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Abstract: A prefix code, a P-code, is a code where no codeword is a prefix of another codeword. In
this paper, a symmetric cipher based on prefix codes is proposed. The simplicity of the design makes
this cipher usable for Internet of Things applications. Our goal is to investigate the security of this
cipher. A detailed analysis of the fundamental properties of P-codes shows that the keyspace of the
cipher is too large to mount a brute-force attack. Specifically, in this regard we will find bounds on the
number of minimal P-codes containing a binary word given in advance. Furthermore, the statistical
attack is difficult to mount on such cryptosystem due to the attacker’s lack of information about the
actual words used in the substitution mapping. The results of a statistical analysis of possible keys
are also presented. It turns out that the distribution of the number of minimal P-codes over all binary
words of a fixed length is Gaussian.
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1. Introduction

A prefix code, a P-code, is a code where no codeword is a prefix of another code-
word [1]. P-codes have been used in symmetric cryptography for a long time [2,3].

The oldest known example of a P-code is the Argenti code [2] (16th century). P-codes
were also used by Peter the Great, where the plaintext was the Cyrillic alphabet [2]. Fur-
thermore, the Soviet cipher known as VIC [3], used P-codes as one of the rounds during the
encryption. Finally, in the mid of the 20th century, the properties of P-codes were studied
by the leading scholars in the area, including Shannon, Fano, Huffman, etc. Nowadays,
one area of cryptography which employs prefix codes is the DNA cryptography [4], in
which many cryptosystems utilize binary prefix codes as the plaintext space [5–8].

Example 1. To illustrate the usage of P-codes for encryption, let us consider Table 1, where each
lowercase letter is mapped to a codeword of a binary prefix code; each codeword is of length four or
five. It is readily seen that no codeword is a prefix of any other codeword. The plaintext, written as a
sequence of lowercase letters, is encrypted by substituting each letter with the corresponding binary
string and concatenating the strings into the resulting ciphertext.

Table 1. P-code example.

a b c d e f g h i j

00000 00001 00010 00011 1101 00101 00110 00111 1110 01001

k l m n o p q r s t

01010 01011 01100 01101 1111 01111 10000 10001 10010 10011

u v w x y z

10100 10101 10110 10111 11000 11001
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Let the message be iotuser. Substituting each letter by its corresponding binary codeword, the
encrypted form is 11101111100111010010010110110001. The table is secret and known only to
the sender and receiver, therefore only they are able to uniquely decipher the encrypted message, by
using the property of prefix codes that no codeword is a prefix of any other codeword. The attacker,
having observed the ciphertext, must solve two things to find the secret key, i.e., the used mapping:
first of all, he/she must divide the message correctly into the variable-length segments and then
he/she must find the correct substitution.

The plaintext alphabet may contain special symbols called null-ciphers, which are
inserted into the plaintext during encryption and when decrypted are represented by the
empty string. The usage of null-ciphers makes the frequency analysis of the ciphertext
more difficult.

The memory complexity of the cipher depends on the size of the table, i.e., on the
size of the plaintext alphabet and the corresponding codewords. For example, let the
plaintext alphabet be the ASCII alphabet (128 symbols) and each variable-length codeword
be approximately 10-bit long. Then the size of the table would be roughly 1280 bits, e.g.,
160 bytes.

Due to the simplistic design of the cryptosystem and its low memory requirements, it
is usable as a symmetric cipher for IoT applications. Securing the communication of IoT
devices is currently extensively studied [9–11], with one notable proposal of an encryption
algorithm using prefix codes as its plaintext alphabet [12]. The corresponding key-exchange
of the symmetric key can be performed by algorithms dedicated for IoT, e.g., the Merkle-tree
authenticated KEM [13].

The paper is organized as follows. The proposal of a cryptosystem based on P-codes is
presented in Section 2. In Section 3, we collect fundamental properties of P-codes. Section 4
provides an algorithm for finding the set of all minimal dictionaries of P-codes with respect
to a given string x. Statistical data obtained by running this algorithm for all strings of
length up to 26 are presented in Section 5. Finally, the preliminary cryptanalysis of the
cryptosystem is described in Section 6.

