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Abstract: Fusion genes are structural chromosomal rearrangements resulting in the exchange of DNA
sequences between genes. This results in the formation of a new combined gene. They have been
implicated in carcinogenesis in a number of different cancers, though they have been understudied
in high grade serous ovarian cancer. This study used high throughput tools to compare the transcrip-
tome of high grade serous ovarian cancer and normal fallopian tubes in the interest of identifying
unique fusion transcripts within each group. Indeed, we found that there were significantly more
fusion transcripts in the cancer samples relative to the normal fallopian tubes. Following this, the
role of fusion transcripts in chemo-response and overall survival was investigated. This led to the
identification of fusion transcripts significantly associated with overall survival. Validation was
performed with different analytical platforms and different algorithms to find fusion transcripts.

Keywords: fusion genes; fusion transcripts; high grade serous ovarian cancer; whole transcrip-
tome sequencing

1. Introduction

Though much effort has been invested in defining the biology and natural history of
ovarian cancer, standard treatment and prognosis has not changed much since the addition
of platinum based chemotherapy [1]. A notable exception is a subset of ovarian cancer
patients with deficiencies in DNA repair who have enjoyed new targeted therapies with
significant gains in progression free survival [2–5]. However, for as many as 50% of patients,
the biology of their disease is not completely clear and has not yet been targetable [6]. The
Cancer Genome Atlas (TCGA) made great strides in defining the genomic profile of high
grade serous ovarian cancers. However, beyond and/or because of a high preponderance
of TP53 mutations and homologous recombination deficiency, the genomic profile was
marked by disarray, especially in contrast with other cancer types, such as glioblastoma
multiforme [6]. As such, it is necessary to expand the repertoire of examined genomic
features in high grade serous ovarian cancer. Fusion genes represent an understudied
genomic feature of high grade serous ovarian cancer.

A fusion gene is a structural chromosomal rearrangement resulting in the exchange
of DNA sequences between genes. This results in the formation of a new combined
gene. Fusion genes have been implicated in carcinogenesis since the early 1980s. At that
time, banding techniques allowed for chromosomal analysis of tumors, which led to the
discovery of BCR-ABL1 as a recurrent structural chromosomal rearrangement implicated
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in chronic myeloid leukemia (CML) [7]. This then allowed for an exceptionally successful
targeted therapy, Imatanib. Until recently, fusion gene identification was biased towards
interchromosomal rearrangements due to (1) the difficulty of culturing cells at a specific
phase in the cell cycle and (2) differentiating genomic “noise” from pathogenetically
important aberrations. However, modern high-throughput tools allow investigators to
perform genomic analyses with enough granularity to identify significantly more fusion
genes in cancers, including solid tumors. Deep sequencing technology permits even greater
granularity, such that subtle intrachromosomal rearrangements can now be identified [7],
and constantly advancing bioinformatic techniques aid investigators in differentiating
“noise” from pathogenic rearrangements [8]. Examples of fusion genes discovered with the
help of modern genomics include: the TMPRSS2-ERG in prostate cancer [9], RET-CCDC6
in thyroid carcinoma [10], and EML4-ALK in non-small cell lung cancer (NSCLC) [11].
Remarkably, fusion genes such as NTRK fusion genes have also been identified as driver
mutations in a variety of different adult and pediatric cancers, and “tumor agnostic”
therapies targeting these fusion genes have resulted in impressive treatment responses in
phase I and II clinical trials [12].

Similar work has started with ovarian cancer. Indeed, genetic rearrangement has been
identified as a mechanism of tumor suppressor inactivation in ovarian cancer. Genomic
rearrangement may result in the formation of fusion genes [13]. Investigators have recently
begun utilizing deep sequencing to improve upon previous work done using guided tech-
niques [13–15]. This work has led to the identification of gene fusions in NRG1 and ABCB1,
the latter of which was specifically identified in pre-treated and drug-resistant specimens.
This work suggests that fusion genes do play some role in the pathogenesis high grade
serous ovarian cancer, recurrence, and/or adaptive drug resistance [15,16]. Because the
most significant morbidity of ovarian cancer lies in drug-resistant recurrences following
heavy pre-treatment, analyzing tumor genomics in the context of clinical outcomes, such
as survival and chemo-response is crucial. As such, most ovarian cancer fusion gene work
has focused on this subset of poor-prognosis, heavily pre-treated, and chemo-resistant
ovarian cancer patients, but some clues may lie within treatment-naïve primary presen-
tations. Indeed, there may even be some clues within pathologically normal fallopian
tubes themselves.

Our hypothesis is that fusion genes are part of the genomic rearrangements which
occur in ovarian cancer. This study aims to assess differences between fusion transcripts’
presence in primary high-grade serous ovarian cancer (HGSC) and normal fallopian tube
samples. We then determine whether these fusion transcripts are associated with clinical
outcomes, specifically survival and response to chemotherapy. In this manuscript, “fusion
transcript” refers to the sum formation of two partner transcripts.

2. Results
2.1. Fusion Transcript Differences between Fallopian Tube and HGSC Samples

A total of 597 fusion transcripts were identified within all samples (Figure 1).
Supplementary Table S1 details all fusion transcripts observed in tubal and HGSC samples,
as well as their position in chromosomal references. We found more fusion transcripts
in HGSC samples (Figure 1E). On average, there were 6.59 fusion transcripts present in
each cancer sample and 3.08 in tubal samples (chi-square p < 0.001). Figure 1A shows
both components of the fused transcript in a circular chromosomal representation. In the
univariate analysis, there were 3 fusion transcripts with significant different frequencies be-
tween fallopian tube and HGSC samples: AL391840.3—SH3BGRL2, AL445985.1—SPATA13,
and PFKFB3—LNC02649 (Figure 1B). These were all intrachromosomal rearrangements,
and the fusion transcripts in the normal fallopian tubes were significantly shorter than
those found in HGSC samples. Supplementary Table S2. AL391840.3—SH3BGRL2 is found
on chromosome 6, AL445985.1—SPATA13 is found on chromosome 13, and PFKFB3—
LNC02649 is found on chromosome 10. Notably, all these fusion transcripts were found
less frequently in HGSC samples than in tubes (Figure 1C). In a multivariate analysis,
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AL391840.3—SH3BGRL2 was the only fusion transcript independently associated with
HGSC (Figure 1D).
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SH3BGRL2 remained significant. (E) Heatmap representing HGSC and tubal samples (columns) with more differences in 
fusion transcript expression (p ≤ 0.1) in the analysis. In rows, presence (blue) or absence (grey) of fusion transcripts. The 
right of the panel contains two bar plots with the percentage of samples expressing these transcripts: blue represents HGSC 
samples, red represent normal tubes. Notice the scale of both bar plots: the percentage of these fusion transcripts found in 
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more than half of the time. 

