as temperature,
precipitation, and humidity were not included in this study. However, at a city scale (intra-urban),
the meteorological difference among Jidaos was little and could be ignored. Second, the time when
the mobile phone data were collected is not consistent with the onset of DF. We assumed that human
daily commuting patterns do not change much from 2014 to 2016. Third, the spatial scale chosen at the
Jiedao level is due to the limit of data availability; a finer-grained dataset may be expected in the future
research. Last, the behavior of mosquitos was ignored, and mosquitos’ density was not included in the
analysis. There were few mosquito monitoring sites in Guangzhou in 2014. We assumed that vector
density was even and the exposure to mosquitos was the same in each area of the city. In fact, even if
human mobility was high, the probability of DF transmission caused by population mobility will be
greatly reduced if the exposure to mosqutios was low or the density of mosqutios was low. In future
studies, more risk factors and other routine activity places such as shopping or leisure places were
expected to be taken into account in order for better understanding the spread of DF.

5. Conclusions

This study illustrates the impact of intra-urban daily commuting flow, especially those from/to
epidemic areas, on DF transmission. The results suggest that (1) commuting flows from/to epidemic
areas affect the transmission of DF; (2) such effects vary in space; and (3) the spatial variation of the
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effects can be explained by the environments of the epidemic areas that commuters commuted from/to.
Health management officers should pay attention to commute-related environments when combating
a DF outbreak in a local place. These findings have important policy implications for making effective
intervention strategies, especially when resources are limited.
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