2. The Proposal of a Cryptosystem Based on P-Codes

To be able to propose a cipher based on prefix codes, we first recall the definition of a
prefix code.

Definition 1. Let A be an alphabet and P be a set, P ⊂ {0, 1}+. Then a code is a bijection
κ : A → P; elements of P are called codewords and P is also called a dictionary of the code.
Specifically, a prefix code, for short a P-code, is a code where no codeword is a prefix of another
codeword. A message x is a concatenation of finitely many words from the dictionary P.

In what follows, the dictionary P will consist of binary words, while the alphabet A is
the English A-Z alphabet, the ASCII alphabet, etc. For a set of binary words P, P+ stands
for the set of all finite concatenations of elements of P.

We now state the definition of the cryptosystem based on P-codes.

Definition 2. Let A be a plaintext alphabet, let P be a set of prefix codes P. Then a symmetric
substitution cryptosystem based on P-codes is a five-tuple (P , C,K, E ,D) where:

1. The plaintext alphabet P = A.
2. The ciphertext alphabet C = {0, 1}.
3. The keyspace K consists of two-tuples K = (P, κ), where P ∈ P and κ is a bijection A → P.
4. For each K = (P, κ) ∈ K, the encryption rule eK ∈ E , eK = κ : A → P.
5. For each K = (P, κ) ∈ K, the decryption rule dK ∈ D, dK = κ−1 : P→ A.

The property dK(eK(m)) = m follows directly from 4 and 5. If m is a string of
plaintext symbols, m ∈ P+, m = m1m2 . . . mn, then as usual, its encryption is the sequence
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x = x1x2 . . . xn = eK(m1)eK(m2) . . . eK(mn) = κ(m1)κ(m2) . . . κ(mn) ∈ C+. Decryption is
done in the same manner. We note that this algorithm is a substitution cipher, in which it is
difficult to distinguish respective encrypted plaintext symbols in the ciphertext.

The encryption can be performed as a simple look-up in the look-up table of the used
P-code. Since each plaintext character is mapped independently of the other symbols,
the encryption resembles the so-called ECB-mode of block ciphers. However, to further
enhance the security of the cipher, special symbols called null-ciphers can be employed.
These special symbols are also part of the plaintext alphabet and have their corresponding
images under the mapping κ. They are randomly inserted into the plaintext and thus get
encrypted as some binary strings. However, during the decryption, they are represented as
empty strings and therefore do not change the meaning of the original plaintext.

The decryption is performed by identifying codewords in the ciphertext and mapping
them to their preimages under the mapping κ. The recognition of codewords can be easily
implemented with the usage of a finite state automaton, which would process the input
ciphertext on a bit-by-bit basis and have separate accepting states for each codeword. On
reaching one of these accepting states, the automaton would recognize the corresponding
codeword, return to the initial state and process the ciphertext further.

Key Generation

The generation of a random key K = (P, κ) consists of two steps:

1. Generate the set of codewords P.
2. Generate the mapping κ.

If we want to generate a random set of codewords P for an alphabet, say with 128 char-
acters, we have several possibilities. One is to generate a random string x such that there is
a huge number of dictionaries having cardinality |V| = 128, where x is the concatenation of
all codewords of the dictionary, in some order. Then, one would try to find one of the dictio-
naries by using Algorithm 1 presented in Section 2. The shortest possible length of such a
string x which would have a dictionary with 128 codewords is |x| ≥ 7× 128 = 896. Unfor-
tunately, such a string cannot be effectively processed by this algorithm, since the algorithm
exhaustively searches all possible partitions of the string, which takes an exponential time
in the length of x.

Another approach is to generate a random binary string x of a sufficient length, e.g.,
in the case |V| = 128, |x| ≥ 896 and then try to generate a random partition of x and test,
whether the resulting partition of x forms a P-code. If not, one may try to generate another
random partition of x and test it again. However, this approach might also take a lot of time
if the length of x is not sufficiently large. For example, if we want to find a P-code V such
that |V| = 128, the least possible length of x is 896. In this case, the only suitable partition
is the partition of x into 128 7-bit substrings. However, the number of all partitions of a
896-bit string into 128 substrings is (895

127) ≈ 2523. Another disadvantage of this method
is the fact that some of the substrings might be the same, therefore the resulting P-code
would be of a smaller cardinality than 128.