2.2. Prediction Model of HGSC Using Fusion Transcript Data 
The fusion transcript HGSC prediction model included 5 different fusion transcripts. 

The performance of that model, measured in AUC, was 95%, with a 95% CI of 92%, 98% 
(Figure 2). All identified fusion transcripts in the model were decreased in cancer samples 
relative to normal tube (Figure 2C).  

Figure 1. Fusion transcript differences between HGSC and normal fallopian tubes. (A). Circular chromosome representation
of both components of the fused transcript; red: fusion of two transcripts within a chromosome (intrachromosomic);
blue: fusion of two transcripts within a chromosome (interchromosomic). Due to space limitation, only unique fusion
transcripts are depicted, and we omitted duplicated fusion transcripts. All names are not represented, but all connections
are. (B) Fusion transcripts with different frequency between HGSC and tubal samples. Odds Ratio, p-value and location of
the break are represented. (C) Frequencies of the 3 significant fusion transcripts in HGSC and tubal samples. The horizontal
axis represents the frequency of these fusion transcripts in HGSC and tubal samples. Notably, these significant fusion
transcripts are decreased in HGSC. Odds ratio, p value, and standard error for each transcript included. (D) Multivariate
analysis comparing frequencies of fusion transcripts between HGSC and tubal samples: only AL391840.3—SH3BGRL2
remained significant. (E) Heatmap representing HGSC and tubal samples (columns) with more differences in fusion
transcript expression (p ≤ 0.1) in the analysis. In rows, presence (blue) or absence (grey) of fusion transcripts. The right
of the panel contains two bar plots with the percentage of samples expressing these transcripts: blue represents HGSC
samples, red represent normal tubes. Notice the scale of both bar plots: the percentage of these fusion transcripts found in
HGSC samples (blue) is below 10%, while the percentage of these transcripts found in tubal samples (red) is over 15% more
than half of the time.

2.2. Prediction Model of HGSC Using Fusion Transcript Data

The fusion transcript HGSC prediction model included 5 different fusion transcripts.
The performance of that model, measured in AUC, was 95%, with a 95% CI of 92%, 98%
(Figure 2). All identified fusion transcripts in the model were decreased in cancer samples
relative to normal tube (Figure 2C).
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value used to optimize model construction. As detailed in methods, we performed 1000 bootstrap replicates to find the 
most adequate λ. (B) The best model with 5 fusion transcripts had an AUC of 95% with a 95% CI of 92%, 98%. (C) Fusion 
transcripts included in the model with their OR (HGSC vs. tube). 
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disease in the upper abdomen diagnosed by imaging studies, and treatment with neoad-
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ated with survival (p-value = 0.015, Figure 3A).  

In the univariate analysis of fusion transcripts associated with survival, 44 fusion 
transcripts found within the ovarian cancer cohort were found to be statistically signifi-
cant at p-value < 0.05 (Supplementary Table S3, Appendix A). Of the significant fusion 
transcripts in the univariate analysis, 10 remained independently significant in the sur-
vival multivariate analysis with Cox proportional Hazard ratio (Figure 3B, Appendix A). 

In the integrative multivariate model that combined independently significant clini-
cal and fusion transcripts variables, all variables remained significantly associated with 
survival (Figure 3C). Of the fusion transcripts found to be significantly associated with 
overall survival, the direction of association was towards worse overall survival. Notably, 
there were two fusion transcripts with a huge association: ZBTB8OS—AC090627.1 was 
found to be over 1000 times more associated with worse survival, and fusion transcripts 
ARL17A—KANSL1 was over 400 times more associated with worse survival. ZBTB8OS—

Figure 2. Prediction of HGSC with fusion transcripts from HGSC and tubal samples. (A) Model including all fusion
transcripts. The best models are located in between the vertical dotted lines. Those will include between 2 and 25 fusion
transcripts. The vertical axis represents the resulting AUC of the model with their 95% CI. The lower axis is the log of the λ,
value used to optimize model construction. As detailed in methods, we performed 1000 bootstrap replicates to find the
most adequate λ. (B) The best model with 5 fusion transcripts had an AUC of 95% with a 95% CI of 92%, 98%. (C) Fusion
transcripts included in the model with their OR (HGSC vs. tube).

2.3. Association of Fusion Transcripts with Overall Survival

In the univariate analysis of baseline clinical variables, Charlson Comorbidity Index,
disease in the upper abdomen diagnosed by imaging studies, and treatment with neoadju-
vant chemotherapy were significantly associated with survival (Table 1). In the multivariate
analysis, neoadjuvant chemotherapy was the only variable independently associated with
survival (p-value = 0.015, Figure 3A).
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Table 1. Validation of fusion transcript detection with FusionCatcher: These fusion transcripts found to be significant in
the univariate analysis of survival were also observed with FusionCatcher. C statistics were performed to assess degree of
concordance between both method, STAR-Fusion and FusionCatcher, for the 31 fusion transcripts detected with FusionCatcher
alone. AUC: area under the curve; NPV: negative predictive value; PPV: positive predictive value.