A more efficient way is to directly generate a set of random integers n1, n2, . . . , n128
and test if these numbers satisfy the well-known Kraft inequality ([14,15]):

128

∑
i=1

2−ni ≤ 1. (1)

If so, then there exists a P-code with codewords of lengths ni, i = 1, 2, . . . , 128, and
there are many ways how to construct it. For example, one may construct a binary tree with
128 leaves, where i-th leaf is at ni level under the root. Then, each leaf directly represents a
codeword of length ni of some P-code with 128 codewords. This process can further be
randomised during the binary tree’s construction, which leads to a randomized algorithm
that generates different P-codes even for the same sequence of lengths ni. Straightforward
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implementation of this approach on a portable computer is able to generate a random
P-code with 128 codewords in approx. 20–30 ms.

Algorithm 1: Algorithm FindVx(x, T) for finding all minimal P-codes that de-
code x

Input: Binary string x, binary tree T
1 if |x| = 0 then
2 output T;
3 return;
4 end
5 i← 1;
6 if i > |x| then
7 return;
8 else
9 set P as a prefix of x of length i;

10 set T′ as a copy of T;
11 end
12 if T′ contains a prefix of P as its leaf then
13 return;
14 end
15 if P is a prefix of some leaf of T′ then
16 go to 21;
17 end
18 insert P as a new leaf into T′;
19 create x′ from x by removing its prefix P;
20 call FindVx(x′, T′);
21 i← i + 1;
22 go to 6;

Once such a set of codewords P has been generated, the generation of the mapping κ
can be done by generating a random bijection A → P. Due to implementational simplicity,
this mapping may be also fixed in a sense that the first symbol of alphabetAwill always be
mapped to the first codeword of P, the second symbol of A will be mapped to the second
codeword of P, etc. Thus, the certification authority (CA) distributing the keys among the
IoT devices needs to only distribute the set of codewords P and not the mapping κ itself.

The efficiency of the cipher can be measured, as is common, by a transmission rate.
Suppose that the alphabet A comprises all 8-bit characters, i.e., |A| = 256. Generally,
the average codeword length is n = ∑ ni pi, where pi is the probability of occurrence of
character ai ∈ A, ni is the length of the corresponding codeword of ai. Then, n is expected
to be more than that given by some efficient (e.g., Huffman) coding. Thus, in this case, the
efficiency can be measured as the fraction n

8 , i.e., the average number of bits of ciphertext
per one encrypted character. Further, n

8 > 1 and the higher this fraction is, the more P-codes
are available for this string. For security reasons, our coding does not adhere to the obvious
rule used in efficient coding, where pi < pj implies ni > nj, since we do not want to give
the attacker any additional information about the used P-code.

3. Set of Minimal Dictionaries with Respect to a Given String

If the dictionary P is known, the decision whether the string x was written using
this dictionary is trivial. However, if the dictionary is not known, which represents the
attacker’s situation, the attacker must consider all possible dictionaries, which could have
been used to create x. The key ingredient in the study of all possible dictionaries is the
notion of a minimal dictionary with respect to the known x.
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Definition 3. Let x be a binary string. Then a set V such that x ∈ V+ is called minimal with
respect to x, if for any w ∈ V, x 6∈ (V − w)+. The collection of all minimal sets V, x ∈ V+, is
denoted by Vx.

Example 2. Given a string x of length |x| > 1, there are at least two minimal sets containing x,
|Vx| ≥ 2, say V1 = {x} and V2 = {0, 1} with an exception when x consists of only zeroes or ones,
then V2 = {0} or V2 = {1}, respectively.

Theorem 1. Let x be a string. Then a set V ⊂ {0, 1}+ is minimal with respect to x if and only if
V is a partition of x into substrings.

As V is a set, then each substring occurs in V once; V is not a multiset, repetitions do
not count. Since V is a partition of x, we have that x ∈ V+.

Proof. (⇐). Let elements of V form a partition of x into substrings; say x = v1v2 . . . vt, where
vi’s are not necessarily different. Assume, by contradiction, that V is not minimal. Then
there would be w ∈ V such that x ∈ (V − w)+. This in turn implies that x = vj1 . . . vjt−1 .
If |vj1 | > |v1| or |vj1 | < |v1|, then vj1 would be a prefix of v1 or vice versa. Therefore,
|vj1 | = |v1| which implies vj1 = v1. The rest of the proof is done by induction on the length
of x.

(⇒) If V is minimal with respect to x, then x ∈ V+. Therefore, V has to contain
elements whose concatenation is x; these elements form a partition of x into substrings.
Because of minimality of V, there is no other element there.

In order to show that it is computationally infeasible to break our cipher by brute-force,
we will investigate the number of P-codes containing a piece of ciphertext x. In fact, it
suffices to show that the number of minimal P-codes containing x, the subset of all P-codes,
is large.

All minimal P-codes can be obtained by partitioning x into substrings (Theorem 1)
and then checking, whether this partitioning satisfies the prefix property.

For a given string x of length ν, the number of different partitions into substrings is
2ν−1, as each delimiter is placed in between two consecutive symbols.

The following example illustrates this procedure.

Example 3. If x = 0011, then there exist 8 partitions. For each partition, we will verify whether
the obtained set satisfies the prefix property. We will have following dictionaries:

• if there is no delimiter, then the corresponding P-code is {0011}
• one delimiter:

partition 0|011 leads to V = {0, 011}, which does not satisfy the prefix property,
partition 00|11 results in a P-code {00, 11},
001|1 implies a P-code {001, 1}.

• two delimiters:
0|0|11, leads to a P-code {0, 11},
0|01|1 does not satisfy the prefix property,
00|1|1 we get a P-code {00, 1}

• 3 delimiters: 0|0|1|1 leads a P-code {0, 1}.
Thus, for x = 0011, the procedure leads to 6 minimal P-codes, i.e., |Vx| = 6. Later, we will

see that for x long enough, |Vx| � 2|x|−1.

The structure of dictionaries from Vx, is presented in the following theorem.

Theorem 2. Let x be a binary string of length ν and C, D be two dictionaries in Vx. Then:

(1) There are no dictionaries C ⊂ D, where C is a proper subset of D.
(2) There are no dictionaries C 6= D such that C ∩ D is a dictionary.
(3) There are no dictionaries C 6= D such that C ∪ D is a dictionary.
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Proof. (1). Let x be a binary string x = x1x2x3 . . . xν. Suppose that C and D are two dictio-
naries such that C, D ∈ Vx and C ⊂ D, say C = {c1, . . . , cs}, D = {d1, . . . , ds, ds+1, . . . dt}.
Without loss of generality, let c1 = d1, c2 = d2, . . . , cs = ds. According to Theorem 1, D
comprises substrings of x, therefore there is an element di ∈ D such that

x = x1x2 . . . xk︸ ︷︷ ︸
di

xk+1 . . . xν.

Similarly, there is cj ∈ C such that

x = x1x2 . . . xm︸ ︷︷ ︸
cj

xm+1 . . . xν.

We distinguish 3 cases:

1. m < k x = x1x2 . . . xm︸ ︷︷ ︸
cj

. . . xk . . . xν,

2. m > k x = x1x2 . . . xk . . . xm︸ ︷︷ ︸
cj

. . . xν,

3. m = k x = x1x2 . . . xk=m︸ ︷︷ ︸
cj

. . . xν.

By assumption, cj = dj, which in turn implies that the codeword dj is a prefix of di, a
contradiction. Analogously, di = ci, which means that ci is a prefix of cj.

Therefore, m = k. If we remove the prefix x1x2 . . . xk=m from the string x, the above
procedure can be repeated on the shorter string xk+1 . . . xν. Now, the induction on ν finishes
the proof.

Item (2) follows directly from (1). If there were two different dictionaries C and D
of P-codes such that C ∩ D is a dictionary as well, then it would be true that there are
two different dictionaries, C ∩ D and C, for which C ∩ D ( C, contradicting (1).