FusionCatcher AUC Specificity Accuracy NPV PPV

AP3D1–ARHGDIA 1 1 0.998 0.998 1

ARHGAP1–CKAP5 1 1 0.998 0.998 1

ARL17A–KANSL1 0.55 0.22 0.321 0.844 0.175

BTBD10–TEAD1 1 1 0.998 0.998 1

CC2D1A–CPNE8 1 1 0.998 0.998 1

CHTOP–PCAT1 1 1 0.998 0.998 1

DOT1L–GCGR 1 1 0.998 0.998 1

FAM20C–AC093627.4 1 1 0.998 0.998 1

FAM98B–FRMD5 1 1 0.998 0.998 1

FBXO34–SORCS3 1 1 0.998 0.998 1

GRIN2A–C16ORF72 1 1 0.998 0.998 1

INPP5B–PLEKHO1 1 1 0.998 0.998 1

LUC7L–AXIN1 1 1 0.998 0.998 1

MAGED2–ZFAT 1 1 0.998 0.998 1

MECOM–AC116337.3 1 1 0.998 0.998 1

NFE2L1–PNPO 1 1 0.998 0.998 1

NFKBIB–TEAD1 1 1 0.998 0.998 1

NRIP1–AJ009632.2 1 1 0.998 0.998 1

PACS1–HAUS3 1 1 0.998 0.998 1

PCAT1–C1ORF210 1 1 0.998 0.998 1

PGM2L1–POLD3 1 1 0.998 0.998 1

PSPC1–ZMYM5 0.50 0.20 0.231 0.948 0.052

RB1CC1–LINC02091 1 1 0.998 0.998 1

SMARCA4–ZNF700 1 1 0.998 0.998 1

TMCC1–CD96 1 1 0.998 0.998 1

TOGARAM1–FANCM 1 1 0.998 0.998 1

TRAPPC3–MAP7D1 1 1 0.998 0.998 1

TRMT1–CPA4 1 1 0.998 0.998 1

UBA2–RAD51B 1 1 0.998 0.998 1

UBE2F–LRRFIP1 1 1 0.998 0.998 1

ZNF609–SNX1 1 1 0.998 0.998 1



Int. J. Mol. Sci. 2021, 22, 4791 6 of 20

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 20 
 

 

AC090627.1 is an inter-chromosomal fusion transcript between chromosomes 1 and 17, 
and ARL17A—KANSL1 is an intra-chromosomal fusion transcript on chromosome 17.  

 
Figure 3. Association of fusion transcripts with survival. (A) In the multivariate analysis of survival for clinical variables, 
only neoadjuvant chemotherapy was significant. Representation of Kaplan–Meier survival curves between HGSC patients 
who received neoadjuvant chemotherapy vs. those that did not. p-value of the differences and median survivals are also 
shown (B) Circular chromosome representation of both components of the fused transcript; red: fusion of two transcripts 
within a chromosome (intrachromosomic); blue: fusion of two transcripts within a chromosome (interchromosomic). The 
width of the connecting line is in proportion of the number of reads observed for that particular fusion transcript: 37 reads 
observed in the patient with CC2D1A--CPNE8 fusion and 15 for NRIP1--AJ009632.2. (C) Forest plot of the integrative mul-
tivariate model of survival that combined both independent significant clinical variables and fusion transcripts. All sig-
nificant variables increased the risk of death by disease. N: number of HGSC patients with fusion transcripts; Median: 
median survival in months; HR: Hazard Ratio; CI: Confidence interval. 

2.4. Association of Fusion Transcripts with Chemo-Response 
Clinical variables associated with chemo-response included: age, Charlson Comor-

bidity index, residual disease after surgery (optimal versus suboptimal debulking), and 
receipt of neoadjuvant chemotherapy. In the multivariate analysis, three variables were 
found to be independently significant: age, residual disease after surgery, and receipt of 
neoadjuvant chemotherapy (Figure 4A,B). No fusion transcript was significantly associ-
ated with chemo-response. The number of fusion transcripts was not significantly differ-
ent between responders and non-responders (Figure 4C).  

Figure 3. Association of fusion transcripts with survival. (A) In the multivariate analysis of survival for clinical variables,
only neoadjuvant chemotherapy was significant. Representation of Kaplan–Meier survival curves between HGSC patients
who received neoadjuvant chemotherapy vs. those that did not. p-value of the differences and median survivals are also
shown (B) Circular chromosome representation of both components of the fused transcript; red: fusion of two transcripts
within a chromosome (intrachromosomic); blue: fusion of two transcripts within a chromosome (interchromosomic). The
width of the connecting line is in proportion of the number of reads observed for that particular fusion transcript: 37 reads
observed in the patient with CC2D1A–CPNE8 fusion and 15 for NRIP1–AJ009632.2. (C) Forest plot of the integrative
multivariate model of survival that combined both independent significant clinical variables and fusion transcripts. All
significant variables increased the risk of death by disease. N: number of HGSC patients with fusion transcripts; Median:
median survival in months; HR: Hazard Ratio; CI: Confidence interval.

In the univariate analysis of fusion transcripts associated with survival, 44 fusion
transcripts found within the ovarian cancer cohort were found to be statistically significant
at p-value < 0.05 (Supplementary Table S3, Appendix A). Of the significant fusion tran-
scripts in the univariate analysis, 10 remained independently significant in the survival
multivariate analysis with Cox proportional Hazard ratio (Figure 3B, Appendix A).

In the integrative multivariate model that combined independently significant clini-
cal and fusion transcripts variables, all variables remained significantly associated with
survival (Figure 3C). Of the fusion transcripts found to be significantly associated with
overall survival, the direction of association was towards worse overall survival. Notably,
there were two fusion transcripts with a huge association: ZBTB8OS—AC090627.1 was
found to be over 1000 times more associated with worse survival, and fusion transcripts
ARL17A—KANSL1 was over 400 times more associated with worse survival. ZBTB8OS—
AC090627.1 is an inter-chromosomal fusion transcript between chromosomes 1 and 17, and
ARL17A—KANSL1 is an intra-chromosomal fusion transcript on chromosome 17.
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2.4. Association of Fusion Transcripts with Chemo-Response

Clinical variables associated with chemo-response included: age, Charlson Comor-
bidity index, residual disease after surgery (optimal versus suboptimal debulking), and
receipt of neoadjuvant chemotherapy. In the multivariate analysis, three variables were
found to be independently significant: age, residual disease after surgery, and receipt of
neoadjuvant chemotherapy (Figure 4A,B). No fusion transcript was significantly associated
with chemo-response. The number of fusion transcripts was not significantly different
between responders and non-responders (Figure 4C).
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tion of the multivariate analysis of survival (p < 0.05): FAM98B--FRMD5 and NRIP1--
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Figure 4. Association of fusion transcripts with chemo-response. (A) In the multivariate analysis, chemo-response was
significantly associated with age, optimal surgery, and neoadjuvant chemotherapy. (B) Optimal cytoreduction is associated
with better response to chemotherapy. The other two (age and neoadjuvant therapy) are associated with worse response to
chemotherapy. (C) Heatmap representing responder and non-responder samples (columns) with more differences in fusion
transcript expression (top 20) in the analysis. In rows, presence (blue) or absence (grey) of fusion transcripts. The right of
the panel contains two bar plots with the percentage of samples expressing these transcripts: blue represents responder
samples, yellow represent non-responder. The scale of both bar plots are similar. There is no difference of fusion transcripts
between samples from responders vs. non-responder patients (chi-square p-value = 0.626).

2.5. Validation of Fusion Transcript Detection with FusionCatcher, DNA Sequencing

As a negative control for the method of detection, we extracted DNA from normal
tubes, performed DNA sequencing, and applied the STAR-Fusion method to the fastq files.
As expected, we did not find any fusion gene on any of the normal samples.