Item (3) follows from (1) as well. If C∪D were a P-code, then C ( C∪D, contradicting
(1).

Now we turn our attention to the cardinality of Vx. The following theorem and
corollary deal with the lower bound. The upper bound will be estimated statistically in
Section 5.

We recall that the function τ(n) counting the number of divisors of n, including 1
and n, can be easily computed from the prime factorization of n: If n = pα1

1 . . . pαr
r , then

τ(n) = (α1 + 1) . . . (αr + 1) [16].
In the following, we use the common notation 1ν = 11 . . . .11︸ ︷︷ ︸

ν−times

and 0ν = 00 . . . .00︸ ︷︷ ︸
ν−times

. We

also use the notation x to represent the binary complement of x.

Theorem 3. Let x = 1ν and τ(ν) be the function which counts number of divisors of ν. Then
|Vx| = τ(ν). Similarly, for x = 0ν, |Vx| = τ(ν).

Proof. It is readily seen that a dictionary V ∈ Vx contains only one element. Otherwise, for
any two elements in V one would be a prefix of the other, a contradiction. Hence V = {1d}
and because x = 1d1d . . . 1d, d | ν and vice versa. The proof follows. The case of x = 0ν is
analogous.

Proposition 1. Let x be a string and x be its binary complement. V = {v1, v2, . . . , vn} ∈ Vx is a
dictionary of the string x, if and only if, V = {v1, v2, . . . , vn} is a dictionary of the string x, i.e.,
V ∈ Vx.



Sensors 2021, 21, 6236 7 of 14

Proof. Let x = vi1 vi2 . . ., vij ∈ V. Then x = vi1 vi2 . . ., vij ∈ V and vice versa. The proof
follows.

Corollary 1. For each string x of length ν, |Vx| ≥ τ(ν). The equality is attained only for x = 1ν,
x = 0ν, and also for all strings with ν = 2. For all other strings |Vx| > τ(ν).

Proof. The first part of the statement follows from Theorem 3 and from |Vx| = τ(2) = 2
for all strings of length 2. To finish the proof we show that for all other strings |Vx| > τ(ν).
We recall that now x 6= 0ν, x 6= 1ν.

1. Let d be a divisor of ν. If we partition x = v1v2 . . . vt, where |vi| = d, t = ν
d , then the

set V = {v1, . . . , vt} is a dictionary of the string x, since the words vi are of the same
length and therefore cannot be prefixes of each other. In this way, we can find τ(ν)
different dictionaries of the string x. Therefore |Vx| ≥ τ(ν). We note that the above
argument works also in the case ν is a prime.

2a. Let x = 1rw, r ≥ 1, where the leftmost digit of w is 0, with the exception of the
string x = 1ν−10. Then {1, w} is also a dictionary of the string x. Moreover, |w| > 1,
therefore we have found a dictionary with codewords of different lengths, i.e., a
dictionary not included in the previous case. In the case x = 1ν−10 we can consider
a dictionary {1ν−1, 0} and have once again found a dictionary with codewords of
different lengths, as ν− 1 ≥ 2. Therefore |Vx| > τ(ν).

2b. Let x = 0rw, where the leftmost digit of w is 1. Due to Proposition 1 |Vx| = |Vx| and
we can consider the complement x of x and continue as in the previous case.

This proves our corollary.

4. Algorithm for Finding the Set Vx

In this section, we describe an algorithm for finding the set Vx. This algorithm was
employed for all strings of lengths up to 26.

For a given binary string x of length ν, the algorithm finds all such minimal P-codes
V that x ∈ V+. Since each P-code can be viewed as a binary tree T whose leaves represent
the codewords of the P-code, the algorithm recursively searches all 2ν−1 divisions of the
string x into partitions and checks whether these substrings may form the leaves of some
binary tree T. If so, then the algorithm outputs the tree T that also represents such P-code
V, where x ∈ V+.

The input of the recursive algorithm is a binary string x, whose prefixes are potential
codewords and a binary tree T with already-found codewords. In the beginning, the
algorithm is used with the original string x and a binary tree T with only one node—
its root.

Steps 5–20 take a prefix P of x of lengths 1 up to |x| and check whether it may be a
codeword of some P-code by keeping up a binary tree T of already identified codewords.
The following situations might arise for a prefix P of the string x and a binary tree T (its
working copy T′):

Steps 12–14 If one of the leaves of T′ is a prefix of P, then it is also a prefix of x. Therefore
the current call of the algorithm terminates, since it is not possible to create another
codeword from the current string x.

Steps 15–17 If the string P is a prefix of some leaf of T′, i.e., a prefix of some codeword,
then this prefix is ignored and a prefix of length +1 is considered (i.e., the jump to the
step 21).

Steps 18–20 The string P might be a codeword of some P-code. Therefore, it is inserted to
the tree T′ as a new leaf and the algorithm is recursively called with the rest of x after
removal of P (i.e., the string x′ in the step 19) and with the tree T′.

For example, if we apply Algorithm 1 to a string x = 01010, we find the following
P-codes:
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Root
0 1

Root
0 1

10
0

Root
1

10
101

0
Root

1
10

101
1010Root

0 1
01 10

010

Root
0

01
010

0101
01010

The trees represent the following P-codes, respectively:

{0, 1}, {0, 10}, {0, 101}, {0, 1010}, {010, 10}, {01010}.

5. Statistical Approach for Cardinality of the Set Vx

Consider all 210 binary strings of length ν = 10. For each string, we find the set Vx
and its cardinality. Cardinality distribution histogram of |Vx| is in Figure 1. For example,
50 strings of length ν = 10 have the property that 39 P-codes can be constructed from them,
i.e., for 50 strings x ∈ {0, 1}10 it is true that |Vx| = 39. Maximum cardinality |Vx| = 61 is
reached by four strings x (last value of the histogram).
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Cardinality of |Vx| 

Figure 1. Cardinality distribution histogram for ν = 10.

We have estimated the upper bound for maxx∈{0,1}ν |Vx| = h(ν) = h experimentally
by using the log-linear regression to be 20.5122ν+0.5253. As mentioned above, this number is
less than 2ν−1. To do this, we collected the data which are included in Table 2. Description
of its columns are in the next subsection.
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Table 2. Results of our exhaustive search ν = 1, 2, . . . , 26. (see the description of columns above.)

ν k µ s 5 6 Min Max h

1 1 1 0 - 2 1 1 2.05
2 2 2 0 - 4 2 2 2.93
3 2 3 1 4.22 4 2 4 4.18
4 2 4.75 1.0000 6.38 6 3 6 5.95
5 3 6.50 1.6461 7.76 10 2 9 8.49
6 3 9.56 2.1372 11.95 18 4 13 12.11
7 3 13.06 3.2814 15.56 22 2 20 17.28
8 4 18.95 4.7508 21.50 30 4 30 24.64
9 4 25.94 6.9036 29.59 40 3 43 35.14
10 4 36.91 9.5817 42.64 50 4 61 50.12
11 4 50.45 13.4382 60.80 74 2 84 71.48
12 5 70.89 18.5844 87.93 118 6 119 101.95
13 5 96.92 25.8554 126.40 162 2 175 145.40
14 5 134.88 35.6985 183.10 218 4 244 207.38
15 5 184.21 49.2433 265.47 326 4 347 295.76
16 6 254.16 67.5362 387.13 528 5 476 421.82
17 6 346.25 92.3633 566.14 688 2 678 601.62
18 6 474.43 125.8496 830.99 988 6 916 858.04
19 6 644.47 171.1880 1221.82 1414 2 1253 1223.76
20 7 877.99 232.1493 1801.95 1990 6 1771 1745.35
21 7 1189.26 314.4021 2661.06 2876 4 2440 2489.26
22 7 1612.52 424.7709 3939.26 4264 4 3262 3550.24
23 7 2177.56 573.1570 5838.84 6252 2 4497 5063.43
24 8 2940.84 771.6567 8673.73 9240 8 5935 7221.59
25 8 3959.67 1037.8313 12,898.32 13,716 3 8215 10,299.60
26 8 5328.85 1393.0635 19,218.48 20,242 4 11,276 14,689.52