To validate the fusion transcript detection, we repeated the analysis with FusionCatcher,
a different method with a different algorithm, to detect fusion transcripts and chimeras.
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Out of the 44 fusion transcripts found to be significant in the univariate analysis (see
Association of fusion transcripts with overall survival section), we detected 31 fusion genes
with FusionCatcher with accuracy detections over 95% and AUC average of 97% (Table 2).
Four out of the 10 fusion transcripts which remained independently significant in the
multivariate analysis of survival were also accurately detected (AUC of 89%). A new
multivariate analysis of survival was performed with these 4 validated fusion transcripts
using FusionCatcher. All were significant in the same direction of the initial analysis (in the
direction of worse survival). Two of the transcripts were significant in the validation of the
multivariate analysis of survival (p < 0.05): FAM98B–FRMD5 and NRIP1–AJ009632.2. The
other two transcripts were close to significance, ARL17A–KANSL1 and CC2D1A–CPNE8,
p = 0.054 and p = 0.074, respectively (Supplementary Table S4).

2.6. RT-PCR Validation

Four fusion transcripts identified using STAR-Fusion and FusionInspector were all con-
firmed to be present when RT-PCR was performed on the original samples (Figure 5). We
chose to validate these fusion transcripts with RT-PCR because we wanted to include some
which were validated with the independent analytical platform, FusionCatcher (FAM98B–
FRMD5, CC2D1A–CPNE8), and other fusion transcripts which were not (AUTS2—INO80C
and AC004475.1–PRPF6).
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fallopian tube DNA, indicating that these findings represent post-transcriptional modifi-
cations. Further analyses are needed to evaluate whether there is a functional meaning to 
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somatic level. 

Figure 5. RT-PCR validation of fusion transcripts. (A) RT-PCR was performed on four fusion transcripts found to
be significantly associated with overall survival in the multivariate analysis using STAR-Fusion/FusionInspector and
FusionCatcher. FT1 represents CC2D1A–CPNE8, FT2 represents FAM98B–FRMD5, FT3 represents AC004475.1–PRPF6,
and FT4 represents AUTS2–INO80C. Letter “M” represents the marker, which is the Invitrogen Track-it 100bp Ladder.
(B) Chromatograms from direct sequencing of RT-PCR amplicons of four fusion transcripts shown in part A; FT2 is
FAM98B–FRMD5, FT1 is CC2D1A–CPNE8, FT4 is AUTS2–INO80C, FT3 is AC004475.1–PRPF6.
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Table 2. Patient characteristics and association with survival: 103 patients with HGSC had complete clinical and outcome
information for the survival analysis. * Statistically significant (later included in the multivariate analysis).

HGSC Patients
HR 95% CI p-Value

N = 103

Age (mean) 59.8 1.01 0.99, 1.03 0.164

BMI (mean) 27.2 1.00 0.97, 1.03 0.764

Preop CA-125 (mean) 2413.6 1.00 0.99, 1.00 0.488

Charlson Comorbidity Index

1–3 17

1.14 1.01, 1.31 0.044 *4–6 64

>6 18

FIGO Stage

2 3

2.72 0, N/A 0.9953 68

4 25

Disease in Upper abdomen (Other
than Omentum) by Imaging

Yes

Large Bowel (N = 4)

63 1.60 1.02, 2.50 0.039 *

Porta—Hepatis (N = 4)

Mesenteric Mets (N = 4)

Other (N = 26)

No 40

Disease in the Chest by Imaging Yes
Chest (N = 5)

7 1.11 0.44, 2.79 0.813Pleural effusion (N = 5)

No 96

Grade
2 21

1.30 0.82, 2.07 0.270
3 67

Residual disease after surgery

Microscopic 20
0.59 0.32, 1.09 0.093

Macroscopic 82

Optimal (<1 cm) 66
1.11 0.71, 1.73 0.639

Suboptimal (>1 cm) 36

Removal of Pelvic LN
Yes 17

1.83 0.27, 1.09 0.088
No 86

Removal of Para-Aortic LN
Yes 10

0.41 0.15, 1.11 0.080
No 93

Surgery of large bowel
Yes 29

1.43 0.91, 2.26 0.123
No 74

Surgical complexity score **

Low 52

1.58 0.56, 4.43 0.381Intermediate 47

High 4

Neoadjuvant Chemotherapy
Yes 13

2.11 1.16, 3.83 0.015 *
No 88

Number of Cycles delivered
< 6 15

0.96 0.87, 1.07 0.476
≥6 87

Dose Dense Chemotherapy Yes 3 0.60 0.15, 2.46 0.480

* Statistically significant (p-value < 0.05). ** Modification of Mayo complexity index: we did not have an entry of peritoneal or abdominal
stripping; and rectosigmoidectomies with anastomosis were considered in our data collection as large bowel resections with anastomosis.

3. Discussion

The TCGA allowed investigators to examine the genomic underpinnings of ovarian
cancer, and such analyses have helped identify a molecular subset of patients (HRD) which
benefit from targeted therapy (PARP inhibitors). However, this only represents about 50%
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of patients. For the other 50% of patients, tumor susceptibilities and prognostic biomarkers
are still undiscovered. Fusion genes represent one stone which has been left underexplored
in the study of ovarian cancer genomics.

Fusion genes have provided clarity in the pathogenesis, prognosis, and treatment of
other cancers, and technological advances in deep sequencing have allowed researchers to
discover the presence of pathogenic fusion genes within a variety of carcinomas—prostate,
lung, sarcoma, and even targetable tumor agnostic driver mutations. In ovarian cancer,
fusion genes have been linked to drug resistance [16], potentially targetable mutations [15],
and associations with rare ovarian tumor types [17]. We used similar techniques to try to
identify fusion transcripts within HGSC using whole transcriptome sequencing.

We first sequenced the transcriptome of normal fallopian tubes and primary HGSC.
We identified the fusion transcripts present within both tissue types using STAR-Fusion
and validated these fusion transcripts with FusionInspector. We found that three fusion
transcripts were present more frequently in normal fallopian tubes than in HGSC. Pos-
sible explanations for these “normal” fusion transcripts are (1) the fusion transcripts are
protective against carcinogenesis or (2) the “normal” fusion transcripts are a marker of
relative genomic stability compared with HGSC. In terms of functional analysis, the gene
SH3BGRL2 has been hypothesized to be a tumor suppressor in renal cell carcinoma [18] and
serve a role in the migration and invasion of breast cancer [19]. The function of AL391840.3
is not yet known. These fusion transcripts were not found in the analysis of fallopian tube
DNA, indicating that these findings represent post-transcriptional modifications. Further
analyses are needed to evaluate whether there is a functional meaning to these fusion
transcripts, or if they are germline level events rather than occurring at the somatic level.