Results of Our Exhaustive Search ν = 1, . . . , 26

We implemented Algorithm 1 in programming language C++ and used it to calculate
the cardinalities of sets Vx for all possible binary strings x of lengths ν = 1, 2, . . . , 26. For
each value of ν ∈ {1, 2, . . . , 26}, we generated all 2ν strings x of length ν and determined all
possible P-codes, i.e., the set Vx, and |Vx| for each possible string x. Our algorithm checked
2ν2ν−1 = 22ν−1 instances for each ν ∈ {1, 2, . . . , 26}. As a consequence we were able to
generate histograms for distribution of cardinalities of Vx. One such example is presented
in Figure 1.

We used computational resources available at the HPC center at the Slovak University
of Technology in Bratislava, where the computation used 72 computational nodes and took
1 day 20 h and 53 min, i.e., it performed at a rate approx. 416 x strings of length 26 per
second.

At this rate, the calculation would take approx. 3 days for ν = 27, one week for ν = 28,
two weeks for ν = 29 and approx. one year and three months for ν = 34. However, in
reality the periods would be even longer, since the rate would slow down, because of
longer strings x.

We present the results in Table 2, with the following columns:

1. ν—The length of the binary string x, ν = 1, 2, . . . , 26
2. k—Upper bound on |V|
3. µ—Estimated mean µ for |Vx|
4. s—Estimated standard deviation s for |Vx|
5. 5—Estimated maximum of the function 2ν fN , where fN is the Gaussian density func-

tion N(µ, s2), i.e., 2ν
√

2πs2 . In other words, the theoretical number of strings x ∈ {0, 1}ν

with their value of |Vx| equal to the estimated mean value µ.
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6. 6—The measured number of strings x ∈ {0, 1}ν with their value of |Vx| equal to the
most probable value of |Vx|.

7. Min = min{|Vx|}—The smallest number of P-codes for a string x ∈ {0, 1}ν, i.e., the
smallest |Vx|. Due to Corollary 1 it is equal τ(ν).

8. Max = max{|Vx|}—The largest number of P-codes for a string x ∈ {0, 1}ν, i.e., the
largest |Vx|.

9. h—The estimated upper bound h(ν) using log-linear regression from the collected
data.
Comparing columns 5 and 6 one can see how sharp is our estimation for the most

probable value. From this it follows that this estimation is acceptable. Comparing the last
two columns it follows that the discrepancy between our estimation for h = h(ν) and the
true value is also acceptable. These columns also display the range of occurrences for |Vx|.
(see also Figure 2).

y = 0.5122x + 0.5253 
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Figure 2. Linear regression for log2 Max{Vx}, ν = 1 . . . , 26.

Let x be a binary string of the length ν and Vx be the set of all P-codes that can be
obtained from the string x by Algorithm 1. Moreover, let h = maxx∈{0,1}ν |Vx|. Then for
each t = 1, 2, . . . , h and x ∈ {0, 1}ν, we define the characteristic function

χt(x) =
{

1, if |Vx| = t;
0, othervise.

(2)

Let Xν,t be a random variable

Xν,t = ∑
x∈{0,1}ν

χt(x), (3)

defined on the sample space Ω = {1, 2, . . . , h}. For instance, if ν = 10, t = 39 we have
X10,39 = 50 (see graph in Figure 1). Moreover, because of the complement property
mentioned above we have |Vx| = |Vx|, and Xν,t is an even number for ν > 1.

Next, we need a variant of the Central limit theorem [17].

Lemma 1. Let a density functions fν,t(x) of independent random variables Xν,t be bounded by a
constant h and their characteristic function is non negative. Then densities of random variables
Yn = ∑n

t=1 Xν,t
s
√

n converge to the density of Gaussian random variable.
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Hence our random variable Xν,t possesses Gaussian probability distribution with a
density function fν,t. Using exhaustive search for values ν = 1, 2, . . . , 26 subsequent linear
regression revealed that the random variable Xν,t has a slightly biased normal distribution
(see Figure 3) with the mean value of µ = 20.4749ν+0.2766 (see Figure 4) and a standard
deviation of s = 20.4702ν−1.5696 (see Figure 5). From there we get an estimate on the number
of strings x of length ν for which |Vx| is equal to the most probable value, i.e., the mean of
random variable Xν,t:

max{|{x ∈ {0, 1}ν : |Vx| = t}|} ≈

2ν
√

2πs2 = 2ν
√

2π × 20.4702ν−1.5696 =
√

2π × 21.4702ν−1.5696. (4)
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Figure 3. The estimate of the density function of a random variable X26,t.
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Figure 4. Linear regression for log2 µ, ν = 1 . . . , 26.
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y = 0.4702x  1.5696 
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Figure 5. Linear regression for log2 s, ν = 3 . . . , 26.

6. Preliminary Cryptanalysis of the Proposed Cipher Based on P-Codes

The security of the proposed cryptosystem is based on the fact that there exist a rather
large (potentially infinite if the length of codewords is not upper-bounded) number of
dictionaries for plaintext alphabets. As mentioned earlier, the cryptanalysis can be further
made more complicated by employing null-ciphers into encryption, i.e., the code P may
contain several codewords that will be decoded as an empty string. We recommend to insert
a random number of these null-ciphers into the beginning and end of the ciphertext and also
to randomly insert them into ciphertext during the encryption as well. In our opinion, this
security measure substitutes the usage of encryption modes, since the encryption without
null-ciphers behaves similarly to ECB-mode, where two equal sequences of plaintext
characters would be encrypted as two equal binary sequences. With the addition of
randomly inserted null-ciphers, this is no longer true.

We also suppose that each message has its own encryption key, i.e., the used P-code.
Let us consider the ciphertext-only attack, i.e., the attacker has observed a ciphertext x.

The brute-force attack on the cryptosystem would consist of the exhaustive search for the
used key (P, κ). To investigate the security of the system under this attack, in this paper
we study the properties of P-codes to show that the keyspace is too large to mount such
an attack.

The size of keyspace depends on both the size of alphabet A and on the size of P
which is determined by fundamental properties of P-codes.

As can be seen on Figure 4, the average number of minimal dictionaries with respect to
a given string grows exponentially with regards to the length of the binary string. Therefore,
one approach to have a complexity of 2128 of finding the correct minimal dictionary, is to
let the length of the ciphertext to be at least 128 < 0.4749ν + 0.2766, i.e., 268 < ν. In this
case, if the ciphertext has at least 269 bits, then there exist on average at least 2128 possible
dictionaries, which could have been used to generate such a ciphertext. Thus, even if
the attacker tries to find the correct dictionary by searching through all possible minimal
dictionaries with respect to the ciphertext, he/she has to search through 2128 dictionaries.

7. Conclusions

In this paper, a symmetric cipher based on prefix codes has been proposed. Our main
goal was to investigate the security of the cipher regarding the amount of information
about the key, i.e., the used random P-code, that is available to the attacker by observing a
ciphertext, i.e., a string of concatenated codewords of the P-code. The encryption algorithm
and methods how to generate such random P-code are presented in Section 2. In Section 3
we defined a notion of a minimal dictionary of a P-code with respect to a given string and
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we identified the minimal bound on the number of all dictionaries with respect to a given
string. An exponential algorithm which finds all minimal dictionaries with respect to a
given string is proposed in Section 4. Statistical approach for finding the upper bound
on the number of all minimal dictionaries with respect to a given string is presented in
Section 5. Our analysis shows that the number of possible P-codes derived from a string
increases exponentially with the length of the corresponding string, therefore the keyspace
of the cipher increases exponentially as well, making the brute-force attack difficult. In
Section 6, we present a preliminary cryptanalysis of the proposed cipher. In order to retain
the simplicity of the cipher and to prevent some basic attacks, e.g., the statistical analysis of
the ciphertext, we suggest to use the null-ciphers during the encryption.

Some technicalities about possible coders and decoders for P-codes can be further
found in [18]. Information on effective decoding algorithms can be found in [19,20] and on
memory-efficient representation of prefix codes can be found in [21].

Future plans include finding the sharp lower bound of the cardinality of a dictionary
with respect to a given string x.
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