We then used these fusion transcripts to construct a prediction model which aims to
identify a fusion transcript’s origin—normal fallopian tube versus HGSC. Such a prediction
model would potentially be useful for testing serum cell free genomic testing as a non-
invasive diagnostic test of ovarian cancer, or so called “liquid biopsy.” The model performs
relatively well with an AUC of 95%. Though, such a model would be difficult to apply in
the clinical setting because it relies on the absence of fusion transcripts to differentiate the
carcinoma from the normal tissue, which may lack specificity. Lack of specificity, indeed,
plagues many non-surgical ovarian cancer diagnostics.

We did not identify any specific fusion transcripts associated with chemo-response,
suggesting that they may not represent driver mutations which determine response to
treatment. This contrasts with Christie et al.’s work [16], though their analysis was con-
ducted in a heavily pre-treated population, and our samples were primarily obtained
from chemotherapy naïve patients (with the exception of those who received neoadjuvant
chemotherapy). Thus, our study of drug resistance mechanisms is limited by our study pop-
ulation. A significant number of fusion transcripts were found within our non-responders,
suggesting that they may be involved in chemoresistance some way, which would support
the findings in Christie et al. Though, a significant number of fusion transcripts were also
found within our chemo-responsive samples, indicating that fusion transcripts are diffusely
present within ovarian cancer. Patch et al. found that genomic rearrangement and breakage
are often found in chemo-resistant ovarian cancers, and fusion transcripts are one such
consequence of these rearrangement and breakage events. However, we did not identify
the specific fusion events Patch et al. identified as implicated in chemoresistance—those
involving ABCB1. Though, in contrast with Patch et al.’s work, our samples were obtained
from surgeries as part of primary treatment, rather than recurrent disease [13]. Perhaps we
could have identified fusions involving ABCB1 had we analyzed tumor samples obtained
at the time of recurrence, rather than primarily evaluating the original tumor. It may be
that these fusion transcripts are selected for over the course of multiple treatment lines.

Ten fusion transcripts were associated with significantly worse survival. Two, in
particular, had striking hazard ratios for worse survival– ZBTB8OS—AC090627.1 and
ARL17A—KANSL1. Given that these fusion transcripts exist within a large group of fusion
transcripts (over 300), it is possible that these were “passenger” mutations which confer
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some particular survival advantage to the cancer, resulting in a poor prognosis for the
patient. These two fusion transcripts may therefore be markers of a particularly aggressive
iteration of ovarian cancer. From a functional perspective, ZBTB80S is a component of
the tRNA splicing complex required to facilitate the enzymatic turnover of the catalytic
subunit for RNA-splicing ligase [20]. Though the exact function of AC090627.1 is not
known, it has been identified as a partner fusion gene within breast cancer [8]. It encodes a
long non-coding RNA [21]. The ARL17A—KANSL1 fusion transcript has been identified
in both normal and thymus and T cell lymphoblastic lymphoma tumor samples and is
thought to be involved in tumor maintenance, rather than pathogenesis [22]. Indeed,
Zhou and colleagues identified this specific fusion gene within multiple different cancer
types among patients of European ancestry origin, suggesting that this fusion gene may
represent a genetic predisposition for cancer within this patient group. Previous study
of the ARL17A—KANSL1 fusion shows some loss of functional domains, and since the
unfused version of these genes are involved with histone acetyltransferase KAT8 and p53,
the fused versions are hypothesized to interfere with these functions. This may represent
a fusion gene which predisposes patients to carcinogenesis, analogous to mutations in
BRCA [23]. By itself, the gene ARL17A encodes a GTP-binding protein which is suspected to
be involved in protein trafficking and may modulate vesicle budding and uncoating within
the Golgi apparatus [24]. KANSL1 is involved with histone acetylation [25]. The two fusion
transcripts found to be significantly associated with overall survival using FusionCatcher
were FAM98B–FRMD5 and NRIP1–AJ009632.2. FAM98B is a protein coding gene which
counts tRNA processing and gene expression as its related pathways [26], and it has been
associated with colon cancer progression [27]. FRMD5 is also a protein coding gene which
is involved in cell migration and has been linked to lung cancer progression [28,29]. NRIP1
encodes a protein which is involved in transcriptional activation by steroid receptors,
including the estrogen receptor [26], which plays a significant role in the development of
normal fallopian tubes. Mutations in NRIP1 have been linked to breast cancer in genome
wide association studies [30,31]. AJ009632.2 is a long non-coding RNA whose function is
not yet known, but a variant of this long non-coding RNA has been linked to Parkinson’s
disease in a genome wide association study [32].

We validated our fusion detection analysis (STAR-Fusion) with an independent method
(FusionCatcher) and found that most of significant transcripts associated with survival were
also detected with the new method. Some of those poor prognosis transcripts found to be
significant in the Star-Fusion analysis trended towards poor prognosis in the FusionCatcher
analysis. They remained either significant or close to significant in the repeat multivariate
analysis. Then, we selected four fusion transcripts from the multivariate overall survival
analysis which were found using STAR-Fusion and FusionInspector: two were identified
using FusionCatcher and two were identified using Star-Fusion. RT-PCR was then performed
on these four fusion transcripts, and all were identified within the original patient samples,
confirming their true presence within the original transcriptome (rather than an artifact).
The validation analysis underscores the complexity of fusion transcript detection and analy-
sis. Discovery of fusion transcripts through computational tools is a developing technology
that is evolving constantly [33–35]. There is a need for continued development of and
standardization of fusion detection tools, candidate fusion prioritization algorithms, and
dedicated fusion databases to improve detection accuracy and sensitivity [35]. Moreover,
mechanistic analysis are needed to evaluate whether there is a functional meaning from
these fusion transcripts, if they reflect the genetic instability of tumors with more aggressive
phenotype, or if they are germline-level events rather than occurring just at the somatic
level. Continued investigation may also reveal that these or other transcripts provide not
just prognostic information but also targetable events, as they are with BCR-ABL1 [7] and
NTRK fusions [12].

This study is limited by its retrospective nature and small sample size of normal
fallopian tubes. Though the fusion gene software is validated, many others exist. Indeed,
we did not identify previously described recurrent fusion transcripts in high grade serous
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ovarian cancer, such as ESRRA-TEX40 [36] or CDKN2D-WDFY2 [37], which could be due
to the slightly different ways by which each study identified its fusion transcripts. Thus, as
we advance our methods of analyzing next generation sequencing data, it is imperative
that we continue looking to old samples to gain new insights.

To further explore these results, we would need a mechanistic approach to identify
the actual interaction between fusion transcripts and molecular components of the cellular
machinery. This would help define the genomic and cellular mechanisms by which ovar-
ian cancer shortens patients’ lives and doing so may reveal targetable opportunities for
intervention—before the patients present with recurrent malignant bowel obstructions,
pleural effusions, and the various other clinical conditions by which our patients ultimately
succumb to their disease. Indeed, there is no one singular way by which ovarian cancer
leads to mortality, so there are likely a multitude of cellular processes to discover, some
of which we suggest originates from fusion events. Moreover, though we are presuming
that these fusion events are produced at the transcriptional level, it is possible that there
are events at the DNA level that occur due to the genomic instability of cancer cells [38].
The combination of both—alteration of tumoral DNA and transcriptional—will give us a
more complete picture of the actual fusion events. Differentiating between the two would
require both germline and somatic transcriptome analysis of ovarian cancer patients.

Ultimately, fusion genes represent a relatively underexplored genomic feature of
ovarian cancer. Deep sequencing and unguided techniques have resulted in fruitful dis-
coveries within other cancer types, which has better informed prognosis and resulted in
targeted therapy. As the HRD story shows us, improved understanding of tumor biology
and pathogenic subsets of cancer can yield significant clinical advances for both targeted
therapy and prognosis. The high preponderance of fusion transcripts in high grade serous
ovarian cancer relative to normal fallopian tube tissue makes it clear that fusion genes
have some role in carcinogenesis. With the discovery of targetable driver fusion genes
such as those involving NTRK leading to effective and well tolerated “tumor agnostic”
therapies [12], the potential for new treatment opportunities is great. Indeed, fusion genes
may represent the next frontier for ovarian cancer.

4. Materials and Methods

This is a retrospective case-control study that used clinical and genomic information
to identify fusion transcripts in primary HGSC and normal fallopian tube samples. To
assess clinical outcomes, we classified HGSC patients as responders or non-responders to
chemotherapy. Responders were those with a progression-free survival of at least 6 months
after the first platinum-based treatment. Non-responders were those who had evidence
of disease within 6 months of their platinum-based treatment (platinum-resistant) or
experienced disease progression during treatment (platinum-refractory). Overall survival
was defined as the time from treatment completion to death. Patients who were alive at the
end of their follow-up were treated as censored observations.

4.1. Patient Inclusion Criteria

We identified ovarian cancer patients with high grade serous histology from available
flash-frozen tumor tissues stored at the University of Iowa Hospitals and Clinics Depart-
ment of Obstetrics and Gynecology Gynecologic Oncology Bank (IRB, ID#200209010) that
is part of the Women’s Health Tissue Repository (IRB, ID#200910784). Ovarian cancer pa-
tients with clinical and pathological data were included. Patients without RNA of sufficient
quality (see below) for RNA-sequencing (RNA-seq) analysis were excluded from the study.
Of the 187 patients identified in the original HGSC panel, 112 tumor tissues with sufficient
RNA yield and quality were available for analysis.

We additionally analyzed 12 fallopian tube samples from women undergoing salp-
ingectomies for contraceptive indications or as part of a hysterectomy for chronic pelvic
pain, pelvic organ prolapse, abnormal uterine bleeding, fibroids, or dermoid cyst. The
analyzed tissue came from the junction of the ampullary and fimbriated end of fallopian
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tubes. For the benign fallopian tubes, a separate approval was given by the University of
Iowa Institutional Review Board (IRB, ID#201202714) in coordination with the University
of Iowa Tissue Procurement Core Facility. All tissues were obtained from adult patients
under informed consent in accordance with the University of Iowa IRB guidelines.

4.2. Clinical Data

Clinical and pathological data were collected from the medical record with IRB ap-
proval from the University of Iowa (UI) (IRB ID# 201804817).

Clinical variables previously observed to be associated with chemo-response were
included in the data collection [39]. Only baseline clinical and pathological characteristics
which can be obtained before starting initial chemotherapy were included. Differences
between clinical variables in responders versus non-responders were assessed by logistic
regression. p-values ≤ 0.05 were considered statistically significant. There were 103 HGSC
patient with accompanying clinical data included in the survival analysis (Table 1); 88 of
those patients have complete information about response to treatment and were included
in the chemo-response analysis (Supplementary Table S5).

4.3. RNA Purification and Whole Transcriptome Sequencing

Total cellular RNA was purified from primary tumor tissue using the mirVana (Thermo
Fisher, Waltham, MA, USA) RNA purification kit following the manufacturers’ instructions.
Yield and quality of purified cellular RNA was assessed using a Trinean DropSense 16 spec-
trophotometer and an Agilent Model 2100 bioanalyzer. Samples with an RNA integrity
number (RIN) [40] greater than or equal to 7.0 were selected for RNA sequencing. Genomic
DNAs from frozen normal tubal tissue were purified using the DNeasy Blood and Tissue
Kit according to manufacturer’s (QIAGEN GmbH, Hilden, Germany) recommendations.

Equal mass total RNA (500 ng) from each qualifying tumor was fragmented, converted
to cDNA, and ligated to bar-coded sequencing adaptors using Illumina TriSeq stranded
total RNA and DNA library preparation (Illumina, San Diego, CA, USA). Molar concen-
trations of the indexed libraries were confirmed on the Agilent Model 2100 bioanalyzer,
and libraries were then combined into equimolar pools for sequencing. The concentration
of the pools was confirmed using the Illumina Library Quantification Kit (KAPA Biosys-
tems, Wilmington, MA, USA). Sequencing was then carried out on the Illumina HiSeq
4000 genome sequencing platform using 150 bp paired-end Sequencing By Synthesis (SBS)
chemistry. All library preparation and sequencing were performed in the Genome Facility
of the University of Iowa Institute of Human Genetics (IIHG).

For quality control of our RNA-Seq experiments, we looked at the number of reads
per sample and number of unmapped transcripts (average read/sample over 27 million).
Unmapped transcripts resulted from: (1) transcripts being too short for successful mapping
(less than 200 bp) and represented an average 21% of all transcripts; (2) 0% of transcripts
had too many mismatches, and (3) 0.2% for other causes. None of the samples had a
number of mapped reads below the 10-million threshold.

4.4. DNA Extraction from Normal Fallopian Tubes

Genomic DNA from fresh frozen normal fallopian tubes were purified using the
DNeasy Blood and Tissue Kit according to manufacturer recommendations. Yield and
purity were assessed using a NanoDrop Model 2000 spectrophotometer with a 260 nm/280
nm absorbance ration of ~1.8 with minimal to no degradation seen using horizontal gel
electrophoresis. Following purification, the samples were bisulfite-converted using the EZ-
96 Deep-Well Format DNA Methylation Kit following the Illumina Infinium® Methylation
Assay alternate incubation instructions. Of the 20 collected fallopian tubes, 12 met the
quality standards.
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4.5. Fusion Transcript Detection

We used the STAR-Fusion pipeline to align and map paired-end RNA-seq data from
HGSC and normal tube samples. This suite requires several genomic resources that
included: the reference genome (human genome version hg38), reference transcript struc-
ture annotations, and results from an all-vs-all BLAST+ search of reference transcript
sequences [41].

Aligning RNA-Seq reads to the genome to capture split and discordant reads was done
with STAR as an extension of the standard mapping procedure. First, the maximum map-
pable prefix algorithm was used to find the “seeds”, or read sequences, exactly matching to
the genome. Then, genomic alignment windows were selected by clustering the anchor
seeds. In each genomic window, a local alignment of the read sequence was performed. If
the best alignment among all windows did not cover the entire read, chimeric detection
was performed by finding the next best scoring window that covered the remainder of the
read sequence. The STAR-Fusion mapping parameters are based upon the best practices
for STAR [42], as well as parameters optimized to capture fusion transcripts, as described
above [43]. Next, STAR-Fusion determines the most likely correct fusions, filtering out
unlikely candidates from the initial predictions. More details can be found in Haas et al.’s
publication [33]. Finally, we used FusionInspector, a component of the STAR-Fusion suite,
that performs in silico validations of the fusion transcripts discoveries by performing a
supervised analysis of fusion predictions [44] (Appendix A).

4.6. Statistical Analysis

A table with all fusion transcripts and their annotation was constructed for all HGSC
and tubal samples (Supplementary Table S1). Logistic regression was used to assess
differences in fusion transcripts frequencies between HGSC and tubal samples. Fusion
transcripts with statistical differences of p < 0.05 were introduced in a multivariate analysis
to assess which fusion transcripts were independently significant between HGSC and tubal
samples. To assess the association of survival with fusion transcripts, a survival analysis
was performed using Cox proportional hazard ratios. A multivariate analysis of survival
was built by introducing significant variables in the univariate analysis (p < 0.05) in a Cox
Proportional Hazard ratio multivariate model.

We additionally built a prediction model with fusion transcript data to determine
which patients would have ovarian cancer (HGSC) versus those with normal fallopian tubes.
To create this model, we used the lasso regression method, as implemented in the glmnet
R package [45]. In our experience, lasso consistently lowers number of co-variates and
computes area under the curve (AUC) with reliability and minimum errors, as compared to
other prediction methods [46]. We evaluated the performance of our model using the AUC
and its 95% confidence interval (CI). AUC was estimated with 1000 replicates of 10-fold
cross-validation to avoid over-fitting of the model (internal validation) [47]. Bias-corrected
and accelerated bootstrap CIs were computed for resulting AUCs. A value of 0.5 indicates
a lack of model predictive performance, and 1.0 indicates perfect predictive performance,
or the best model. For an alpha error of 0.05, a total sample size of 117 or more would be
needed to create regression models of prediction with a power (1-Beta error) over 71% [48].

4.7. Validation of Fusion Transcript Detection with FusionCatcher

To validate the detection of fusion transcripts, we used another novel method, Fusion-
Catcher [49,50], which has been also used to detect novel and known fusion transcripts in
samples from patients with cancer. As above, data was aligned to the reference human
genome version 38 (hg 38). Then, we performed C-statistics to determine the accuracy
and AUC of our initial analysis for those fusion transcripts found to be significant in the.
association analysis.

As a negative control for our analysis, we performed STAR-Fusion with FusionInspector
validation in DNA from the normal tubal samples. We would expect not to find any fusion
genes in normal tissue.
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4.8. RT-PCR Validation of Fusion Transcripts
4.8.1. RNA Purification

Whole cell RNA was purified from the appropriate tumors using the mirVana RNA
purification kit according to manufacturer’s instructions (Thermo Fisher). Yield and purity
were assessed in the University of Iowa Institute of Human Genetics (IIHG) using a Trinean
DropSense 16 and an Agilent Model 2100 Bioanalyzer.

4.8.2. RT-PCR

The 500 ng of whole cell RNA from each tumor was reverse transcribed using the
SuperScript III kit (Invitrogen). RT-PCR was performed on a BioRad T100 thermal cycler.
Tumor cDNA was matched with the appropriate primers as shown below. * Tm is estimated
in OligoAnalyzer (IDT) at 1.5 mM MgCl2.

Fusion Transcript PCR Primer Sequences Tm *

CC2D1A-CPNE8
For: ATGCACAAGAGGAAAGGAC
Rev: GCAGGTGATGGCTTGATT

59.3 ◦C
59.7 ◦C

FAM98B-FRMD5
For: GTGCTGGACACACTGGAG
Rev: TGCCGGGAAAGCAACAT

61.5 ◦C
61.6 ◦C

AC004475.1-PRPF6
For: GCAGCAGATGTACGACATGA
Rev: CTTCAGGTTCTTCCAGCTCAA

61.7 ◦C
61.7 ◦C

AUTS2-INO80C
For: CGGCAGAAGAGGACATCATT
Rev: CAGGTTCTTCCCAGGTTCTGTT

63.8 ◦C
61.5 ◦C

Primers were designed using the appropriate fusion transcript sequence in PrimerQuest
at Integrated DNA Technologies (idtdna.com). All primers were also manufactured by
IDT. PCR amplifications were carried out for 35 cycles using an annealing temperature of
58.0 ◦C. In all cases, a negative control RNA was used consisting of whole cell RNA from a
benign fallopian tube patient.

RT-PCR reactions were run on a 1.6% horizontal agarose gel. The gel was stained
with ethidium bromide and visualized under uV irradiation on a Life Technologies E-Gel
Imager (Thermo Fisher).

4.8.3. Sequence Verification

RT-PCR amplicons were purified using the QIAGEN QIAquick PCR Purification kit
following manufacturer’s instructions (QIAGEN). Each amplicon was then sequenced on an
Applied Biosystems Model 3730 × l capillary sequencer in the University of Iowa Institute
of Human Genetics (IIHG) using the PCR primers as sequencing primers. Sequence output
was then visualized in Finch TV software and validated by BLAST in ENSEMBL [21]. The
RT-PCR amplicons were validated by direct Sanger sequencing.

5. Conclusions

In summary, we identified novel fusion transcripts that seem to be associated with
HGSC and confer poorer survival to some of the patient with the disease. Further investiga-
tions will be needed to clarify the mechanisms of action of these transcripts and how they
interact with survival. Some of these processes may be even targetable in future research.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22094791/s1.

Author Contributions: Conceptualization, J.G.B., E.J.D. and A.N.; methodology, E.J.D.; validation
including RT-PCR, E.J.D. and J.G.B.; formal analysis, J.G.B.; investigation, A.N. and E.J.D.; resources,
J.G.B., E.J.D. and M.J.G.; data curation, E.J.D. and H.R.; writing—original draft preparation, A.N. and
J.G.B.; writing—review and editing, A.N., H.R., J.G.B. and E.J.D.; visualization, J.G.B.; supervision,
J.G.B. and E.J.D.; project administration, J.G.B. and E.J.D.; funding acquisition, J.G.B., E.J.D. and
M.J.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the NIH grant R01 CA99908 and R01 CA184101 to
Kimberly K. Leslie, and the basic research fund from the Department of Obstetrics & Gynecology at

https://www.mdpi.com/article/10.3390/ijms22094791/s1
https://www.mdpi.com/article/10.3390/ijms22094791/s1


Int. J. Mol. Sci. 2021, 22, 4791 16 of 20

the University of Iowa. It was also supported in part by the American Association of Obstetricians
and Gynecologists Foundation (AAOGF) Bridge Funding Award.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of the
University of Iowa (IRB ID#200209010, approved 19 September 2005; IRB ID#201804817, approved
9 May 2018; IRB ID#201809807, approved 10 April 2019).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: Clinical data is not publicly available due to patient privacy. Datasets
with RNA-seq can be browsed by their accession number: GSE156699. The validation part of this
study was performed in silico, with de-identified publicly available data. All data from TCGA is
available at their website: https://portal.gdc.cancer.gov/ (accessed on 1 January 2019). Software
utilized by this study is also publicly available at Bioconductor website: http://bioconductor.org/
(accessed on 1 January 2019).

Acknowledgments: The authors would like to thank the Genomics Division of the University of
Iowa Institute of Human Genetics for their assistance with this project, specifically Mary Boes and
Garry Hauser (core facilities of the IIHG are funded in part by NIH/NCI P30CA086862). We are
grateful as well to Donna Santillan, director of the Department of Obstetrics & Gynecology Women’s
Health Tissue Repository and Gynecologic Malignancy Bank, for assistance in assembling the Iowa
endometrial and ovarian tumor cohorts. Also, we would like to thank ‘TCGA Research Network’
for generating, curating, and providing high quality biological and clinical data. We acknowledge
Jeremy Newtson for providing technical assistance.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 16 of 20 
 

 

study was performed in silico, with de-identified publicly available data. All data from TCGA is 
available at their website: https://portal.gdc.cancer.gov/ (accessed on 1 January 2019). Software uti-
lized by this study is also publicly available at Bioconductor website: http://bioconductor.org/ (ac-
cessed on 1 January 2019). 

Acknowledgments: The authors would like to thank the Genomics Division of the University of 
Iowa Institute of Human Genetics for their assistance with this project, specifically Mary Boes and 
Garry Hauser (core facilities of the IIHG are funded in part by NIH/NCI P30CA086862). We are 
grateful as well to Donna Santillan, director of the Department of Obstetrics & Gynecology Women’s 
Health Tissue Repository and Gynecologic Malignancy Bank, for assistance in assembling the Iowa 
endometrial and ovarian tumor cohorts. Also, we would like to thank ‘TCGA Research Network’ 
for generating, curating, and providing high quality biological and clinical data. We acknowledge 
Jeremy Newtson for providing technical assistance.  

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

 
Figure A1. Concept map of STAR-Fusion alignment tool, followed by FusionInspector validation as 
it was used in this study. RNAseq reads were mapped onto Reference Genome hg38, then to refer-
ence chromosomes to create proposed fusions, after which sequence similar pairs and promiscu-
ous partners were excluded. Afterwards, Fusion was used to create fusion contigs from the STAR-
Fusion results, which were then aligned to Reference Genome hgs38. 

Figure A1. Concept map of STAR-Fusion alignment tool, followed by FusionInspector validation as it
was used in this study. RNAseq reads were mapped onto Reference Genome hg38, then to reference
chromosomes to create proposed fusions, after which sequence similar pairs and promiscuous
partners were excluded. Afterwards, Fusion was used to create fusion contigs from the STAR-Fusion
results, which were then aligned to Reference Genome hgs38.

https://portal.gdc.cancer.gov/
http://bioconductor.org/


Int. J. Mol. Sci. 2021, 22, 4791 17 of 20Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 17 of 20 
 

 

 
Figure A2. Concept map of FusionCatcher validation as it was used in this study. Bowtie aligner 
was used first to align RNAseq reads to Reference Genome hg38. Reads with good alignment and 
reads mapping simultaneously onto different gene transcripts were excluded to create a list of 
preliminary candidate fusions. These candidates were mapped onto the transcriptome, after which 
known paralogs, false positives, non-tumor fusions, partners overlapping on the same strand, and 
pairs in which both partners simultaneously have high read counts were excluded. The remaining 
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Figure A2. Concept map of FusionCatcher validation as it was used in this study. Bowtie aligner
was used first to align RNAseq reads to Reference Genome hg38. Reads with good alignment
and reads mapping simultaneously onto different gene transcripts were excluded to create a list of
preliminary candidate fusions. These candidates were mapped onto the transcriptome, after which
known paralogs, false positives, non-tumor fusions, partners overlapping on the same strand, and
pairs in which both partners simultaneously have high read counts were excluded. The remaining
fusion junctions were aligned onto an Exon-Exon library using Bowtie aligner to determine candidate
fusions, and the unmapped junctions were aligned onto hg38 using BLAT, STAR, and Bowtie 2.
Duplicates and reads sharing the same start and end sequences were excluded as artifact. This
created another set of candidate fusions.
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